metricas
covid
Buscar en
Clínica e Investigación en Arteriosclerosis
Toda la web
Inicio Clínica e Investigación en Arteriosclerosis La leptina reduce los valores de ARNm del receptor activado por proliferadores p...
Journal Information
Vol. 14. Issue 2.
Pages 67-73 (January 2002)
Share
Share
Download PDF
More article options
Vol. 14. Issue 2.
Pages 67-73 (January 2002)
Full text access
La leptina reduce los valores de ARNm del receptor activado por proliferadores peroxisómicos γ en macrófagos humanos
Leptin down-regulates PPAR γ in human macrophages
Visits
2976
A. Cabrero
Corresponding author
mvaz@farmacia.far.ub.es

Correspondencia: Unitat de Farmacologia. Facultat de Farmàcia. Universitat de Barcelona. Diagonal, 643. 08028 Barcelona
, M. Cubero, G. Llaverías, J.C. Laguna, M. Vázquez Carrera
Unidad de Farmacología. Departamento de Farmacología y Química Terapéutica. Facultad de Farmacia.Universidad de Barcelona. Barcelona
This item has received
Article information
Fundamento

Los valores elevados de leptina se asocian con un mayor riesgo cardiovascular en la obesidad a través de un mecanismo desconocido. La isoforma gamma del receptor activado por proliferadores peroxisómicos (PPAR γ) desempeña un papel fundamental en la regulación del metabolismo lipídico en macrófagos y su activación por tiazolidindionas protege frente la aterosclerosis. El objetivo del presente estudio ha sido determinar el efecto de la leptina sobre los valores de ARNm de PPAR γ en cultivo primario de macrófagos humanos y en células espumosas derivadas de macrófagos

Material y métodos

Se han utilizado cultivos primarios de monocitos humanos separados por centrifugación en gradiente de densidad a partir de buffy coats de donantes. Los monocitos así obtenidos se cultivan en suero humano inactivado durante 10 días para permitir su maduración a macrófagos y, posteriormente, se convierten en células espumosas por exposición a LDL acetiladas (150 µg/ml) durante 48 h. Los valores de ARNm se determinaron mediante reacción de la transcriptasa inversa acoplada a la reacción en cadena de la polimerasa. Los resultados se expresan como la media ± desviación estándar de tres experimentos

Resultados

El tratamiento de macrófagos derivados de monocitos humanos con leptina (100 ng/ml) durante 24 h causó una reducción del 41% (p < 0,01) en los valores de ARNm de PPAR γ. Esta reducción iba acompañada de una disminución en la expresión del ARNm de la carnitina-palmitoiltranferasa I (CPT-I) (36%; p < 0,05), del ABCA1 (62%; p < 0,05) y del CD36 (34%), aunque para este último la reducción no fue estadísticamente significativa. El tratamiento de células espumosas derivadas de macrófagos con leptina (20 ng/ml) disminuyó los valores de mensajero del PPAR γ en un 33% (p < 0,01) y de la CPT-I en un 27% (p = 0,05). A esta concentración, la leptina no modificó la expresión de ABCA1 ni de CD36

Conclusiones

Estos resultados parecen indicar que la reducción en la expresión de PPAR γ tanto en macrófagos como en células espumosas podría ser uno de los factores responsables de la asociación entre valores elevados de leptina y riesgo cardiovascular

Palabras clave:
Leptina
Macrófagos
Células espumosas
PPAR γ
ABCA1
CD36
Background

Increased leptin levels are associated with cardiovascular disease in obesity although the mechanism is unknown. Peroxisome proliferator-activated receptor γ (PPAR γ) is a key regulator of macrophage lipid metabolism and its activation by thiazolidinediones protects against atherosclerosis. The aim of this study was to assess the effects of human recombinant leptin on PPAR γ mRNA levels in primary human macrophages and macrophage-derived foam cells

Material and methods

Human monocytes were isolated by gradient density centrifugation from buffy coats of human donors. The mononuclear cells were then incubated with heat-inactivated human serum and on day 10 completely differentiated to macrophages. After that, differentiated macrophages were lipid-loaded during a 48-hour incubation with 150 μg/ml acetyl-LDL. Relative levels of specific mRNAs were assessed by RT-PCR. Results are expressed as means ± SD of 3 experiments

Results

In human-derived macrophages leptin treatment (100 ng/ml) for 24 hours caused a 41% reduction (p < 0.01) in PPAR γ transcript levels. This fall was accompanied by a reduction in the mRNA expression of carnitine palmitoyltransferase (CPT-I) (36%, p < 0.05) and ABCA1 (62%, p < 0.05), whereas CD36 mRNA reduction (34%) was not significant. In macrophage-derived foam cells, leptin at 20 ng/mL reduced PPAR γ mRNA levels a 33% (p < 0.01) and CPT-I a 27% (p ≤ 0.05). At this concentration, leptin did not modify the expression of either ABCA1 or CD36

Conclusions

We propose that the reduction of PPAR γ expression in both macrophages and foam cells may be one of the factors linking high leptin levels and cardiovascular disease

Key words:
Leptin
Macrophage
Foam cell
PPAR γ
ABCA1
CD36
Full text is only aviable in PDF
Bibliografía
[1.]
J.R. Guyton.
The arterial wall and the atherosclerotic lesion.
Curr Opin Lipidol, 5 (1994), pp. 376-381
[2.]
B. Desvergne, W. Wahli.
Peroxisome proliferator-activated receptors: nuclear control of metabolism.
Endocr Rev, 20 (1999), pp. 649-688
[3.]
P. Tontonoz, L. Nagy, J. Álvarez, V. Thomazy, R. Evans.
PPAR γ promotes monocyte/macrophage differentiation and uptake of oxidized LDL.
Cell, 93 (1998), pp. 241-252
[4.]
G. Chinetti, S. Lestavel, V. Bocher, A.T. Remaley, B. Neve, I. Pineda Torra, et al.
PPAR α and PPAR β activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway.
Nature Med, 7 (2001), pp. 53-58
[5.]
C.G. Ericsson, A. Hamsten, J. Nilsson, L. Grip, B. Svane, U. De Faire.
Angiographic assessment of effects of bezafibrate on progression of coronary artery disease in young male postinfarction patients.
Lancet, 347 (1996), pp. 849-853
[6.]
E.D. Rosen, B.M. Spiegelman.
Peroxisome Proliferator-Activated Receptor- g ligands and atherosclerosis: ending the heartache.
J Clin Invest, 106 (2000), pp. 629-631
[7.]
H.C. McGill, C.A. McMahan, G.T. Malcom, M.C. Oalmann, J.P. Strong.
PDAY Research Group. Relation to glycohemoglobin and adiposity to atherosclerosis in youth.
Arterioscler Thromb Vasc Biol, 15 (1995), pp. 431-438
[8.]
N.S. Jensen.
Obesity and cardiovascular disease: is body structure a factor?.
Curr Opin Lipidol, 8 (1997), pp. 200-204
[9.]
J.F. Caro, M.K. Sinha, J.W. Kolaczynski, P.L. Zhang, R.V. Considine.
Leptin: the tale of an obesity gene.
Diabetes, 45 (1996), pp. 1455-1462
[10.]
B. Lollmann, S. Gruninger, A. Stricker-Kongrad, M. Chiesi.
Detection and quantification of the leptin receptor splice variants Ob- Ra, b, and, e in different mouse tissues.
Biochem Biophys Res Commun, 238 (1997), pp. 648-652
[11.]
F.J. Lee, Y. Li, E.K. Yang, S.Q. Yang, H.Z. Lin, M.A. Trush, et al.
Phenotypic abnormalities in macrophages from leptin-deficient, obese mice.
Am J Physiol, 276 (1999), pp. 386-395
[12.]
S. Söderberg, B. Ahrén, J.H. Jansson, O. Johnson, G. Hallmans, K. Asplund, et al.
Leptin is associated with increased risk of myocardial infarction.
J Intern Med, 246 (1999), pp. 409-418
[13.]
F. Leyva, I.F. Godsland, M. Ghatei, A.J. Proudler, S. Aldis, C. Walton, et al.
Hyperleptinemia as a component of a metabolic syndrome of cardiovascular disease.
Arterioscler Thromb Vasc Biol, 18 (1998), pp. 928-933
[14.]
M. Vázquez, D. Zambón, Y. Hernández, T. Adzet, M. Merlos, E. Ros, et al.
Lipoprotein composition and oxidative modification during therapy with gemfibrozil and lovastatin in patients with combined hyperlipidaemia.
Br J Clin Pharmacol, 45 (1998), pp. 265-269
[15.]
S.K. Basu, J.L. Goldstein, R.G. Anderson, M.S. Brown.
Degradation of cationized low density lipoprotein and regulation of cholesterol metabolism in homozygous familial hypercholesterolemia fibroblasts.
Proc Natl Acad Sci USA, 73 (1976), pp. 3178-3182
[16.]
W.M. Freeman, S.J. Walker, E.V. Kent.
Quantitative RT-PCR: pitfalls and potential.
BioTechniques, 26 (1999), pp. 112-125
[17.]
F. Krempler, D. Breban, H. Oberkofler, H. Esterbauer, E. Hell, B. Paulweber, et al.
Leptin, peroxisome proliferator-activated g and CCAAT/enhancer binding protein-a mRNA expression in adipose tissue of humans and their relation to cardiovascular risk factors.
Arterioscler Thromb Vasc Biol, 20 (2000), pp. 443-449
[18.]
Y.T. Zhou, Z.W. Whang, M. Higa, C.B. Newgard, R.H. Unger.
Reversing adipocyte differentiation: implications for treatment of obesity.
Proc Natl Acad Sci USA, 96 (1999), pp. 2391-2395
[19.]
P.D. Pelton, L. Zhou, K.T. Demarest, T. Burris.
PPAR γ activation induces the expression of the adipocyte fatty acid binding protein gene in human monocytes.
Biochem Biophys Res Commun, 261 (1999), pp. 456-458
[20.]
X. Wang, T.J. Reape, X. Li, K. Rayner, C.L. Webb, K.G. Burnand, et al.
Induced expression of adipophilin mRNA in human macrophages stimulated with oxidized low-density lipoprotein and in atherosclerotic lesions.
FEBS Lett, 462 (1999), pp. 145-150
[21.]
P.J. Barter, K.A. Rye.
High density lipoproteins and coronary heart disease.
Atherosclerosis, 121 (1996), pp. 1-5
Copyright © 2002. Sociedad Española de Arteriosclerosis y Elsevier España, S.L.
Article options
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos