metricas
covid
Buscar en
Clínica e Investigación en Arteriosclerosis
Toda la web
Inicio Clínica e Investigación en Arteriosclerosis Efectos in vitro de la infección por Chlamydia pneumoniae en células implicada...
Journal Information
Vol. 16. Issue 1.
Pages 1-9 (January 2004)
Share
Share
Download PDF
More article options
Vol. 16. Issue 1.
Pages 1-9 (January 2004)
Full text access
Efectos in vitro de la infección por Chlamydia pneumoniae en células implicadas en el proceso aterogénico
In vitro effects of chlamydia pneumoniae infection in cells implicated in the atherogenic process
Visits
3744
J. Millán Núñez-Cortésa,1
Corresponding author
jmillan@hggm.es

Correspondencia: J. Millán Núñez-Cortés. Servicio de Medicina Interna III. HGU Gregorio Marañón. Dr. Esquerdo, 46. 28007 Madrid. España. Correo electrónico:
, Y. Álvarez Rodríguezb, G. Álvarez Novesb, F.J. TorresSegoviaa, L. Álvarez-Sala Waltera
a Servicio de Medicina Interna (III). Hospital General Universitario Gregorio Marañón. Madrid
b Laboratorio de Investigación Biomédica (Cantoblanco). Hospital General Universitario Gregorio Marañón. Madrid. España
This item has received
Article information
Fundamentos

Estudios experimentales indicant los posibles efectos patogénicos de las infecciones en la pared vascular, y se ha reconocido que intervienen en distintos fenómenos que acompañan a la formación de la placa de ateroma

Objetivo

Evaluar las características morfodinámicas de diferentes células humanas normales de la pared vascular, antes y después de infectarlas con Chlamydia pneumoniae (CP)

Material y métodos

Cultivos de células epiteliales, monocitos y linfocitos humanos de sangre periférica, células edoteliales, fibroblastos y células musculares lisas, inoculados con una cepa de CP homologada. Se han utilizado técnicas de videointervalometría y de microscopia digital en contraste de fases, para valorar las características morfodinámicas celulares, y la inmunofluorescencia para la detección de CP

Resultados

En las células epiteliales, la infección por CP provoca dos tipos de degeneración: una precoz (a las 8 h) y rápida (dura1-2 h), y otro tipo de degeneración celular más tardía (a las 16 h) y más lenta (dura unas 20 h). La actividad mitótica se reduce en los primeros días, para recuperarse al cabo de 5-6 días y normalizarse al noveno. En los cultivos monocitarios, la CP provoca un tipo de degeneración celular con vacuolización (vacuolas con cuerpos de inclusión). La máxima tasa de degeneración se obtiene a la semana, excepto en los linfocitos, que es más rápida. Cuando las células endoteliales infectadas con CP mueren forman agregados, con una primera cinética rápida y una segunda más lenta. Se produce un descenso en su actividad mitótica, seguido de un incremento a los pocos días. Los fibroblastos exhiben una elevada tasa de degeneración próxima al 20%. No se forman agregados de células degeneradas. Las células musculares lisas se trasforman en células espumosas bajo el influjo de la infección con CP

Conclusiones

El hecho de que todas las células sean susceptibles de degenerar y de sufrir trasformaciones obliga a pensar que la infección puede iniciar el fenómeno de disfunción endotelial, mantener el componente inflamatorio crónico en la pared y provocar la inestabilidad de las placas ateromatosas

Palabras clave:
Chlamydia pneumoniae
Cultivo celular
Toxicidad in vitro
Background

Experimental studies indicate the possible pathogenic effects of vascular wall infections and recognize that they play a role in the various phenomena accompanying the formation of atheromatous plaque

Objective

To evaluate the morphodynamic characteristics of different types of normalhumancells of the vascular wall before and after infection with Chlamydia pneumoniae (CP)

Material and methods

Cultures of human epithelial cells, monocytes and lymphocytes from peripheral blood, endothelial cells, fibroblasts and smooth muscle cells were inoculated with a standardized CP strain. The techniques of video intervalometry and phase contrast digital microscopy were used to evaluate the morphodynamic characteristics of the cells and immunofluorescence was used to detect CP

Results

In epithelial cells, CP infection provoked two types of degeneration: early (at 8 hours) and rapid (lasting 1-2 hours). The other type of cellular degeneration occurred later (at 16 hours) and was slower (lasting approximately 20 hours). Mitotic activity decreased in the first few days, recovering after 5-6 days and returning to normal on the ninth day. In monocyte cultures, CP provoked a type of cellular degeneration withvacuolization (vacuoles with inclusion bodies).The maximum rate of degeneration was obtainedafter 1 week, except in lymphocytes, where degeneration was more rapid. Endothelial cells infected with CP formed aggregates when they died, showing rapid first kinetics and slow second kinetics. Mitotic activity decreased and then increased a few days later. Fibroblasts showed a high rate (nearly 20%) of degeneration. Degenerated cells did not form aggregates. Smooth muscle cells transformed into foam cells under the influence of CP infection

Conclusions

The finding that all the cells were susceptible to degeneration and transformation indicates that infection may initiate a phenomenon of endothelial dysfunction, maintaining the chronic inflammatory component in the wall, and provoking instability of atheromatous plaques

Keywords:
Chlamydia pneumoniae
Cell culture
In vitro toxicity
Full text is only aviable in PDF
Bibliografía
[1.]
R. Ross.
The pathogenesis of atherosclerosis: a perspective for the 1990s.
Nature, 362 (1993), pp. 801-809
[2.]
R. Ross.
Atherosclerosis: an inflammatory disease.
N Engl J Med, 340 (1999), pp. 115-126
[3.]
P. Ridker.
Inflammation, infection and cardiovascular risk: how good is the clinical evidence?.
Circulation, 97 (1998), pp. 1671-1675
[4.]
C.A. Gaydos, J.T. Summersgill, N.N. Sahney, J.A. Ramírez, T.C. Quinn.
Replication of Chlamydia pneumoniae in vitro in human macrophages, endothelial cells, and aortic artery smooth cells.
Infect Immun, 64 (1996), pp. 1614-1620
[5.]
C.A. Gaydos.
Growth in vascular cells and cytokine production by Chlamydia pneumoniae.
J Infect Dis, 181 (2000), pp. 473-478
[6.]
A. Kol, G.K. Sukhova, A.H. Lichtman, P. Libby.
Chlamydial heat shock protein 60 in human atheroma and regulates macrophage tumor necrosis factor-alpha and matrix metalloproteinase expression.
Circulation, 98 (1998), pp. 300-307
[7.]
M.V. Kalayoglu, L. Indrawaty, R.P. Morris, S.G. Morrison, Y. Yuan, G.I. Burne.
Chlamydial virulence determinants in atherogenesis: role of Chlamydial lipopolysacharide and heat shock protein 60 in macrophage-lipoprotein interactions.
J Infect Dis, 181 (2000), pp. 583-589
[8.]
H. Hu, G.N. Pierce, G. Zhong.
The atherogenic effects of Chlamydia are dependent on serum cholesterol and specific to Chlamydia pneumoniae.
J Clin Invest, 103 (1999), pp. 747-753
[9.]
M.V. Kalayoglu, G.I. Byrne.
A Chlamydia pneumoniae component that induces macrophage foam cell formation is chlamydial lipopolysacharide.
Infect Immun, 66 (1998), pp. 5065-5072
[10.]
R.E. Molestina, R.D. Miller, J.A. Ramírez, J.T. Summersgill.
Infection of human endothelial cells with Chlamydia pneumoniae stimulates transendothelial migration of neutrophils and monocytes.
Infect Immun, 67 (1999), pp. 1323-1330
[11.]
M.F. Lopes-Virella, G. Virella.
Immunological and microbiological factors in the pathogenesis of atherosclerosis.
Clin Immunol Immunopathol, 37 (1985), pp. 377-386
[12.]
H.M. Yamashiroya, L. Ghosh, R. Yang.
Herpes viridae in the coronary arteries and aorta of young trauma victims.
Am J Pathol, 130 (1988), pp. 71-79
[13.]
J.M. Munro, R.S. Cotran.
The pathogenesis of atherosclerosis: atherogenesis and inflammation.
Lab Invest, 58 (1988), pp. 249-261
[14.]
S. Halme, H. Syrjäla, A. Bloign.
Lymphocyte responses to Chlamydia antigens in patients with coronary heart disease.
Eur Heart J, 18 (1997), pp. 1001-1095
[15.]
J.J. Tumilowicz, M.E. Gawlil, B.B. Powell.
Replication of cytomegalovirus in human arterial smooth muscle cells.
J Virol, 56 (1985), pp. 839-845
[16.]
A.H.M. Span, W. Mullers, A.M. Miltenburg.
Cytomegalovirus induced PMN adherence in relation to an ELAM-1 antigen present on infected endothelial cell monolayers.
Immunology, 72 (1991), pp. 355-360
[17.]
G. Ong, B.J. Thomas, A.O. Mansfield.
Detection and widespread distribution of Chlamydia pneumoniae in the vascular system and its possible implications.
J Clin Pathol, 49 (1996), pp. 102-106
[18.]
K.T. Sammalkorpi, V.V. Valtonen, C.P.J. Maury.
Lipoproteins and acute phase response during acute infection. Interrelationships between C-reactive protein and serum amyloid A protein and lipoproteins.
Ann Med, 22 (1990), pp. 397-401
[19.]
S.A. Miller, C.H. Selzman, B.D. Shames, H.A. Barton, S.M. Johnson, A.H. Harken.
Chlamydia pneumoniae activates Nuclear Factor kappaB and Activator Protein 1 in human vascular smooth muscle and induces cellular proliferation.
J Surg Res, 90 (2000), pp. 76-81
[20.]
A.H.M. Span, C.P.A. Van Boven, C.A. Bruggeman.
The effect of cytomegalovirus infection on the adherence of polymorphonuclear leukocytes to endothelial cells.
Eur J Clin Invest, 19 (1989), pp. 542-548
[21.]
B.A. Zajac, K. O’Neill, H.M. Friedman.
Increased adherence of human granulocytes to herpes simplex virus type 1 infected endothelial cells.
In vitro Cell Dev Biol, 24 (1988), pp. 321-325
[22.]
S. Shahgasempour, S.B. Woodroffe, H.M. Garnett.
Alterations in the expression of ELAM-1, ICAM-1 and VCAM-1 after in vitro infection of endothelial cells with a clinical isolate of human cytomegalovirus.
Microbiol Immunol, 41 (1997), pp. 121-129
[23.]
E.P. Benditt, J.M. Benditt.
Evidence of a monoclonal origin of human atherosclerotic plaques.
Proc Nat Acad Sci USA, 70 (1973), pp. 1753-1756
[24.]
E. Speir, R. Modali, E.S. Huang.
Potential role of human cytomegalovirus and p53 interaction in coronary restenosis.
Science, 265 (1994), pp. 391-394
[25.]
H. Zhu, Y. Shen, T. Shenk.
Human cytomegalovirus IE1 and IE2 proteins block apoptosis.
J Virol, 69 (1995), pp. 7960-7970
[26.]
A. Kovacs, M.L. Weber, L.J. Burns.
Cytoplasmatic sequestration of p53 in cytomegalovirus-infected human endothelial cells.
Am J Pathol, 149 (1996), pp. 1531-1539
[27.]
A.C. Nicholson, D.P. Haijar.
Herpes virus in atherosclerosis and thrombosis: etiologic agents or ubiquitous bystanders?.
Thromb Vasc Biol, 18 (1998), pp. 339-348
[28.]
C.G. Fabricant, J. Fabricant, C.R. Minick.
Virus-induced atherosclerosis.
J Exp Med, 148 (1978), pp. 335-340
[29.]
C.G. Fabricant, L. Krook, J.H. Gillespie.
Virus-induced cholesterol crystals.
Science, 181 (1973), pp. 566-567
[30.]
D.P. Hajjar, C.G. Fabricant, C.R. Minick.
Virus induced atherosclerosis. Herpes virus infection alters aortic cholesterol metabolism and accumulation.
Am J Pathol, 122 (1986), pp. 62-70
[31.]
Y. Zhou, E. Guetta, Z. Yu.
Human cytomegalovirus increases modified low density lipoprotein uptake and scavenger receptor mRNA expression in vascular smooth muscle cells.
J Clin Invest, 98 (1996), pp. 2129-2138
[32.]
Y. Geng, R.B. Shane, K. Berencsi, E. Gonczol, M.H. Zaki, D.J. Margolis, et al.
Chlamydia pneumoniae inhibits apoptosis in human peripheral blood mononuclear cells through induction of IL-10.
J Immunol, 164 (2000), pp. 5522-5529
[33.]
M.C.E. Van Dam-Mieras, A.D. Muller, V.W.M. Van Hinsbergh.
The procoagulant response of cytomegalovirus infected endothelial cells.
Thromb Haemost, 68 (1992), pp. 364-370
[34.]
C.A. Bruggeman, W.H.M. Debie, A.D. Muller.
Cytomegalovirus alters the von Willebrand factor content in human endothelial cells.
Thromb Haemost, 59 (1988), pp. 264-268
[35.]
O.R. Etingin, R.L. Silverstein, H.M. Friedman.
Viral activation of the coagulation cascade: molecular interactions at the surface of infected endothelial cells.
Cell, 61 (1990), pp. 657-662
[36.]
G.M. Vercelloti.
Proinflammatory and procoagulant effects of herpes simplex infection on human endothelium.
Blood Cells, 16 (1990), pp. 209-216
[37.]
E.L.G. Ryzdial, J.F. Wright.
Prothrombinase assembly on an enveloped virus: evidence that the cytomegalovirus surface contains procoagulant phospholipid.
Blood, 11 (1994), pp. 3749-3757
[38.]
R.H. Fryer, E.P. Schwobe, M.L. Woods.
Chlamydia species infect human vascular endothelial cells and induce procoagulant activity.
J Invest Med, 45 (1997), pp. 168-174
Copyright © 2004. Sociedad Española de Arteriosclerosis y Elsevier España, S.L.
Article options
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos