metricas
covid
Buscar en
Clínica e Investigación en Arteriosclerosis
Toda la web
Inicio Clínica e Investigación en Arteriosclerosis Estudio del mecanismo de acción hipolipemiante de la lovastatina en la rata
Journal Information
Vol. 15. Issue 6.
Pages 248-257 (January 2003)
Share
Share
Download PDF
More article options
Vol. 15. Issue 6.
Pages 248-257 (January 2003)
Full text access
Estudio del mecanismo de acción hipolipemiante de la lovastatina en la rata
Study of the mechanism of hypolipemiant effect of lovastatin in the rat
Visits
6756
I.C. López-Pérez, E. Relaño, E. Herrera, C. Bocos1
Corresponding author
carbocos@ceu.es

Correspondencia: Dr. C. Bocos. Laboratorio de Biología Molecular. Facultad de Ciencias Experimentales y de la Salud. Universidad San Pablo-CEU. Ctra. Boadilla del Monte, km 5,300. 28668 Boadilla del Monte. Madrid. España. Correo electrónico:
Departamento de Biología Celular, Bioquímica y Biología Molecular. Facultad de Ciencias Experimentales y de la Salud. Universidad San Pablo-CEU. Madrid. España
This item has received
Article information
Fundamento

Las estatinas son agents hipolipemiantes que no sólo mejoran la concentración de colesterol sino también la de triglicéridos (TG). Mientras su acción hipocolesterolemiante implica la inhibición de la colesterogénesis a través de su acción sobre la HMG-CoA reductasa, el mecanismo de su acción hipotrigliceridemiante no es tan conocido. El receptor activado por proliferadores peroxisomales tipo alfa (PPARα) es clave en el metabolismo lipídico y se ha relacionado con la afectación farmacológica de la trigliceridemia (tal es el caso de fibratos).

Métodos

El presente trabajo se ha llevado a cabo para determinar el efecto agudo de una dosis elevada de lovastatina sobre la expresión hepatica de dicho receptor en ratas normolipémicas, así como de alguno de sus genes diana. Paralelamente, se realizó un estudio ex vivo de la actividad lipolítica del tejido adiposo blanco.

Resultados

A 1,5, 3 y 7 h (tiempos de estudio) de la administración del fármaco no hubo afectación de la colesterolemia y, aunque tampoco parecía verse afectada la concentración de TG en plasma, sí que se observaba una acción hipotrigliceridemiante a las 7 h. En cuanto a las expresiones de PPARα y la de su gen diana, acil- CoA oxidasa peroxisomal (ACO), se comportaron de manera paralela, esto es, una tendencia significativa a aumentar en los animales tratados a las 7 h de la administración. En cuanto a la expresión de apolipoproteína CIII no había cambios, y la de fosfoenolpiruvato carboxicinasa (PEPCK) parecía responder bien en los dos grupos al perfil de FFA en plasma. En cuanto a la lipólisis, cuyos valores basales se incrementaron a lo largo del estudio, se veía considerablemente reducida por acción del fármaco a las 7 h, mientras que, curiosamente, a las 3 h de la administración el tejido adiposo de las ratas tratadas parecía más sensible a la adrenalina que el de las controles.

Conclusiones

Por todo ello, el efecto hipotrigliceridemiante de la lovastatina parece estar relacionado con una inducción de la expresión hepática de PPARα y de genes de la ß-oxidación peroxisomal y con un efecto antilipolítico en el tejido adiposo.

Palabras clave:
Estatinas
PPAR
Expresión génica
Lipólisis
Triglicéridos
Background

Statins are hypolipidemic drugs that not only improve cholesterol but also triglyceride levels. Whereas their cholesterol-lowering effect involves inhibition of cholesterogenesis through inhibition of enzyme 3-hidroxy-methylglutaryl CoA (HMG-CoA) reductase, the mechanism by whichthey reduce triglycerides remains unknown. Peroxisome proliferator-activated receptor alpha (PPAR-α is crucial in lipid metabolism and has been related to the pharmacologic effect on triglyceridemia (as is the case of fibrates).

Methods

This study was carried out to determine the effect of acute administration of a high dose of lovastatin on hepatic expression of both PPAR-α and some of its target genes in normolipidemic rats. In parallel, the ex vivo lipolytic activity of white adipose tissue from the same rats was also studied.

Results

Cholesterolemia was not affected by the drug at the times considered (1,5, 3 and 7 hours after administration of the drug) and, although triglyceridemia did not seem to be affected by the treatment, a hypotriglyceridemic effect was observed at 7 hours after administration. Expression of PPAR-α and its target gene, peroxisomal acyl-CoA oxidase (ACO) were similarly affected by the treatment, showing a trend to increase in treated animals. This increase was statistically significant at 7 hours. Expression of apolipoprotein CIII remained unchanged but that of phosphoenolpyruvate carboxykinase (PEPCK) seemed to be sensitive to the plasma FFA profile in both animal groups. Regarding adipose tissue lipolytic activity, the basal values, which increased throughout the study, were markedly reduced by lovastatin at 7 hours after administration. However, at 3 hours after administration adipose tissue from treated rats seemed to be more sensitive to epinephrine than tissue from control rats.

Conclusions

The results of this study suggest that the hypotriglyceridemic effect of lovastatin is related to both induction of hepatic expression of PPAR-α and genes related to peroxisomal oxidation, as well as to the antilipolytic effect on adipose tissue.

Full text is only aviable in PDF
Bibliografía
[1.]
T. Fujioka, Y. Tsujita.
Effects of single administration of pravastatin sodium on hepatic cholesterol metabolism in rats.
Eur J Pharmacol, 323 (1997), pp. 223-228
[2.]
K. Schoonjans, J. Peinado-Onsurbe, J.C. Fruchart, A. Tailleux, C. Fiévet, J. Auwerx.
3-hydroxy-3-methylglutaryl CoA reductase inhibitors reduce serum triglyceride levels through modulation of apolipoprotein C-III and lipoprotein lipase.
Febs Lett, 452 (1999), pp. 160-164
[3.]
S.T. Mosley, S.S. Kalinowski, B.L. Schafer, R.D. Tanaka.
Tissue-selective acute effects of inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase on cholesterol biosynthesis in lens.
J LipidRes, 30 (1989), pp. 1411-1420
[4.]
D.J. Norman, D.R. Illingworth, J. Munson, J. Hosenpud.
Myolysis and acute renal failure in a heart-transplant recipient receiving lovastatin.
N Engl J Med, 318 (1988), pp. 46-47
[5.]
C. Olbricht, C. Wanner, T. Eisenhauer, V. Kliem, R. Doll, M. Boddaert, et al.
Accumulation of lovastatin, but not pravastatin, in the blood of cyclosporine-treated kidney graft patients after multiple doses.
Clin Pharmacol Ther, 62 (1997), pp. 311-321
[6.]
M. Anguita, L. Alonso-Pulpon, J.M. Arizon, M.A. Cavero, F. Valles, J. Segovia.
Comparison of the effectiveness of lovastatin therapy for hypercholesterolemia after heart transplantation between patients with and without pretransplant atherosclerotic coronary artery disease.
Am J Cardiol, 74 (1994), pp. 776-779
[7.]
A. Martínez-Castelao, J.M. Grinyo, S. Gil-Vernet, D. Serón, M.J. Castineiras, R. Ramos, et al.
Lipid-lowering long-term effects of six different statins in hypercholesterolemic renal transplant patients under cyclosporine immunosuppression.
Transplant Proc, 34 (2002), pp. 398-400
[8.]
C. Bocos, M. Gottlicher, K. Gearing, C. Banner, E. Enmark, M. Teboul, et al.
Fatty acid activation of peroxisome proliferator-activated receptor (PPAR.
J Steroid Biochem Molec Biol, 53 (1995), pp. 467-473
[9.]
J. Auwerx, K. Schoonjans, J.C. Fruchart, B. Staels.
Transcriptional control of triglyceride metabolism: fibrates and fatty acids change the expression of the LPL and apo C-III genes by activating the nuclear receptor PPAR.
Atherosclerosis, 124 (1996), pp. S29-S37
[10.]
P. Prasanna, A. Thibault, L. Liu, D. Samid.
Lipid metabolism as a target for brain cancer therapy: synergistic activity of lovastatin and sodium phenylacetate against human glioma cells.
J Neurochem, 66 (1996), pp. 710-716
[11.]
G. Martin, H. Duez, C. Blanquart, V. Berezowski, P. Poulain, J.C. Fruchart, et al.
Statin-induced inhibition of the Rho-signaling pathway activates PPARα and induces HDL apoA-I.
J Clin Invest, 107 (2001), pp. 1423-1432
[12.]
I. Inoue, S. Goto, K. Mizotani, T. Awata, T. Mastunaga, S. Kawai, et al.
Lipophilic HMG-CoA reductase inhibitor has an anti-inflammatory effect: reduction of mRNA levels for interleukin-1-beta, interleukin-6, cyclooxygenase-2, and p22phox by regulation of peroxisome proliferator-activated receptor alpha (PPARalpha) in primary endothelial cells.
Life Sci, 67 (2000), pp. 863-876
[13.]
N. Roglans, E. Sanguino, C. Peris, M. Alegret, M. Vázquez, T. Adzet, et al.
Atorvastatin treatment induced peroxisome proliferator-activated receptor rrexpression and decreased plasma nonesterified fatty acids and liver triglyceride in fructose-fed rats.
J Pharmacol Exp Ther, 302 (2002), pp. 232-239
[14.]
P.B. Garland, P.J. Randle.
A rapid enzymatic assay for glycerol.
Nature, 196 (1962), pp. 987-988
[15.]
M. Somogyi.
Determination of blood sugar.
J Biol Chem, 160 (1954), pp. 69-73
[16.]
I. Inoue, S. Noji, M. Shen, K. Takahashi, S. Katayama.
The peroxisome proliferator-activated receptor α(PPARα) regulates the plasma thiobarbituric acid-reactive substances (TBARS) level.
Biochem Biophys Res Comm, 237 (1997), pp. 606-610
[17.]
M.C. Domínguez, E. Herrera.
The effect of glucose, insulin and adrenaline on glycerol metabolism “in vitro” in rat adipose tissue.
Biochemistry, 158 (1976), pp. 183-190
[18.]
B.R. Krause, R.S. Newton.
Lipid-lowering activity of atorvastatin and lovastatin in rodent species: triglyceride-lowering in rats correlates with efficacy in LDL animal models.
Atherosclerosis, 117 (1995), pp. 237-244
[19.]
H.H. Ditschuneit, K. Kuhn, H. Ditschuneit.
Comparison of different HMG-CoA reductase inhibitors.
Eur J Clin Pharmacol, 40 (1991), pp. S27-S32
[20.]
J.M. Henwood, R.C. Heel.
Lovastatin. A preliminary review of its pharmacodynamic properties and therapeutic use in hyperlipidaemia.
Drugs, 36 (1988), pp. 429-454
[21.]
M.I. Panadero, E. Herrera, C. Bocos.
Nutritionally induced changes in the peroxisome proliferator-activated receptor-α gene expression in liver of suckling rats are dependent on insulinaemia.
Arch Biochem Biophys, 394 (2001), pp. 182-188
[22.]
M.I. Panadero, E. Herrera, C. Bocos.
Peroxisome proliferator-activated receptor-α expression in rat liver during postnatal development.
Biochimie, 82 (2000), pp. 723-726
[23.]
C. Bocos, M. Castro, G. Quack, E. Herrera.
Studies with etofibrate in the rat. Part II: A comparison of the effects of prolonged and acute administration on plasma lipids, liver enzymes and adipose tissue lipolysis.
Biochim Biophys Acta, 1168 (1993), pp. 340-347
[24.]
C. Bocos, E. Herrera.
Comparative study on the in vivo and in vitro antilipolytic effects of etofibrate, nicotinic acid and clofibrate in the rat.
Environ Toxicol Pharmacol, 2 (1996), pp. 351-357
[25.]
J. Le Magnen.
Lipogenesis, lipolysis and feeding rhythms.
Ann Endocrinol (Paris, 49 (1988), pp. 98-104
[26.]
T. Lemberger, B. Staels, R. Saladin, B. Desvergne, J. Auwerx, W. Wahli.
Regulation of the peroxisome proliferator-activated receptor W gene by glucocorticoids.
J Biol Chem, 269 (1994), pp. 24527-24530
[27.]
J. Danguir, S. Nicolaidis.
Circadian sleep and feeding patterns in the rat: possible dependence on lipogenesis and lipolysis.
Am J Physiol, 238 (1980), pp. E223-E230
[28.]
J.S. Samra, M.L. Clark, S.M. Humphreys, I.A. Macdonald, D.R. Matthews, K.N. Frayn.
Effects of morning rise in cortisol concentration on regulation of lipolysis in subcutaneous adipose tissue.
Am J Physiol, 271 (1996), pp. E996-E1002
[29.]
R.A. Willis, K. Folkers, J.L. Tucker, C.Q. Ye, L.J. Xia, H. Tamagawa.
Lovastatin decreases coenzyme Q levels in rats.
Proc Natl Acad Sci USA, 87 (1990), pp. 8928-8930
[30.]
U.M. Marinari, M.A. Pronzato, D. Dapino, P. Gazzo, N. Traverso, D. Cottalasso, et al.
Effects of simvastatin on liver and plasma levels of cholesterol, dolichol and ubiquinol in hypercholesterolemic rats.
Ital J Biochem, 44 (1995), pp. 1-9
[31.]
M.S. Balkin, M. Sonenberg.
Hormone-induced homologous and heterologous desensitization in the rat adipocyte.
Endocrinology, 109 (1981), pp. 1176-1183
[32.]
M. Lafontan, M. Berlan.
Fat cell adrenergic receptors and the control of white and brown fat cell function.
J Lipid Res, 34 (1993), pp. 1057-1091
[33.]
A. Bousquet-Mélou, J. Galitzky, C. Muñoz Moreno, M. Berlan, M. Lafontan.
Desensitization of ß-adrenergic responses in adipocytesinvolves receptor subtypes and cAMP phosphodiesterase.
Eur J Pharmacol, 289 (1995), pp. 235-247
[34.]
T.F. McGuire, X.Q. Xu, S.J. Corey, G.G. Romero, S.M. Sebti.
Lovastatin disrupts early events in insulin signaling: a potential mechanism of lovastatin’s anti-mitogenic activity.
Biochem Biophys Res Commun, 204 (1994), pp. 399-406
[35.]
K. Ohnaka, S. Shimoda, H. Nawata, H. Shimokawa, K. Kaibuchi, Y. Iwamoto, et al.
Pitavastatin enhanced BMP-2 and osteocalcin expression by inhibition of Rho-associated kinase in human osteoblasts.
Biochem Biophys Res Commun, 287 (2001), pp. 337-342
[36.]
X. Xu, T.F. McGuire, M.A. Blaskovich, S.M. Sebti, G.G. Romero.
Lovastatin inhibits the stimulation of mitogen-activated protein kinase by insulin in HIRcB fibroblasts.
Arch Biochem Biophys, 326 (1996), pp. 233-237
[37.]
H.N. Sorensen, E. Hvattum, E.J. Paulssen, K.M. Gautvik, J. Bremer, O. Spydevold.
Induction of peroxisomal acyl-CoA oxidase by 3-thia fatty acid, in hepatoma cells and hepatocytes in culture is modified by dexamethasone and insulin.
Biochim Biophys Acta, 1171 (1993), pp. 263-271
[38.]
J.M. Argilés, F.J. López Soriano.
Interrelaciones metabólicas entre el huésped y el tumor durante la fase perinatal.
Med Clin (Barc), 109 (1997), pp. 186-194
[39.]
S.T. Russell, M.J. Tisdale.
Effect of a tumour-derived lipid-mobilising factor on glucose and lipid metabolism in vivo.
Br J Cancer, 87 (2002), pp. 580-584
[40.]
A. Faggiotto, R. Paoletti.
Do pleiotropic effects of statins beyond lipid alterations exist in vivo? What are they and how do they differ between statins?.
Curr Atheroscler Rep, 2 (2000), pp. 20-25
Copyright © 2003. Sociedad Española de Arteriosclerosis y Elsevier España, S.L.
Download PDF
Article options
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos