metricas
covid
Buscar en
Clínica e Investigación en Arteriosclerosis
Toda la web
Inicio Clínica e Investigación en Arteriosclerosis Caracterización de la subfracción electronegativa de la LDL en individuos con ...
Journal Information
Vol. 14. Issue 2.
Pages 57-66 (January 2002)
Share
Share
Download PDF
More article options
Vol. 14. Issue 2.
Pages 57-66 (January 2002)
Full text access
Caracterización de la subfracción electronegativa de la LDL en individuos con hipercolesterolemia familiar
Characterization of electronegative LDL subfraction in familial hypercholesterolemic subjects
Visits
3329
S. Benítez
,a
, J.L. Sánchez-Quesadaa, M. Camachob, L. Vilab, J. Ordóñez-Llanosa
a Servicio de Bioquímica. Hospital de la Santa Creu i Sant Pau. Barcelona
b Laboratorio de Mediadores de la Inflamación. Institut de Recerca. Hospital de la Santa Creu i Sant Pau. Barcelona
This item has received
Article information
Fundamento/objetivos

La lipoproteína de baja densidad (LDL) electronegativa (–) es una subfracción de la LDL presente en la circulación que está aumentada en la hipercolesterolemia familiar y presenta características aterogénicas. El objetivo del presente trabajo ha sido caracterizar fisicoquímica y biológicamente la LDL(–) aislada de pacientes con hipercolesterolemia familiar

Métodos

Las fracciones LDL(+) y LDL(–) de individuos normolipémicos y con hipercolesterolemia familiar fueron aisladas mediante cromatografía de intercambio aniónico. La caracterización fisicoquímica incluyó la composición en lípidos, apolipoproteínas (Apo), antioxidantes, ácido siálico y malondialdehído, el tamaño (electroforesis en gradiente de acrilamida) y la densidad (ultracentrifugación en gradiente de densidad). La caracterización biológica incluyó el estudio de la afinidad al receptor de LDL en cultivos de fibroblastos, y el efecto sobre la producción de moléculas proinflamatorias (interleucina 8, proteína quimiotáctica para monocitos 1, molécula de adhesión de células vasculares, inhibidor del activador del plasminógeno 1) en células endoteliales

Resultados

La proporción de LDL(–) fue más alta en individuos con hipercolesterolemia familiar que en normolipémicos (12,0 ± 3,4% frente al 5,4 ± 1,8%). La LDL(–) presentó, en ambos grupos, un contenido aumentado de triglicéridos, colesterol libre, ácidos grasos no esterificados, ácido siálico, Apo E y Apo C-III, y un menor contenido de Apo B, respecto a la LDL(+). Además, la LDL(–) de los individuos con hipercolesterolemia familiar presentó más colesterol total y esterificado y menos fosfolípidos que la LDL(+). No se observaron, en ningún caso, diferencias en el contenido en antioxidantes o malondialdehído. La LDL(–) de los sujetos normolipémicos presentó menor tamaño y mayor densidad que su LDL(+). Por el contrario, la LDL(–) de los individuos con hipercolesterolemia familiar manifestó bandas de tamaño igual que su LDL(+) o superior a ésta y una distribución mayoritaria en las fracciones más ligeras. Los estudios de cinética de saturación y de desplazamiento de la unión en cultivos de fibroblastos demostraron que la LDL(–) de sujetos normolipémicos y con hipercolesterolemia familiar tenía menor afinidad por el receptor de LDL que la LDL(+). Finalmente, la incubación con LDL(–) durante 24 h en cultivos de células endoteliales indujo la liberación de interleucina 8 y proteína quimiotáctica para monocitos 1. Este efecto se observó en ausencia de citotoxicidad y en los dos grupos estudiados. La producción de PAI-1 y VCAM no se alteró

Conclusiones

La LDL(–) no presentó evidencias de modificación oxidativa. De hecho, las diferencias en composición respecto a la LDL(+) pueden explicar por sí mismas el aumento de carga negativa. La principal diferencia entre la normolipemia y la hipercolesterolemia familiar es el mayor contenido en colesterol de la LDL(–) de la hipercolesterolemia familiar, que redunda en mayor tamaño y menor densidad respecto a la LDL(–) de la normolipemia. A pesar de estas diferencias, la LDL(–) de ambos grupos presentó similares características en cuanto a baja afinidad por el receptor de LDL y capacidad de inducir la producción de quimiocinas en células endoteliales

Palabras clave:
LDL
LDL electronegativa
LDL modificada
Hipercolesterolemia familiar
Receptores de LDL
Quimiocinas
Background/objectives

Electronegative LDL (LDL[-]) is a plasma subfraction of LDL with increased proportion in familial hypercholesterolemia (FH) and some atherogenic characteristics. The aim of this work was to study the physicochemical and biological characteristics of LDL(–) from FH subjects

Methods

Non-electronegative LDL (LDL(+)) and LDL(–) from normolipemic (NL) and FH subjects was isolated by anion exchange chromatography. Physicochemical characteristics included the content in lipids, apoproteins (Apo), sialic acid, antioxidants and malondialdehyde (MDA), size (bygradient gel electrophoresis) and density (by density gradient electrophoresis). Biological characterization included the binding affinity to the LDL receptor (LDLr) in cultured fibroblasts and the effect on the production of inflammatory molecules (IL-8, MCP-1, VCAM and PAI-1) by endothelial cells

Results

LDL(–) proportion was increased in FH compared with NL (12.0 ± 3.4 vs. 5.4 ± 1.8%). LDL(–) showed increased content of triglyceride, free cholesterol, sialic acid, non-esterefied fatty acids (NEFA), apoE and apoC-III, in both groups. In addition, LDL(–) from FH presented more cholesterol and less phospholipid than LDL(+). Nodifferences in MDA or antioxidants were observed.LDL(–) from NL showed smaller size and higher density than LDL(+) whereas LDL(–) from FHshowed bands of greater size than LDL(+) and was preferentially distributed in buoyant LDL subfractions. Saturation kinetics and binding displacement studies in fibroblasts showed that LDL(–) from NL and FH subjects had lower affinity for LDLr than LDL(+). Finally, LDL(–) induced IL-8 and MCP-1 release after 24 hours of incubation with endothelial cells. This effect was observed in absence of cytotoxicity and in both studied groups. VCAM and PAI-1 release was not modified

Conclusions

No evidence of oxidative modification was observed in LDL(–). In fact, the differences in composition can explain the increase in negative charge. Major difference between NL and FH subjects was the increased content of cholesterol in LDL(–) from FH, that results in greater size and lower density than LDL(–) from NL. Despite these differences, LDL(–) from both groups shared low affinity for the LDLr and was able to induce IL-8 and MCP-1 release by endothelial cells

Key words:
LDL
Electronegative LDL
Modified LDL
Familial hypercholesterolemia
LDL receptors
Chemokynes
Full text is only aviable in PDF
Bibliografía
[1.]
M. Navab, J.A. Berliner, A.D. Watson, S.Y. Hama, M.C. Territo, A.J. Lusis, et al.
The Yin and Yang of oxidation in the development of the fatty streak.
Arterioscler Thromb Vasc Biol, 16 (1996), pp. 831-842
[2.]
D. Steinberg.
LDL oxidation and its pathological significance.
J Biol Chem, 272 (1997), pp. 20963-20966
[3.]
P. Avogaro, B.G. Bittolo-Bon, G. Cazzolatto.
Presence of a modified low density lipoprotein in humans.
Arteriosclerosis, 8 (1988), pp. 79-87
[4.]
H. Shimano, N. Yamada, S. Ishibashi, H. Mokuno, N. Mori, T. Gotoda, et al.
Oxidation-labile subfraction of human plasma low density lipoprotein isolated by ion-exchange chromatography.
J Lipid Res, 32 (1991), pp. 763-773
[5.]
B. Vedie, I. Myara, M.A. Pech, J.C. Maziere, C. Maziere, A. Caprani, et al.
Fractionation of charge-modified low density lipoproteins by fast protein liquid chromatography.
J Lipid Res, 32 (1991), pp. 1359-1369
[6.]
G. Cazzolato, P. Avogaro, G. Bittolo-Bon.
Characterization of a more electronegatively charged LDL subfraction by ion exchange HPLC.
Free Rad Biol Med, 11 (1991), pp. 247-253
[7.]
H.N. Hodis, D.M. Kramsch, P. Avogaro, G. Bittolo-Bon, G. Cazzolato, J. Hwang, et al.
Biochemical and cytotoxic characteristics of an in vivo circulating oxidized low density lipoprotein (electronegative LDL.
J Lipid Res, 35 (1994), pp. 669-677
[8.]
A. Sevanian, J. Hwang, H.N. Hodis, G. Cazzolatto, P. Avogaro, G. Bittolo-Bon.
Contribution of an in vivo oxidized LDL to LDL oxidation and its association with dense LDL subpopulations.
Arterioscler Thromb Vasc Biol, 16 (1996), pp. 784-793
[9.]
A. Sevanian, G. Bittolo-Bon, G. Cazzolato, H. Hodis, J. Hwang, A. Zamburlini, et al.
Electronegative LDL is a lipid hydroperoxide-enriched circulating lipoprotein.
J Lipid Res, 38 (1997), pp. 419-428
[10.]
B. Chappey, I. Myara, M.O. Benoit, C. Maziere, J.C. Maziere, N. Moatti.
Characteristics of ten charge-differing subfractions isolated from human native low density lipoprotein (LDL). No evidence of peroxidative modifications.
Biochim Biophys Acta, 1259 (1995), pp. 261-270
[11.]
K. Demuth, I. Myara, B. Chappey, B. Vedie, M.A. Pech-Ansellem, M.E. Haberland, et al.
A cytotoxic electronegative LDL subfraction is present in human plasma.
Arterioscler Thromb Vasc Biol, 16 (1996), pp. 773-783
[12.]
K. Nyyssönen, J. Kaikkonen, J.T. Salonen.
Characterization and determinants of an electronegatively charged low density lipoprotein in human plasma.
Scand J Clin Lab Invest, 56 (1996), pp. 681-689
[13.]
C. De Castellarnau, J.L. Sánchez-Quesada, S. Benítez, L. Caveda, R. Rosa, L. Vila, et al.
Electronegative LDL from normolipemic subjects induces IL-8 and monocyte chemotactic protein secretion by human endothelial cells.
Arterioscler Thromb Vasc Biol, 20 (2000), pp. 2281-2287
[14.]
J.L. Sánchez-Quesada, C. Otal-Entraigas, M. Franco, O. Jorba, F. González-Sastre, F. Blanco-Vaca, et al.
Effect of simvastatin treatment on the electronegative low-density lipoprotein present in patients with familial hypercholesterolemia.
Am J Cardiol, 84 (1999), pp. 655-659
[15.]
J.L. Sánchez-Quesada, A. Pérez, A. Caixàs, J. Ordóñez-Llanos, G. Carreras, F. González-Sastre, et al.
Electronegative low density lipoprotein subform is increased in patients with short-duration IDDM and is closely related to glycaemic control.
Diabetologia, 39 (1996), pp. 1469-1476
[16.]
J.L. Sánchez-Quesada, A. Pérez, A. Caixàs, M. Rigla, A. Payés, S. Benítez, et al.
Effect of glycemic optimization on electronegative lowdensity lipoprotein in diabetes: nonenzymatic glycosylation and oxidative modifications.
J Clin Endocrinol Metab, 86 (2001), pp. 3243-3249
[17.]
Steinbrecher UP. Oxidation of human low density lipoprotein results in derivatization of lysine residues of apolipoprotein B by lipid decomposition products.
J Biol Chem, 262 (1987), pp. 3603-3608
[18.]
J.L. Goldstein, Y.K. Ho, S.K. Basu, M.S. Brown.
Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition.
Proc Natl Acad Sci USA, 76 (1979), pp. 333-337
[19.]
K. Li.
Determination of sialic acids in human serum by reversedphase liquid chromatography with fluorimetric detection.
J Chromatography, 579 (1992), pp. 209-213
[20.]
A.L. Bailey, G. Wortley, S. Southon.
Measurement of aldehydes in low-density lipoprotein by high performance liquid chromatography.
Free Rad Biol Med, 23 (1997), pp. 1078-1085
[21.]
J.L. Sánchez-Quesada, H. Ortega, A. Payés-Romero, J. Serrat-Serrat, F. González-Sastre, M.A. Lasunción, et al.
LDL from aerobically-trained subjects shows higher resistance to oxidative modification than LDL from sedentary subjects.
Atherosclerosis, 132 (1997), pp. 207-213
[22.]
Sánchez-Quesada JL, Benítez S, Franco M, Otal C, Blanco-Vaca F, Ordóñez-Llanos J. Density distribution of electronegative LDL (LDL[–]) in normolipemic and hyperlipemic subjects. J Lipid Res 2002 (en prensa)
[23.]
A. Caixàs, J. Ordóñez-Llanos, A. De Leiva, A. Payés, R. Homs, A. Pérez.
Optimization of glycemic control by insulin therapy decreases the proportion of small dense LDL particles in diabetic patients.
Diabetes, 46 (1997), pp. 1207-1213
[24.]
J.L. Sánchez-Quesada, R. Homs-Serradesanferm, J. Serrat-Serrat, J.R. Serra-Grima, F. González-Sastre, J. Ordóñez-Llanos.
Increase of LDL susceptibility to oxidation occuring after intense, long duration exercise.
Atherosclerosis, 118 (1995), pp. 297-305
[25.]
Z.F. Stephan, E.C. Yurachek.
Rapid fluorimetric assay of LDL receptor activity by DiI-labeled LDL.
J Lipid Res, 34 (1993), pp. 325-330
[26.]
G. Scatchard.
The attractions of proteins for small molecules and ions.
Ann N Y Acad Sci, 51 (1949), pp. 660-672
[27.]
Y.C. Cheng, W.H. Prussoff.
Relationship between the inhibition coinstant (Ki) and the concentration of inhibitor which causes 50 percent inhibition (IC50) of an enzymatic reaction.
Biochem Pharmacol, 22 (1973), pp. 3099-3108
[28.]
M. Camacho, N. Godessart, R. Antón, M. García, L. Vila.
Interleukin- 1 enhances the ability of cultured human umbilical vein endothelial cells to oxidize linoleic acid.
J Biol Chem, 270 (1995), pp. 17279-17286
[29.]
U.K. Laemmli.
Cleavage of structural proteins during the assembly of the head of bacteriophage T4.
Nature, 227 (1970), pp. 680-685
[30.]
K. Oorni, O. Pentikainen, P.T. Ala-Korpela Kovanen.
Aggregation, fusion and vesicle formation of modified low density particles: molecular mechanisms and effects on matrix interactions.
J Lipid Res, 41 (2000), pp. 1703-1714
[31.]
S. Yla-Herttuala, O. Jaakkola, T. Solakavi, H. Kuivaniemi, T. Nikkari.
The effect of proteoglycan, collagen and lysyl oxidase on the metabolism of low density lipoprotein by macrophages.
Atherosclerosis, 62 (1986), pp. 73-80
[32.]
R. Ross.
Atherosclerosis: an inflammatory disease.
N Engl J Med, 340 (1999), pp. 115-126
[33.]
M.A. Austin, J.L. Breslow, C.H. Hennekens, J.E. Buring, W.C. Willet, R.M. Krauss.
Low density lipoproteins subclass patterns and the risk of myocardial infarction.
JAMA, 260 (1988), pp. 1917-1921
[34.]
E. Moro, P. Alessandrini, C. Zambon, S. Pianetti, M. Pais, G. Cazolatto, et al.
Is glycation of low density lipoproteins in patients with type 2 diabetes mellitus a LDL pre-oxidative condition?.
Diabet Med, 16 (1999), pp. 663-669
[35.]
S. Benítez, J.L. Sánchez-Quesada, L. Lucero, R. Arcelus, V. Ribas, O. Jorba, et al.
Changes in low-density lipoprotein electronegativity and oxidizability after aerobic exercise are related to the increase in associated non-esterified fatty acids.
Atherosclerosis, 160 (2002), pp. 223-232
[36.]
O. Ziouzenkova, L. Asatryan, M. Akmal, C. Tetta, M.L. Wratten, G. Loseto-Wich, et al.
Oxidative cross-linking of Apo B-100 and hemoglobin results in low density lipoprotein modification in blood.
J Biol Chem, 27 (1999), pp. 18916-18924
[37.]
G. Camejo, A. López, F. López, J. Quiñones.
Interaction of low density lipoproteins with arterial proteoglycans: the role of charge and sialic acid content.
Atherosclerosis, 55 (1985), pp. 93-105
[38.]
B. McKeone, J. Patsch, H. Pownall.
Plasma triglycerides determine low density lipoprotein composition, physical properties and cellspecific binding in cultured cells.
J Clin Invest, 91 (1993), pp. 1926-1933
[39.]
M. La Belle, P.J. Blanche, R.M. Krauss.
Charge properties of low density lipoprotein subclasses.
J Lipid Res, 38 (1997), pp. 690-700
[40.]
S. Benítez.
Universitat Autónoma de Barcelona, (2002),
[41.]
D.L. Tribble.
Lipoprotein oxidation in dyslipemia: insights into general mechanisms affecting lipoprotein oxidative behavior.
Curr Opin Lipidol, 6 (1995), pp. 196-208
[42.]
M. Hermann, B. Gneimer.
Altered susceptibility to in vitro oxidation of LDL in LDL complexes and LDL aggregates.
Arterioscler Thromb, 12 (1992), pp. 1503-1506
Copyright © 2002. Sociedad Española de Arteriosclerosis y Elsevier España, S.L.
Download PDF
Article options
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos