metricas
covid
Buscar en
Clínica e Investigación en Arteriosclerosis
Toda la web
Inicio Clínica e Investigación en Arteriosclerosis Efectos de la combinación rosiglitazonaatorvastatina sobre la expresión de gen...
Información de la revista
Vol. 16. Núm. 1.
Páginas 10-17 (enero 2004)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 16. Núm. 1.
Páginas 10-17 (enero 2004)
Acceso a texto completo
Efectos de la combinación rosiglitazonaatorvastatina sobre la expresión de genes implicados en la captación y en el eflujo de colesterol en el macrófago
Visitas
2162
G. Llaverías, D. Lacasa, M. Alegret1
Autor para correspondencia
alegret@ub.edu

Correspondencia: Dra. Marta Alegret Jordà. Unidad de Farmacología. Facultad de Farmacia. Avda. Diagonal 643. 08028 Barcelona. España
Unidad de Farmacología. Departamento de Farmacología y Química Terapéutica. Facultad de Farmacia. Universidad de Barcelona. Barcelona. España
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas
Fundamento y objetivo

Las anomalías lipídicas constituyen un importante factor de riesgo cardiovascular en los pacientes con diabetes mellitus tipo 2. El tratamiento con rosiglitazona, si bien mejora el control de la glucemia y reduce la resistencia a la insulina, produce incrementos moderados en las concentraciones de cholesterol LDL (cLDL) en estos pacientes. Un studio clínico reciente ha demostrado que la terapia combinada con atorvastatina y rosiglitazona resulta altamente beneficiosa, pues la estatina contrarresta el incremento de cLDL producido por la rosiglitazona. El objetivo del presente estudio ha sido determinar el efecto de dichos fármacos sobre la expresión de diversos genes implicados en la captación o en el eflujo de colesterol en el macrófago, con la finalidad de evaluar si el tratamiento combinado resulta beneficioso en las fases iniciales de la formación de la placa de ateroma.

Métodos

Se incubaron macrófagos THP-1 de forma simultánea con 150 fg/ml de LDL acetiladas y los fármacos (atorvastatina 5 yM, rosiglitazona 2 2M o la combinación de ambos) durante 24 h. Los valores de ARNm se determinaron mediante reacción de la transcriptasa inversa acoplada a la reacción en cadena de la polimerasa. Los resultados se expresan como la media ± desviación estándar de 3 experimentos realizados por triplicado.

Resultados

Los niveles de ARNm del receptor msr-1 no resultaron modificados por el tratamiento con atorvastatina; en cambio, el tratamiento con rosiglitazona o con la combinación atorvastatina-rosiglitazona produjo incrementos similares (46 y 39%, respectivamente, p 0,05) en la expresión de este gen. En cuanto al receptor cd36, el tratamiento con atorvastatina produjo una reducción no significativa en los niveles de ARNm, mientras que el tratamiento con rosiglitazona produjo un marcado incremento (68%, p0,05). Al combinar ambosfármacos, se observa una atenuación de la respuesta inducida por rosiglitazona, ya que, aunque existe un cierto incremento en los niveles de ARNm de cd36 (34%), no se llega a alcanzar la significación estadística. Los niveles de ARNm de cla-1, caveolina-1, esterol 27-hidroxilasa, abca1 y abcg1 no resultaron modificados significativamente tras ninguno de los tratamientos.

Conclusiones

Estos resultados sugieren que la combinación de rosiglitazona y atorvastatina puede resultar beneficiosa, ya que atenúa el incremento en la expresión de CD36 producido por rosiglitazona.

Palabras clave:
Rosiglitazona
Atorvastatina
CD36
MSR-1
ABCA1
ABCG1
CLA-1
Caveolina-1
Esterol-27 hidroxilasa
Macrófagos
Background and objective

Lipid abnormalities are a key cardiovascular risk factor in patients with type 2 diabetes mellitus. Rosiglitazone is effective in improving glycemic control and in reducing insulin resistance, but may moderately increase low-density lipoprotein (LDL) cholesterol levels. A recent clinical study has demonstrated that the combination of rosiglitazone plus atorvastatin provides additional benefits, as the statin counterbalances the increase in LDL cholesterol caused by rosiglitazone. The aim of the present study was to determine the effects of these drugs on an array of genes related to cholesterol uptake and efflux in the macrophage, with the aim of evaluating whether this combination is beneficial in the initial steps of atherosclerotic plaque formation.

Methods

THP-1 macrophages were simultaneously exposed to acetyl-LDL (150 μg/ml) and the drugs (5 μM atorvastatin, 2 μM rosiglitazone or a combination of both) for 24 h. Relative levels of specific mRNAs were assessed by reverse transcriptase-polymerase chain reaction. The results are expressed as the mean ± SD of 3 experiments.

Results

mRNA levels of the msr-1 receptor were not modified after atorvastatin treatment, while incubation with rosiglitazone or with the combination rosiglitazone-atorvastatin significantly increased expression of this gene (46% and 39%, respectively, p 0.05). On the other hand, cd36 mRNA levels were slightly reduced by atorvastatin, while rosiglitazone caused a significant increase (68%, p 0.05). When macrophages were exposed to a combination of both drugs, the induction caused by rosiglitazone was decreased, achieving only a nonsignificant, 34% increase in cd36 mRNA levels. Finally, none of the treatments modified mRNA expression of cla-1, caveolin-1, sterol 27-hydroxylase, abca1 or abcg1.

Conclusions

These results suggest that a combination of rosiglitazone and atorvastatin may be beneficial, as the increase in CD36 expression caused by rosiglitazone alone is attenuated by atorvastatin.

El Texto completo está disponible en PDF
Bibliografía
[1.]
J. Tamargo.
Perfil farmacológico de la rosiglitazona.
Clin Invest Arterioscler, 14 (2002), pp. 1-9
[2.]
P. Weissman.
Reappraisal of the pharmacologic approach to treatment of type 2 diabetes mellitus.
Am J Cardiol, 90 (2002), pp. 42G-50G
[3.]
L. Masana.
Mecanismos de la dislipemia en la diabetes mellitus tipo 2.
Clin Invest Arterioscler, 14 (2002), pp. 24-29
[4.]
B. Verges.
Antidiabétiques oraux et lipides.
Ann Endocrinol, 63 (2002), pp. S45-S50
[5.]
A.M. Gotto.
Lipid management in diabetic patients: lessons from prevention trials.
Am J Med, 112 (2002), pp. 19S-26S
[6.]
A.S. Greenberg, A.G. Pittas.
Thiazolidinediones in the treatment of type 2 diabetes.
Exp Opin Pharmacother, 3 (2002), pp. 529-540
[7.]
J.C. Laguna.
Mecanismo de acción de la rosiglitazona como activador del receptor PPARd.
Clin Invest Arterioscler, 14 (2002), pp. 10-16
[8.]
Rosiglitazona (Avandia®).
Panorama Actual Med, 25 (2001), pp. 283-286
[9.]
M.A. Lasunción.
Efectos de la rosiglitazona sobre el metabolismo lipídico.
Clin Invest Arterioscler, 14 (2002), pp. 30-42
[10.]
J.F. Bickle.
Rosiglitazone: les éleménts cliniques.
Ann Endocrinol, 63 (2002), pp. S27-S33
[11.]
M.I. Freed, R. Ratner, S.M. Marcovina, M.M. Kreider, N. Biswas, B.R. Cohen, et al.
Effects of rosiglitazone alone and in combination with atorvastatin on the metabolic abnormalities in type 2 diabetes mellitus.
Am J Cardiol, 90 (2002), pp. 947-952
[12.]
A.C. Li, C.K. Glass.
The macrophage foam cell as a target for therapeutic intervention.
Nature Med, 8 (2002), pp. 1235-1242
[13.]
W.J. De Villiers, E.J. Smart.
Macrophage scavenger receptors and foam cell formation.
J Leukoc Biol, 66 (1999), pp. 740-746
[14.]
A. Babiker, O. Andersson, E. Lund, R.J. Xiu, S. Deeb, A. Reshef, et al.
Elimination of cholesterol in macrophages and endothelial cells by the sterol 27-hydroxylase mechanism. Comparison with high density lipoprotein-mediated reverse cholesterol transport.
J Biol Chem, 272 (1997), pp. 26253-26261
[15.]
G. Schmitz, W.E. Kaminski, E. Orso.
ABC transporters in cellular lipid trafficking.
Curr Opin Lipidol, 11 (2000), pp. 493-501
[16.]
Y. Ji, B. Jian, N. Wang, Y. Sun, M.L. Moya, M.C. Phillips, et al.
Scavenger receptor BI promotes high density lipoprotein-mediated cellular cholesterol efflux.
J Biol Chem, 272 (1997), pp. 20982-20985
[17.]
G.A. Graf, S.V. Matveev, E.J. Smart.
Class B scavenger receptors, caveolae and cholesterol homeostasis.
Trends Cardiovasc Med, 9 (1999), pp. 221-225
[18.]
E. Orso, C. Broccardo, W.E. Kaminski, A. Bottcher, G. Liebisch, W. Drobnik, et al.
Transport of lipids from Golgi to plasma membrane is defective in Tangier disease patients and Abc1-deficient mice.
Nat Genet, 24 (2000), pp. 192-196
[19.]
A. Bist, P.E. Fielding, C.J. Fielding.
Two sterol regulatory elementlike sequences mediate up-regulation of caveolin gene transcription in response to low density lipoprotein free cholesterol.
Proc Natl Acad Sci USA, 94 (1997), pp. 10693-10698
[20.]
S. Matveev, A. Uittenbogaard, D. Van Der Westhuyzen, E.J. Smart.
Caveolin-1 negatively regulates SR-BI mediated selective uptake of high-density lipoprotein-derived cholesteryl ester.
Eur J Biochem, 268 (2001), pp. 5609-5616
[21.]
G.L. Mills, P.A. Lane, P.K. Weech.
The isolation and purification of plasma lipoproteins.
A guidebook to lipoprotein technique, pp. 25-50
[22.]
Bradford MM A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding.
Anal Biochem, 72 (1976), pp. 248-254
[23.]
S.K. Basu, J.L. Goldstein, G.W. Anderson, M.S. Brown.
Degradation of cationized low density lipoprotein and regulation of cholesterol metabolism in homozygous familial hypercholesterolemia fibroblasts.
Proc Natl Acad Sci USA, 73 (1976), pp. 3178-3182
[24.]
S. Colli, S. Eligini, M. Lalli, M. Camera, R. Paoletti, E. Tremoli.
Vastatins inhibit tissue factor in cultured human macrophages. A novel mechanism of protection against atherothrombosis.
Arterioscler Thromb Vasc Biol, 17 (1997), pp. 265-272
[25.]
J.A. McCrohon, S. Nakhla, W. Jessup, K.K. Stanley, D.S. Celermajer.
Estrogen and progesterone reduce lipid accumulation in human monocyte-derived macrophages: a sex-specific effect.
Circulation, 100 (1999), pp. 2319-2325
[26.]
G. Llaverías, M. Jové, M. Vázquez-Carrera, R. Sánchez, C. Díaz, G. Hernández, et al.
Avasimibe and atorvastatin synergistically reduce cholesteryl ester content in THP-1 macrophages.
Eur J Pharmacol, 451 (2002), pp. 11-17
[27.]
A. Chawla, Y. Barak, L. Nagy, D. Liao, P. Tontonoz, R.M. Evans.
PPAR-22dependent and independent effects on macrophage gene expressionein lipid metabolism and inflammation.
Nat Med, 7 (2001), pp. 48-52
[28.]
T.E. Akiyama, S. Sakai, G. Lambert, C.J. Nicol, K. Matsusue, S. Pimprale, et al.
Conditional disruption of the peroxisome proliferators activated receptor gamma gene in mice results in lowered expression of ABCA1, ABCG1, and apoE in macrophages and reduced cholesterol efflux.
Mol Cell Biol, 22 (2002), pp. 2607-2619
[29.]
T. Mossman.
Rapid colorimetric assay for cell growth and survival: application to proliferation and cytotoxicity assays.
J Immunol Meth, 65 (1983), pp. 55-63
[30.]
T. Kodama, M. Freeman, L. Rohrer, J. Zabrecky, P. Matsudaira, M. Krieger.
Type I macrophage scavenger receptor contains a-helical and collagen-like coiled coils.
Nature, 343 (1990), pp. 531-535
[31.]
N. Platt, S. Gordon.
Is the class A macrophage scavenger receptor (MSR-1) multifunctional? – The mouse’s tale.
J Clin Invest, 108 (2001), pp. 649-654
[32.]
A. Matsumoto, M. Naito, H. Ikaura, S. Ikemoto, H. Asaoka, I. Hayakawa, et al.
Human macrophage scavenger receptors: primary structure, expression and localization in atherosclerotic lesions.
Proc Natl Acad Sci USA, 87 (1990), pp. 9133-9137
[33.]
M. Krieger, J. Hertz.
Structures and functions of multiligand lipoprotein receptors: macrophage scavenger receptors and LDL receptor related protein (LRP).
Annu Rev Biochem, 63 (1994), pp. 601-637
[34.]
H. Suzuki, Y. Kurihara, M. Takeya, N. Kamada, M. Kataoka, K. Jishage, et al.
A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection.
Nature, 386 (1997), pp. 292-296
[35.]
N. Hrboticky, G. Draude, G. Hapfelmeier, R. Lorenz, P.C. Weber.
Lovastatin decreases the receptor-mediated degradation of acetylated and oxidized LDLs in human blood monocytes during the early stage of differentiation into macrophages.
Arterioscler Thromb Vasc Biol, 19 (1999), pp. 1267-1275
[36.]
K.J. Moore, E.D. Rosen, M.L. Fitzgerald, F. Randow, L.P. Andersson, D. Altshuler, et al.
The role of PPAR-AAin macrophage differentiation and cholesterol uptake.
Nature Med, 7 (2001), pp. 41-47
[37.]
H. Vosper, L. Patel, T.L. Graham, G.A. Khoudoli, A. Hill, C.H. Macphee, et al.
The peroxisome proliferator-activated receptor promotes lipid accumulation in human macrophages.
J Biol Chem, 276 (2001), pp. 44258-44265
[38.]
R. Sugano, T. Yamamura, M. Harada-Shiba, Y. Miyake, A. Yamamoto.
Uptake of oxidized low-density lipoprotein in a THP-1 cell line lacking scavenger receptor A.
Atherosclerosis, 158 (2001), pp. 351-357
[39.]
S.C. Whitman, D.L. Rateri, S.J. Szilvassy, J.A. Cornicelli, A. Daugherty.
Macrophage-specific expression of class A scavenger receptors in LDL receptor –/– mice decreases atherosclerosis and changes spleen morphology.
J Lipid Res, 43 (2002), pp. 1201-1208
[40.]
P. Tontonoz, L. Nagy, J.G. Álvarez, V.A. Thomazy, R.M. Evans.
PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL.
Cell, 93 (1998), pp. 241-252
[41.]
L. Patel, S.J. Charlton, I.C. Marshall, G.B. Moore, P. Coxon, K. Moores, et al.
PPARgamma is not a critical mediator of primary monocyte differentiation or foam cell formation.
Biochem Biophys Res Commun, 290 (2002), pp. 707-712
[42.]
K.T. Iida, Y. Kawakami, H. Suzuki, H. Sone, H. Shimano, H. Toyoshima, et al.
PPAR gamma ligands, troglitazone and pioglitazone, upregulate expression of HMG-CoA synthase and HMG-CoA reductase gene in THP-1 macrophages.
FEBS Lett, 520 (2002), pp. 177-181
[43.]
A. Pietsch, W. Erl, R.L. Lorenz.
Lovastatin reduces expression of the combined adhesion and scavenger receptor CD36 in human monocytic cell.
Biochem Pharmacol, 52 (1996), pp. 433-439
[44.]
A. Chawla, W.A. Boisvert, C.H. Lee, B.A. Laffitte, Y. Barak, S.B. Joseph, et al.
A PPARe-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis.
Mol Cell, 7 (2001), pp. 161-171
[45.]
G. Chinetti, S. Lestavel, V. Bocher, A.T. Remaley, B. Neve, I.P. Torra, et al.
PPAR-aaand PPAR-aaactivators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway.
Nat Med, 7 (2001), pp. 53-58
[46.]
T. Claudel, M.D. Leibowitz, C. Fievet, A. Tailleux, B. Wagner, J.J. Repa, et al.
Reduction of atherosclerosis in apolipoprotein E knockout mice by activation of the retinoid X receptor.
Proc Natl Acad Sci USA, 98 (2001), pp. 2610-2615
[47.]
G. Chinetti, F.G. Gbaguidi, S. Griglio, Z. Mallat, M. Antonucci, P. Poulain.
CLA-1/SR-BI is expressed in atherosclerotic lesion macrophages and regulated by activators of peroxisome proliferator-activated receptors.
Circulation, 101 (2000), pp. 2411-2417
[48.]
K. Murao, V. Terpstra, S.R. Green, N. Kondratenko, D. Steinberg, O. Quehenberger.
Characterization of CLA-1, a human homologue of rodent scavenger receptor BI, as a receptor for high density lipoprotein and apoptotic thymocytes.
J Biol Chem, 272 (1997), pp. 17551-17557
Copyright © 2004. Sociedad Española de Arteriosclerosis y Elsevier España, S.L.
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos

Quizás le interese:
10.1016/j.arteri.2024.03.006
No mostrar más