metricas
covid
Buscar en
Enfermedades Infecciosas y Microbiología Clínica
Toda la web
Inicio Enfermedades Infecciosas y Microbiología Clínica Enterococcus: resistencias fenotípicas y genotípicas y epidemiología en EspaÃ...
Journal Information
Vol. 29. Issue S5.
Programa Externo de Control de Calidad SEIMC. Año 2010
Pages 59-65 (December 2011)
Share
Share
Download PDF
More article options
Vol. 29. Issue S5.
Programa Externo de Control de Calidad SEIMC. Año 2010
Pages 59-65 (December 2011)
Full text access
Enterococcus: resistencias fenotípicas y genotípicas y epidemiología en España
Enterococcus: phenotype and genotype resistence and epidemiology in Spain
Visits
19896
Emilia Cercenado
Servicio de Microbiología y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, España
This item has received
Article information
Resumen

Los enterococos son importantes patógenos nosocomiales debido a la dificultad de tratamiento condicionada por su multirresistencia intrínseca y a la adquisición de nuevos genes de resistencia. La resistencia adquirida a beta-lactámicos se debe a la hiperproducción o a alteraciones en la PBP5. La producción de betalactamasa es anecdótica. La resistencia de alto nivel a aminoglucósidos (RAN) se debe a la producción de enzimas inactivantes de estos antibióticos y anula el efecto sinérgico con agentes activos en la pared celular. La enzima más frecuente es la AAC(6’)-APH(2”), que inactiva a todos los aminoglucósidos más frecuentemente utilizados en la práctica clínica. La resistencia adquirida a glucopéptidos se debe a la adquisición de operones de resistencia denominados vanA, vanB, vanD, vanE, vanG, VanL, vanM y vanN. La resistencia a linezolid se debe a mutaciones ribosómicas o a la adquisición del gen cfr. Algunas cepas presentan sensibilidad disminuida a la daptomicina. En España, la resistencia de los enterococos a los beta-lactámicos y la RAN a aminoglucósidos es elevada, y Enterococcus faecalis es casi uniformemente sensible a la ampicilina. La resistencia de los enterococos a los glucopéptidos es baja, con la excepción de algunos brotes, y los nuevos antimicrobianos (linezolid, daptomicina, tigeciclina) son casi uniformemente activos frente a estos microorganismos. La gran diseminación de los complejos clonales de alto riesgo como el CC2 y CC9 (E. faecalis) y el CC17 (E. faecium) hace necesario realizar estudios para vigilar la diseminación de genes de resistencia a antimicrobianos y para detectar estos CC de alto riesgo y predecir tendencias futuras en la adquisición de genes de resistencia.

Palabras clave:
Enterococcus
Resistencia a ampicilina
Resistencia de alto nivel a los
aminoglucósidos
Resistencia a vancomicina
Resistencia a linezolid
Mecanismos de resistencia
Abstract

Enterococci are major nosocomial pathogens due to their intrinsic resistance to many antimicrobials as well as to their ability to acquire new mechanisms of resistance. Acquired resistance to beta-lactams is due to PBP5 overproduction or alterations in this protein. Beta-lactamase production is anecdotal. High-level resistance (HLR) to aminoglycosides is due to the production of aminoglycoside-modifying enzymes that delete synergistic killing in association with cell wall-active agents. The most frequent enzyme is AAC(6’)- APH(2”), which inactivates all the aminoglycosides most frequently used in clinical practice. Acquired resistance to glycopeptides is due to the acquisition of gene clusters called vanA, vanB, vanD, vanE, vanG, vanL, vanM and vanN. Linezolid resistance is due to ribosomal mutations or to the acquisition of the cfr gene. Some isolates present diminished susceptibility to daptomycin. In Spain, both enterococcal resistance to beta-lactams and HLR to aminoglycosides are high. E. faecalis is almost uniformly susceptible to ampicillin. Enterococcal resistance to glycopeptides is low, with the exception of occasional outbreaks. The new antimicrobials (linezolid, daptomycin, tigecycline) are almost uniformly active against these microorganisms. Because of the wide dissemination of the high-risk clonal complexes CC2 and CC9 (E. faecalis), and CC17 (E. faecium), surveillance studies are required to detect antimicrobial resistance genes as well as to identify high-risk clonal complexes in order to predict future trends in the acquisition of resistance genes.

Keywords:
Enterococcus
Ampicillin resistance
High-level aminoglycoside resistance
Vancomycin resistance
Linezolid resistance
Mechanisms of resistance
Full text is only aviable in PDF
Bibliografía
[1.]
B.E. Murray.
The life and times of the Enterococcus.
Clin Microbiol Rev, 3 (1990), pp. 46-65
[2.]
J. Oteo, O. Cuevas, C. Navarro, B. Aracil, J. Campos.
Trends in antimicrobial resistance in 3469 enterococci isolated from blood (EARSS experience 2001–06 Spain): increasing ampicillin-resistance in Enterococcus faecium.
J Antimicrob Chemother, 59 (2007), pp. 1044-1045
[3.]
E. Cercenado, M.T. Coque.
Epidemiología de la resistencia a los antimicrobianos en micoorganismos grampositivos.
Enferm Infecc Microbiol Clin, 5 (2006), pp. 14-26
[4.]
Antimicrobial resistance surveillance in Europe 2009. Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). Surveillance reports consultado 24-11-2010. Disponible en: http://ecdc.europa.eu
[5.]
E. Cercenado.
Actualización de las resistencias en las bacterias grampositivas.
Med Clin (Barc), 135 (2010), pp. 10-15
[6.]
S. Valdezate, C. Labayru, A. Navarro, M.A. Mantecón, M. Ortega, T.M. Coque, et al.
Large clonal outbreak of multidrug-resistant CC17 ST17 Enterococcus faecium containing Tn5382 in a Spanish hospital.
J Antimicrob Chemother, 63 (2009), pp. 17-20
[7.]
J. Top, R. Willems, S. Van der Velden, M. Asbroek, M. Bonten.
Emergence of clonal complex 17 Enterococcus faecium in the Netherlands.
J Clin Microbiol, 46 (2008), pp. 214-219
[8.]
C. Torres, E. Cercenado.
Lectura interpretada del antibiograma de cocos grampositivos.
Enferm Infecc Microbiol Clin, 28 (2010), pp. 541-553
[9.]
Q. Zhou, C. Moore, S. Eden, A. Tong, A. McGeer.
Factors associated with acquisition of vancomycin-resistant enterococci (VRE) in roomate contacts of patients colonizad or infected with VRE in a tertiary care hospital.
Infect Control Hosp Epidemiol, 29 (2008), pp. 398-403
[10.]
J. Gavaldá, C. Torres, C. Tenorio, P. López, M. Zarazaga, J.A. Capdevilla, et al.
Efficacy of ampicillin plus ceftriaxone in the treatment of experimental endocarditis due to Enterococcus faecalis highly-resistant to aminoglycosides.
Antimicrob Agents Chemother, 43 (1999), pp. 639-646
[11.]
N. Klibi, Y. Sáenz, M. Zarazaga, K. Ben Slama, F. Ruiz-Larrea, A. Boudabous, et al.
Polymorphism in pbp5 gene detected in clinical Enterococcus faecium strains with different ampicillin MICs from a Tunisian hospital.
J Chemother, 20 (2008), pp. 436-440
[12.]
R. Fontana, G. Bertolini, G. Amalfitano, P. Canepari.
Characterization of penicillinresistant Streptococcus faecium mutants.
FEMS Microbiol Lett, 25 (1984), pp. 21-25
[13.]
E. Cercenado, M.F. Vicente, M.D. Díaz, C. Sánchez-Carrillo, M. Sánchez-Rubiales.
Characterization of clinical isolates of beta-lactamase negative highlyampicillin- resistant Enterococcus faecalis.
Antimicrob Agents Chemother, 40 (1996), pp. 2420-2422
[14.]
J.L. Mainardi, R. Legrand, M. Arthur, B. Schoot, Van Heijenoort, L. Gutmann.
Novel mechanism of beta-lactam resistance due to bypass of DD-transpeptidation in Enterococcus faecium.
J Biol Chem, 275 (2000), pp. 16490-16496
[15.]
J.F. Tomayko, K.K. Zscheck, K.V. Singh, B.E. Murray.
Comparison of the beta-lactamase gene cluster in clonally distinct strains of Enterococcus faecalis.
Antimicrob Agents Chemother, 40 (1996), pp. 1170-1174
[16.]
P.E. Coudron, S.M. Markowitz, E.S. Wong.
Isolation of a beta-lactamase producing strain of Enterococcus faecium.
Antimicrob Agents Chemother, 36 (1992), pp. 1125-1126
[16a.]
Sarti, M. Campanile F, Sabia C, Santagati M, Scuderi C, Gargiulo R, Stefani S. Isolation and identification of a beta-lactamase in polyclonal clinical isolates of Enterococcus faecium. Abstract C1-1785. 51st Interscience Conference on Antimicrobial Agents and Chemotherapy. Chicago, Ill. USA. American Society for Microbiology 2011.
[17.]
J.W. Chow, V. Kak.
Acquired antibiotic resistances in enterococci.
The enterococci: pathogenesis, molecular biology and antibiotic resistance.,
[18.]
J.W. Chow.
Aminoglycoside resistance in enterococci.
Clin Infect Dis, 31 (2001), pp. 586-589
[19.]
R. Del Campo, C. Tenorio, C. Rubio, J. Castillo, C. Torres, R. Gómez-Lus.
Aminoglycosidemodifying enzymes in high-level streptomycin and gentamicin resistant Enterococcus spp. in Spain.
Intern, J. Antimicrob, Agents, 1 (2000), pp. 221-226
[20.]
R. Del Campo, J.C. Galán, C. Tenorio, P. Ruiz-Garbajosa, M. Zarazaga, C. Torres, et al.
New aac(6’)-I genes in Enterococcus hirae and Enterococcus durans: effect on betalactam/aminoglycoside synergy.
J Antimicrob Chemother, 55 (2005), pp. 1053-1055
[21.]
Y. Cetinkaya, P. Falk, C.G. Mayhall.
Vancomycin-resistant enterococci.
Clin Microbiol Rev, 13 (2000), pp. 686-707
[22.]
H. Wisplinghoff, T. Bischoff, S.M. Tallent, H. Seifert, R.P. Wenzel, M.B. Edmond.
Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study.
Clin Infect Dis, 39 (2004), pp. 309-317
[23.]
H. Goossens, D. Jabes, R. Rossi, C. Lammens, G. Privitera, P. Courvalin.
European survey of vancomycin-resistant enterococci in at-risk hospital wards and in vitro susceptibility testing of ramoplanin against these isolates.
J Antimicrob Chemother, 51 (2003), pp. 5-12
[24.]
I. Phillips, M. Casewell, T. Cox, B. De Groot, C. Friis, R. Jones, et al.
Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data.
J Antimicrob Chemother, 53 (2004), pp. 28-52
[25.]
I. Kühn, A. Iversen, M. Finn, C. Greko, L.G. Burman, A.R. Blanch, et al.
Occurrence and relatedness of vancomycin-resistant enterococci in animals, humans, and the environment in different European regions.
Appl Environ Microbiol, 71 (2005), pp. 5383-5390
[26.]
L. Abadía-Patiño, K. Christiansen, J. Bell, P. Courvalin, B. Périchosn.
VanE-type vancomycin-resistant Enterococcus faecalis clinical isolates from Australia.
Antimicrob Agents Chemother, 48 (2004), pp. 4882-4885
[27.]
D.A. Boyd, B.M. Willey, D. Fawcett, N. Gillani, M.R. Mulvey.
Molecular characterization of Enterococcus faecalis N06-0364 with low-level vancomycin resistance harboring a novel D-Ala-D-Ser gene cluster, vanL.
Antimicrob Agents Chemother, 52 (2008), pp. 2667-2672
[28.]
X. Xu, D. Lin, G. Yan, X. Ye, S. Wu, Y. Guo, et al.
vanM, a new glycopeptide resistance gene cluster found in Enterococcus faecium.
Antimicrob Agents Chemother, 54 (2010), pp. 4643-4647
[29.]
F. Lebreton, F. Depardieu, N. Bourdon, M. Fines-Guyon, P. Berger, S. Camiade, et al.
D-Ala-D-Ser VanN-type transferable vancomycin resistance in Enterococcus faecium.
Antimicrob. Agents Chemother, 55 (2011), pp. 4606-4612
[30.]
F. Depardieu, M.L. Foucault, J. Bell, A. Dubouix, M. Guibert, J.P. Lavigne, et al.
New combinations of mutations in VanD-type vancomycin-resistant Enterococcus faecium Enterococcus faecalis, and Enterococcus avium strains.
Antimicrob Agents Chemother, 53 (2009), pp. 1952-1963
[31.]
D.A. Boyd, T. Du, R. Hizon, B. Kaplen, T. Murphy, S. Tyler, et al.
VanG-type vancomycinresistant Enterococcus faecalis strains isolated in Canada.
Antimicrob Agents Chemother, 50 (2006), pp. 2217-2221
[32.]
F. Van Bambeke, M. Chauvel, P.E. Reynolds, H.S. Fraimow, P. Courvalin.
Vancomycindependent Enterococcus faecalis clinical isolates and revertant mutants.
Antimicorb Agents Chemother, 43 (1999), pp. 41-47
[33.]
A. Portillo, F. Ruiz-Larrea, M. Zarazaga, A. Alonso, J.L. Martínez, C. Torres.
Macrolide resistance genes in Enterococcus spp.
Antimicorb Agents Chemother, 44 (2000), pp. 967-971
[34.]
M. Soltani, D. Beighton, J. Philpott-Howard, N. Woodford.
Mechanisms of resistance to quinupristin-dalfopristin among isolates of Enterococus faecium from animals, raw meat, and hospital patients in western Europe.
Antimicrob Agents Chemother, 44 (2000), pp. 433-436
[35.]
E. Kanematsu, T. Deguchi, M. Yasuda, T. Kawamura, Y. Nishino, Y. Kawada.
Alterations in the GyrA subunit of DNA gyrase and the ParC subunit of DNA topoisomerase IV associated with quinolone resistance in Enterococcus faecalis.
Antimicrob Agents Chemother, 42 (1998), pp. 433-435
[36.]
V.G. Meka, H.S. Gold.
Antimicrobial resistance to linezolid.
Clin Infect Dis, 39 (2004), pp. 1010-1015
[37.]
Cercenado E, Marín M, Insa R, Bouza E. Emerging linezolid resistance: dissemination of the cfr gene among Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecium and Enterococcus faecalis and inability of the Etest method for detection. Abstract C2-1490. 50th Interscience Conference on Antimicrobial Agents and Chemotherapy. Boston, MA. USA. American Society for Microbiology 2010.
[38.]
T. Kelesidis, R. Humphries, D.Z. Uslan, D.A. Pegues.
Daptomycin nonsusceptible enterococci: an emerging challenge for clinicians.
Clin Infect Dis, 52 (2011), pp. 228-234
[39.]
C.I. Montero, F. Stock, P.R. Murray.
Mechanisms of resistance to daptomycin in Enterococcus faecium.
Antimicrob Agents Chemother, 52 (2008), pp. 1167-1170
[40.]
K.L. Palmer, A. Daniel, C. Ardí, J. Silverman, M.S. Gilmore.
Genetic basis for daptomycin resistance in enterococci.
Antimicrob Agents Chemother, 55 (2011), pp. 3345-3356
[41.]
P. Ruiz-Garbajosa, T.M. Coque, R. Cantón, R.J.L. Willems, F. Baquero, R. Del Campo.
Los complejos clonales de alto riesgo CC2 y CC9 están ampliamente representados en cepas hospitalarias de Enterococcus faecalis aisladas en España.
Enferm Infecc Microbiol Clin, 25 (2007), pp. 513-518
[42.]
R.C. Moellering Jr..
Vancomycin-resistant enterococci.
Clin Infect Dis, 26 (1998), pp. 1996-1999
[43.]
M.V. Francia.
Enterococcus resistentes a glucopéptidos en Europa: un problema hospitalario creciente.
Enferm Infecc Microbiol Clin, 23 (2005), pp. 457-459
[44.]
I. Montesinos, S. Campos, M.J. Ramos, P. Ruiz-Garbajosa, D. Riverol, N. Batista, et al.
Estudio del primer brote por Enterococcus faecium vanA en Canarias.
Enferm Infecc Microbiol Clin, 28 (2010), pp. 430-434
[45.]
M.D. Maciá, C. Juan, A. Oliver, O. Hidalgo, J.L. Pérez.
Molecular characterization of a glycopeptide-resistant Enterococcus faecalis outbreak in an intensive unit.
Enferm Infecc Microbiol Clin, 23 (2005), pp. 460-463
[46.]
T. Nebreda, J. Oteo, C. Aldea, C. García-Estébanez, J. Gastelu-Iturri, V. Bautista, et al.
Hospital dissemination of clonal complex 17 vanB2-containing Enterococcus faecium.
J Antimicrob Chemother, 59 (2007), pp. 806-807
[47.]
C. Torres, S. Escobar, A. Portillo, L. Torres, A. Rezusta, R. Ruiz-Larrea, et al.
Detection of clonally related vanB2-containing Enterococcus faecium strains in two Spanish hospitals.
J Med Microbiol, 55 (2006), pp. 1237-1243
[48.]
M.A. Kainer, R.A. Devasia, T.F. Jones, B.P. Simmons, K. Meltouk, S. Chow, et al.
Response to emerging infection leading to outbreak of linezolid-resistant enterococci.
Emerg Infect Dis, 13 (2007), pp. 1024-1030
[49.]
R. Gómez-Gil, M.P. Romero-Gómez, A. García-Arias, M.G. Ubeda, M.S. Busselo, R. Cisterna, et al.
Nosocomial outbreak of linezolid-resistant Enterococcus faecalis infection in a tertiary care hospital.
Diagn Microbiol Infect Dis, 65 (2009), pp. 175-179
Copyright © 2011. Elsevier España S.L.. Todos los derechos reservados
Download PDF
Article options
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos