covid
Buscar en
Brazilian Journal of Microbiology
Toda la web
Inicio Brazilian Journal of Microbiology Genome sequencing of four strains of Phylotype I, II and IV of Ralstonia solanac...
Journal Information
Vol. 48. Issue 2.
Pages 193-195 (April - June 2017)
Share
Share
Download PDF
More article options
Visits
2417
Vol. 48. Issue 2.
Pages 193-195 (April - June 2017)
Genome Announcement
Open Access
Genome sequencing of four strains of Phylotype I, II and IV of Ralstonia solanacearum that cause potato bacterial wilt in India
Visits
2417
Virupaksh U. Patila,
Corresponding author
veerubt@gmail.com
virupakshagouda.patil@icar.gov.in

Corresponding author at: Division of Crop Improvement, Central Potato Research Institute, Shimla 171 001, Himachal Pradesh, India.
, Vanishree Girimallaa, Vinay Sagarb, Rajinder Singh Chauhanc, Swarup Kumar Chakrabartia,b
a Central Potato Research Institute, Division of Crop Improvement, Bemloe, Shimla, Himachal Pradesh, India
b Central Potato Research Institute, Division of Plant Protection, Bemloe, Shimla, Himachal Pradesh, India
c Jaypee University of Information and Technology, Waknaghat, Solan, Himachal Pradesh, India
This item has received

Under a Creative Commons license
Article information
Abstract
Full Text
Bibliography
Download PDF
Statistics
Tables (1)
Table 1. General features and distribution of CDS, tRNA, rRNA, regulatory genes and pathogenic genes between Chromosome and Megaplsmid of R. solanacearum strains including Rs2, Rs25, Rs48 and Rs75.
Abstract

Ralstonia solanacearum is a heterogeneous species complex causing bacterial wilts in more than 450 plant species distributed in 54 families. The complexity of the genome and the wide diversity existing within the species has led to the concept of R. solanacearum species complex (RsSC). Here we report the genome sequence of the four strains (RS2, RS25, RS48 and RS75) belonging to three of the four phylotypes of R. solanacearum that cause potato bacterial wilt in India. The genome sequence data would be a valuable resource for the evolutionary, epidemiological studies and quarantine of this phytopathogen.

Keywords:
Potato wilt
Ralstonia
Species Complex
Phylotype
Bipartite
Genome
Full Text
Genome announcement

Ralstonia solanacearum1,2 formally known as Pseudomonas solanacearum and Burkholderia solanacearum is a gram-negative, chemo-organotroph phytopathogenic β-proteobacterium with an unusual broad host range.3 The pathogen not only affects solanaceous but many plants of other dicot and monocot families. The extensive genetic diversity of strains responsible for various wilt diseases has in recent years led to the concept of an R. solanacearum “species complex” (RsSC).4 As R. solanacearum strains have been isolated from virgin forest-soils of all five continents, the origin of the species complex is believed to predate the geographical separation of continents.5 The pathogen is hierarchically classified into four phylotypes according to newly proposed phylotype sub-classification system based on 16S-23S ITS region, egl and hrpB genes and on comparative genomic hybridization (CGH) which reflect their origin as Asia (Phylotype I), America (II), Africa (III) or Indonesia (IV).6 These phylotypes are further classified into sequevars, containing isolates with similar virulence patterns or common geographic origin.3 Despite their considerable diversity, R. solanacearum strains are unified by their common etiology resulting in disease.7 Three of the four phylotypes of R. solanacearum are known to cause bacterial wilt of potato in India.8 In the present study four strains, RS2 (Phylotype II), RS25 and RS48 (Phylotype I) and RS75 (Phylotype IV) isolated from brown-rot infected potato tubers obtained from different parts of the country were taken for complete genome sequencing and to analyze their relationship complexity.

We sequenced the genomes of all four strains using shotgun approach and Roche-454, GSflx-Titanium platform yielding appx. 2.88 million reads (>500bp) of which nearly 99.5% reads were of high quality. The genome coverage ranged from 18X (RS48) to 76X (RS75). The high quality reads were aligned using GS De Novo Assembler (version 2.5.3) and gene prediction using the prokaryotic GeneMark.hmm (Version 2.2a) and AUGUSTUS (http://bioinf.uni-greifswald.de/augustus/submission/) revealed a total of 4590, 4732, 4817 and 4867 protein coding regions (CDSs) respectively for RS2, RS25, RS48 and RS75 spread over megaplasmid as well as chromosomal genomes. High quality reads were mapped on to publically available reference genomes, GMI1000 (RS25 & RS48), Po82 (RS2) and PSI07 (RS75) (www.ncbi.nlm.nih.gov/genome/) using gsMapper with optimized mapping parameters and obtained total genome coverage and per cent GC content for all four strains. The total protein coding regions, rRNA and tRNA coding, regulatory and pathogenicity genes including the Type III secretary genes were obtained from the consensus using the .gff (from public database) file with the help of in-house perl scripts (Table 1). The presence of repetitive elements was analyzed using MISA (http://pgrc.ipk-gatersleben.de/misa/) and was observed that nearly 90% of the elements were of di or tri and 7.3% hexa mer repeats. Chromosomes carried higher portion (60–70%) of the repeat elements than megaplsmids in all the four strains. The availability of the reference genomes of more and more strains of RsSC would greatly aid in epidemiological/quarantine studies and in gaining understanding on their origin, evolution, intra and inter-relationship within the complex and their interactions with plants.

Table 1.

General features and distribution of CDS, tRNA, rRNA, regulatory genes and pathogenic genes between Chromosome and Megaplsmid of R. solanacearum strains including Rs2, Rs25, Rs48 and Rs75.

Strain  Origin  Isolated from  Phylotypea  Sequence status  Genome size (Kb)bGC%c  CDSd  rRNAe  tRNAf  T3Eg  Reference 
          CHR  MPL  Total             
Grenada9-1  Grenada  Banana  IIA(6)  Draft  NA  NA  5479  66.60  5365  3h  56h  NA  9 
IBSBF1503  Peru  Cucumber  II(4)NPB  Draft  NA  NA  5514  66.70  5452  3h  54h  NA   
CBF1416  Costa Rica  Plantain  IIB(3)  Draft  NA  NA  5744  66.60  5722  3h  59h  NA   
Rs-09-161  India  Eggplant  I/R1b3  Complete  3741  1985  5726  66.82  5213  3h  66h  71  10 
Rs-10-244  India  Chilli  I/R1b3  Complete  3716  2025  5741  66.98  5202  3h  63h  76   
RS-2i  Indore (MP), India  Potato  IIB(1)  Draft  3481  1608  4768  57.36  4590  2  53  63  This study 
RS-25j  Shimla (HP), India  Potato  I(45)  Draft  3065  1950  5232  60.11  4732  3  57  91   
RS-48j  Shimla (HP), India  Potato  I(30)  Draft  3065  1727  5300  60.10  4817  3  57  89   
RS-75i  Shillong (Meghalaya), India  Potato  IV(8)  Draft  2903  1720  5045  60.06  4867  2  54  73   
GMI1000  Fr. Guyana  Tomato  I (18)  Complete  3716  2094  5811  67.00  5120  57  74  11 
Y45  China  Tomato  IB  Draft  3726  1986  5712  NA  5496  53  ND  12 
FYQ_4  China  Tomato  Complete  3715  2089  5805  66.82  5153  62  ND  13 
K60  USA  Tomato  IIA(7)  Draft  3717  1773  5490  66.70  5213  3h  51h  ND  14 
CFBP2957  Fr. West Indies  Tomato  IIA(36)  Complete  3539  2144  5683  69.90  5310  56  72  15 
Molk2  Phillippines  Banana  IIB(3)  Draft  NA  NA  5961  66.70  5061  34  75   
CMR15  Cameroon  Tomato  III(29)  Complete  3594  1963  5593  69.90  5149  59  67   
Psi07  Indonesia  Tomato  IV(10)  Complete  3508  2085  5606  66.30  5247  49  74   
Po82  Mexico  Potato  IIB(4)  Complete  3481  1949  5430  66.65  5019  54  75  16 
BDB R229  Indonesia  Banana  IV  Draft  3574  1585  5159  66.50  4629  45  57  17 
R. syzygii R24  Indonesia  Clove  IV  Draft  3681  1743  5424  65.90  4867  50  48   
a

Sequevar numbers are in parenthesis.

b

CHR – chromosome, MLP – Megaplsmid, ND – not available.

c

G+C content in percent.

d

CDS – number of coding sequences.

e

Number of genes coding for ribosomal RNAs.

f

Number of genes coding for transfer RNAs.

g

Number of predicted type III effectors.

h

ARAGON tRNA detection.

i

Isolated from the infected stem.

j

Isolated from infected tubers.

Nucleotide sequence accession numbers. This Whole Genome Shotgun project has been deposited at NCBI/GenBank under Bio-Project PRJNA221562 with Accession Nos. SRX360515, SRX365373, SRX365374 and SRX365375.

Conflicts of interest

The authors declare no conflicts of interest.

Acknowledgements

This work was supported by Indian Council of Agriculture Research (ICAR), New Delhi, Government of India under the network programme “PhytoFuRa – Phytophthora, Fusarium and Ralstonia Diseases of Horticulture and Field Crops”.

References
[1]
E.F. Smith.
A bacterial disease of tomato, pepper, eggplant and Irish potato (Bacillus solanacearum nov. sp.) US Dep.
Div Veg Phys Pathol Bull, 12 (1896), pp. 1-28
[2]
E. Yabuuchi, Y. Kosako, I. Yano, H. Hotta, Y. Nishiuchi.
Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. nov.: praposal of Ralstonia solanacearum (Smith 1896) comb. Nov. and Ralstonia eutropha (Davis 1969).
Microb Immunol, 39 (1995), pp. 897-904
[3]
M. Fegan, P. Prior.
How complex is the “Ralstonia solanacearum species complex.
Bacterial Wilt Disease and the Ralstonia solanacearum Species Complex, pp. 449-462
[4]
S. Genin, T.P. Denny.
Pathogenomics of the Ralstonia solanacearum species complex.
Annu Rev Phytopathol, 50 (2012), pp. 67-89
[5]
A.C. Hayward.
Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum.
Annu Rev Phytopathol, 29 (1991), pp. 65-87
[6]
E. Wicker, L. Grassart, R.C. Beaudu, et al.
Ralstonia solanacearum strains from Martinique (French West Indies) exhibiting a new pathogenic potential.
Appl Environ Microbiol, 73 (2007), pp. 6790-6801
[7]
V.U. Patil, J. Gopal, B.P. Singh.
Improvement for bacterial wilt resistance in potato by conventional and biotechnological approaches.
Agric Res, 1 (2012), pp. 299-316
[8]
V. Sagar, J. Arjunan, S. Mian, et al.
Potato bacterial wilt in India caused by strains of Phylotype I, II and IV of Ralstonia solanacearum.
[9]
F. Ailloud, T. Lowe, G. Cellier, D. Roche, C. Allen, P. Prior.
Comparative genomic analysis of Ralstonia solanacearum reveals candidate genes for host specificity.
BMC Genomics, 16 (2015), pp. 270
[10]
R. Raman, S. Gaitonde, G. Achari, et al.
Genome sequencing of Ralstonia solanacearum Biovar 3, Phylotype I, strains Rs-09-161 and Rs-10-244, isolated from eggplant and Chili in India.
Genome Announc, 2 (2014), pp. e00323-e414
[11]
M. Salanoubat, S. Genin, F. Artiguenave, et al.
Genome sequencing of the plant pathogen Ralstonia solanacearum.
Nature, 415 (2002), pp. 497-502
[12]
Z. Li, S. Wu, X. Bai, et al.
Genome sequence of the tobacco bacterial wilt pathogen Ralstonia solanacearum.
J Bacteriol, 193 (2011), pp. 6088-6089
[13]
Y. Cao, B. Tian, Y. Liu, et al.
Genome sequencing of Ralstonia solanacearum FQY_4, isolated from a bacterial wilt nursery used for breeding crop resistance.
Genome Announc, 1 (2013), pp. e00125-e213
[14]
B. Remenant, L. Babujee, A. Lajus, C. Médigue, P. Prior, C. Allen.
Sequencing of K60, type strain of the major plant pathogen Ralstonia solanacearum.
J Bacteriol, 194 (2012), pp. 2742-2743
[15]
B. Remenant, B.C. Goutaland, A. Guidot, et al.
Genomes of three tomato pathogens within the Ralstonia solanacearum species complex reveal significant evolutionary divergence.
BMC Genomics, 11 (2010), pp. 379
[16]
J. Xu, H.J. Zheng, L. Liu, et al.
Complete genome sequence of the plant pathogen Ralstonia solanacearum strain Po82.
J Bacteriol, 193 (2011), pp. 4261-4262
[17]
B. Remenant, J.-C. de Cambiaire, G. Cellier, et al.
Ralstonia syzygii, the blood disease bacterium and some Asian R. solanacearum strains form a single genomic species despite divergent lifestyles.
Copyright © 2016. Sociedade Brasileira de Microbiologia
Article options