metricas
covid
Buscar en
Enfermedades Infecciosas y Microbiología Clínica
Toda la web
Inicio Enfermedades Infecciosas y Microbiología Clínica New drugs for tuberculosis treatment
Journal Information
Vol. 29. Issue S1.
Update on tuberculosis
Pages 47-56 (March 2011)
Share
Share
Download PDF
More article options
Vol. 29. Issue S1.
Update on tuberculosis
Pages 47-56 (March 2011)
Full text access
New drugs for tuberculosis treatment
Nuevos fármacos para el tratamiento de la tuberculosis
Visits
4072
Francesca Sáncheza,b,
Corresponding author
psanchez@aspb.cat

Corresponding author.
, José L. López Colomésa,b, Elsa Villarinob,c, Jacques Grossetb,d
a Servei de Medicina Interna i Malalties Infeccioses, Hospital del Mar, Barcelona, Spain
b Tuberculosis Trials Consortium, Centers for Disease Control and Prevention, Atlanta, United States
c Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Atlanta, United States
d Center for Tuberculosis Research, Tuberculosis Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, United States
This item has received
Article information
Abstract

Available data on anti-tuberculosis drug research reveal different properties of the agents and provoke speculation about future directions. Higher doses of the rifamycins are promising and are currently being evaluated in regimens of shorter duration that the isoniazid plus rifampin-based, six-to-nine month-course therapy. Moxifloxacin and gatifloxacin might shorten tuberculosis treatment as well, possibly in combination with rifapentine, while SQ109 could enhance the activity of rifampin-containing regimens. On the other hand, co-administration of moxifloxacin and PA-824 could be active against latent tuberculosis, whereas linezolid, PA-824 and TMC207 are candidates for a rifampin-free regimen in multidrug-resistant and extensively-resistant tuberculosis. Unfortunately, shorter than existent treatment regimens based on the new agents discussed here are likely to take at least another decade to be fully developed and implemented in clinical practice.

Keywords:
High dose of rifamycins
New drug combinations
Resumen

Los datos disponibles en el proceso de investigación de nuevos fármacos antituberculosos han descubierto diferentes propiedades de los compuestos que permiten crear expectativas acerca de sus futuras indicaciones. Modelos terapéuticos que incluyan altas dosis de rifamicinas y pautas que asocien rifapentina con moxifloxacino o gatifloxacino podrían acortar el tratamiento de la tuberculosis, mientras que SQ109 incrementaría la actividad de las combinaciones basadas en esta rifamicina. Por otra parte, la tuberculosis latente podría tratarse adecuadamente con la asociación de moxifloxacino y PA-824, y la tuberculosis multirresistente y extensamente resistente con linezolid, PA-824 y TMC207, en pautas sin rifampicina. Desgraciadamente, tratamientos más cortos que los existentes, basados en asociaciones de los fármacos que se comentan en este trabajo, llevarán al menos otra década para ser completamente desarrollados e introducidos en la práctica clínica.

Palabras clave:
Altas dosis de rifamicinas
Nuevas combinaciones de fármacos
Full text is only aviable in PDF
References
[1.]
Cliff Notes: On Steinbeck's Of Mice and men, pp. 909
[2.]
W.J. Burman, K. Gallicano, C. Peloquin.
Comparative pharmacokinetics and pharmacodynamics of the rifamycin antibacterials.
Clin Pharmacokinet, 40 (2001), pp. 327-341
[3.]
A.H. Diacon, R.F. Patientia, A. Venter, P.D. Van Helden, P.J. Smith, H. McIlleron, et al.
Early bactericidal activity of high-dose rifampin in patients with pulmonary tuberculosis evidenced by positive sputum smears.
Antimicrob Agents Chemother, 51 (2007), pp. 2994-2996
[4.]
S.H. Gillespie.
Evolution of drug resistance in Mycobacterium tuberculosis: clinical and molecular perspective.
Antimicrob Agents Chemother, 46 (2002), pp. 267-274
[5.]
World Health Organization. Anti-tuberculosis drug resistance in the world. Report no. 4. The WHO/IUATLD Global Project on Anti-Tuberculosis Drug Resistance Surveillance. 2002-2007. Geneva: World Health Organization; 2008.
[6.]
G. Acocella.
Clinical pharmacokinetics of rifampicin.
Clin Pharmacokinet, 3 (1978), pp. 108-127
[7.]
R. Ruslami, H.M.J. Nijland, B. Alisjahbana, I. Parwati, R. Van Crevel, R.E. Aarnoutse.
Pharmacokinetics and tolerability of a higher rifampin dose versus the standard dose in pulmonary tuberculosis patients.
Antimicrob Agents Chemother, 51 (2007), pp. 2546-2551
[8.]
M. Niemi, J.T. Backman, M.F. Fromm, P.J. Neuvonen, K.T. Kivisto.
Pharmacokinetic interactions with rifampicin: clinical relevance.
Clin. Pharmacokinet, 42 (2003), pp. 819-850
[9.]
L.B. Heifets, P.J. Lindholm-Levy, M.A. Flory.
Bactericidal activity in vitro of various rifamycins against Mycobacterium avium and Mycobacterium tuberculosis.
Am Rev Respir Dis, 141 (1990), pp. 626-630
[10.]
V. Jayashree, S. Nandi, R. Bharat, K. Shandil, E. Kantharaj, V. Balasubramanian.
Pharmacokinetics-pharmacodynamics of rifampin in an aerosol infection model of tuberculosis.
Antimicrob Agents Chemother, 47 (2003), pp. 2118-2124
[11.]
B. Kreis, S. Pretet, J. Birenbaum, P. Guibout, J.J. Hazeman, E. Orin, et al.
Two three-month treatment regimens for pulmonary tuberculosis.
Bull Int Union Tuberc, 51 (1976), pp. 71-75
[12.]
M.W. Long, D.E. Snider Jr, L.S. Farer.
US Public Health Service Cooperative trial of three rifampin-isoniazid regimens in treatment of pulmonary tuberculosis.
Am Rev Respir Dis, 119 (1978), pp. 879-894
[13.]
D.K. Kochar, S. Aseri, B.V. Sharma, R.A. Bumb, R.D. Mehta, S.K. Purohit.
The role of rifampicin in the management of cutaneous leishmaniasis.
QJM, 93 (2000), pp. 733-737
[14.]
J.M. Solera, P. Rodríguez-Zapata, J. Geijo, J. Largo, L. Paulino, E. Sáez, The GECMEI Group, et al.
Doxycycline-rifampin versus doxycycline-streptomycin in treatment of human brucellosis due to Brucella melitensis.
Antimicrob Agents Chemother, 39 (1995), pp. 2061-2067
[15.]
M. Kissling, N. Bergamini.
Rifampicin in free combination with other antimicrobial drugs in non-Tb infections. Clinical data on 650 patients (a review).
Chemotherapy, 27 (1981), pp. 368-402
[16.]
D.L. Williams, L. Spring, L. Collins, L.P. Miller, L.B. Heifets, P.R.J. Gangadharam, et al.
Contribution of rpoB mutations to development of rifamycin cross-resistance in Mycobacterium tuberculosis.
Antimicrob Agents Chemother, 42 (1998), pp. 1853-1857
[17.]
N. Mor, B. Simon, N. Mezo, L. Heifets.
Comparison of activities of rifapentine and rifampin against Mycobacterium tuberculosis residing in human macrophages.
Antimicrob Agents Chemother, 39 (1995), pp. 2073-2077
[18.]
M. Weiner, N. Bock, C.A. Peloquin, W.J. Burman, A. Khan, A. Vernon, et al.
Pharmacokinetics of rifapentine at 600, 900, and 1,200 mg during once-weekly tuberculosis therapy.
Am J Respir Crit Care Med, 169 (2004), pp. 1191-1197
[19.]
K. Dooley, C. Flexner, J. Hackman, C.A. Peloquin, E. Nuermberger, R.E. Chaisson, et al.
Repeated administration of high-dose intermittent rifapentine reduces rifapentine and moxifloxacin plasma concentrations.
Antimicrob Agents Chemother, 52 (2008), pp. 4037-4042
[20.]
P. Bemer-Melchior, A. Bryskier, H.B. Drugeon.
Comparison of the in vitro activities of rifapentine and rifampicin against Mycobacterium tuberculosis complex.
J Antimicrob Chemother, 46 (2000), pp. 571-576
[21.]
E. Nuermberger, J. Grosset.
Pharmacokinetic and pharmacodynamic issues in the treatment of mycobacterial infections.
Eur J Clin Microbiol Infect Dis, 23 (2004), pp. 243-255
[22.]
A. Vernon, W. Burman, D. Benator, A. Khan, L. Bozeman.
Acquired rifamycin monoresistance in patients with HIV-related tuberculosis treated with once-weekly rifapentine and isoniazid.
Lancet, 353 (1999), pp. 1843-1847
[23.]
D. Benator, M. Bhattacharya, L. Bozeman, W. Burman, A. Cantazaro, R. Chaisson, et al.
Rifapentine and isoniazid once a week versus rifampicin and isoniazid twice a week for treatment of drug-susceptible pulmonary tuberculosis in HIV-negative patients: a randomised clinical trial.
Lancet, 360 (2002), pp. 528-534
[24.]
B. Jarvis, H.M. Lamb.
Rifapentine.
Drugs, 56 (1998), pp. 607-616
[25.]
I.M. Rosenthal, K. Williams, S. Tyagi, C. Peloquin, A. Vernon, W.R. Bishai, et al.
Potent twice-weekly rifapentine-containing regimens in murine tuberculosis.
Am J Respir Crit Care Med, 174 (2006), pp. 94-101
[26.]
I.M. Rosenthal, Williams, S. Tyagi, A. Vernon, C.A. Peloquin, W.R. Bishai, et al.
Weekly moxifloxacin and rifapentine is more active than the Denver regimen in murine tuberculosis.
Am J Respir Crit Care Med, 172 (2005), pp. 1457-1462
[27.]
I.M. Rosenthal, M. Zhang, K.N. Williams, C.A. Peloquin, S. Tyagi, A. Vernon.
Daily dosing of rifapentine cures tuberculosis in three months or less in the murine model.
[28.]
E. Nuermberger, I.M. Rosenthal, M. Zhang, J. Grosset.
Relative contribution of moxifloxacin versus isoniazid to rifapentine-based regimens in the murine model of tuberculosis. 1st Int Workshop Clin Pharmacol Tuberculosis Drugs.
Toronto, (2008), pp. 18
[29.]
I.M. Rosenthal, M. Zhang, J. Grosset, E. Nuermberger.
Is it possible to cure TB in weeks instead of months? 1st Int Workshop Clin Pharmacol Tuberculosis Drugs.
Toronto, (2008), pp. 19
[30.]
N. Bock, T.R. Sterling, C.D. Hamilton, C. Pachucki, Y.C. Wang, D.S. Conwell, et al.
A prospective, randomized, double-blind study of the tolerability of rifapentine 600, 900, and 1,200 mg plus isoniazid in the continuation phase of tuberculosis treatment.
Am J Respir Crit Care Med, 165 (2002), pp. 1526-1530
[31.]
M. Weiner, N. Bock, C.A. Peloquin, W.A. Burman, A. Khan, A. Vernon, et al.
Pharmacokinetics rifapentine at 600, 900, and 1,200 mg during once-weekly tuberculosis therapy.
Am J Respir Crit Care Med, 169 (2004), pp. 1191-1197
[32.]
E. Nuermberger, S. Tyagi, K.N. Williams, I. Rosenthal, W.R. Bishai, J.H. Grosset.
Rifapentine, moxifloxacin, or DNA vaccine improves treatment of latent tuberculosis in a mouse model.
Am J Respir Crit Care Med, 172 (2005), pp. 1452-1456
[33.]
M. Schechter, R. Zajdenverg, G. Falco, G.L. Barnes, J.C. Faulhaber, J.S. Coberly, et al.
Weekly rifapentine/isoniazid or daily rifampin/pyrazinamide for latent tuberculosis in household contacts.
Am J Respir Crit Care Med, 173 (2006), pp. 922-926
[34.]
World Health Organization.
Treatment of tuberculosis. Guidelines for national programmes.
3rd ed., World Health Organization, (2003),
[35.]
D.P. Bonner.
In vitro antibacterial spectrum of a new broad-spectrum 8-methoxy fluoroquinolone, gatifloxacin.
J Antimicrob Chemother, 45 (2000), pp. 437-446
[36.]
R.K. Shandil, R. Jayaram, P. Kaur, S. Gaonkar, B.L. Suresh, B.N. Mahesh, et al.
Moxifloxacin, ofloxacin, sparfloxacin, and ciprofloxacin against Mycobacterium tuberculosis: evaluation of in vitro and pharmacodynamic indices that best predict in vivo efficacy.
Antimicrob Agents Chemother, 51 (2007), pp. 576-582
[37.]
H. Stass, A. Dalhoff, D. Kubitza, U. Schuhly.
Pharmacokinetics, safety, and tolerability of ascending single doses of moxifloxacin, a new 8-methoxy quinolone, administered to healthy subjects.
Antimicrob Agents Chemother, 42 (1998), pp. 2060-2065
[38.]
A.V. Shindikar, C.L. Viswanathan.
Novel fluoroquinolones: design, synthesis, and in vivo activity in mice against Mycobacterium tuberculosis H37Rv.
Bioorg Med Chem Lett, 15 (1998), pp. 1803-1806
[39.]
L. Bozeman, W. Burman, B. Metchock, L. Welch, M. Weiner.
Fluoroquinolone susceptibility among Mycobacterium tuberculosis isolates from the United States and Canada.
Clin Infect Dis, 40 (2005), pp. 386-391
[40.]
A.S. Ginsburg, S.C. Woolwine, N. Hooper, W.H. Benjamin Jr, W.R. Bishai, S.E. Dorman, et al.
The rapid development of fluoroquinolone resistance in M. tuberculosis.
N. Engl J Med, 349 (2003), pp. 1977-1978
[41.]
A.S. Ginsburg, J.H. Grosset, W.R. Bishai.
Fluoroquinolones, tuberculosis, and resistance.
Lancet Infect Dis, 3 (2003), pp. 432-442
[42.]
K.M. Kam, C.W. Yip, T.L. Cheung, H.S. Tang, C.C. Leung, M.Y. Chan.
Stepwise decrease in moxifloxacin susceptibility amongst clinical isolates of multidrug-resistant Mycobacterium tuberculosis: correlation with ofloxacin susceptibility.
Microb Drug Resist, 12 (2006), pp. 7-11
[43.]
A.M. Ginsberg, M. Spigelman.
Challenges in tuberculosis drug research and development.
Nat Med, 13 (2007), pp. 290-294
[44.]
T.S. Huang, C. Kunin, L.S. Shin-Jung, Y.S. Chen, H.Z. Tu, Y.C. Liu.
Trends in fluoroquinolone resistance of Mycobacterium tuberculosis complex in a Taiwanese medical centre: 1995–2003.
J Antimicrob Chemother, 56 (2005), pp. 1058-1062
[45.]
H.M. Nijland, R. Ruslami, A.J. Suroto, D.M. Burger, B. Alisjahbana, R. Van Crevel, et al.
Rifampicin reduces plasma concentrations of moxifloxacin in patients with tuberculosis.
Clin Infect Dis, 45 (2007), pp. 1001-1007
[46.]
M. Weiner, W. Burman, C.C. Leung, C.A. Peloquin, M. Engle, S. Goldberg, et al.
Effects of rifampin and multidrug resistance gene polymorphism on concentrations of moxifloxacin.
Antimicrob Agents Chemother, 51 (2007), pp. 2861-2866
[47.]
D.H. Wright, G.H. Brown, M.L. Peterson, J.C. Rotschafer.
Application of fluoroquinolone pharmacodynamics.
J Antimicrob Chemother, 46 (2000), pp. 669-683
[48.]
T. Yoshimatsu, E. Nuermberger, S. Tyagi, R. Chaisson, W. Bishai, J. Grosset.
Bactericidal activity of increasing daily and weekly doses of moxifloxacin in murine tuberculosis.
Antimicrob Agents Chemother, 46 (2002), pp. 1875-1879
[49.]
N. Lounis, A. Bentoucha, C. Truffot-Pernot, B. Ji, R.J. O’Brien, A. Vernon, et al.
Effectiveness of once-weekly rifapentine and moxifloxacin regimens against Mycobacterium tuberculosis in mice.
Antimicrob Agents Chemother, 45 (2001), pp. 3482-3486
[50.]
E.L. Nuermberger, T. Yoshimatsu, S. Tyagi, R.J. O’Brien, A. Vernon, R.E. Chaisson, et al.
Moxifloxacin containing regimen greatly reduces time to culture conversion in murine tuberculosis.
Am J Respir Crit Care Med, 169 (2004), pp. 421-426
[51.]
M.W.R. Pletz, A. De Roux, A. Roth, K.H. Neumann, H. Mauch, H. Lode.
Early bactericidal activty of moxifloxacin in treatment of pulmonary tuberculosis: a prospective, randomized study.
Antimicrob Agents Chemother, 48 (2004), pp. 780-782
[52.]
S.H. Gillespie, R.D. Gosling, L. Uiso, N.E. Sam, E.G. Kanduma, T.D. McHugh.
Early bactericidal activity of a moxifloxacin and isoniazid combination in smear-positive pulmonary tuberculosis.
J Antimicrob Chemother, 56 (2005), pp. 1169-1171
[53.]
W.J. Burman, S. Goldberg, J.L. Johnson, G. Muzanye, M. Engle, A.W. Mosher, et al.
Moxifloxacin versus ethambutol in the first 2 months of treatment for pulmonary tuberculosis.
Am J Respir Crit Care Med, 174 (2006), pp. 331-338
[54.]
R. Rustomjee, C. Lienhardt, T. Kanyok, G.R. Davies, J. Levin, T. Mthiyane, et al.
A phase II study of the sterilising activities of ofloxacin, gatifloxacin and moxifloxacin in pulmonary tuberculosis.
Int J Tuberc Lung Dis, 12 (2008), pp. 128-138
[55.]
N. Veziris, N. Lounis, A. Chauffour, C. Truffot-Pernot, V. Jarlier.
Efficient intermittent rifapentine-moxifloxacin-containing short-course regimen for treatment of tuberculosis in mice.
Antimicrob Agents Chemother, 49 (2005), pp. 4015-4019
[56.]
L.R. Codecasa, G. Ferrara, M. Ferrarese, M.A. Morandi, V. Penati, C. Lacchini, et al.
Long-term moxifloxacin in complicated tuberculosis patients with adverse reactions or resistance to first line drugs.
Respir Med, 100 (2006), pp. 1566-1572
[57.]
European Medicines Agency.
Questions and answers on the recommendation to restrict the use of oral formulations of moxifloxacin-containing medicines.
European Medicines Agency, (2008),
[58.]
A. Lubasch, I. Keller, K. Borner, P. Koeppe, H. Lode.
Comparative pharmacokinetics of ciprofloxacin, gatifloxacin, grepafloxacin, levofloxacin, trovafloxacin, and moxifloxacin after single oral administration in healthy volunteers.
Antimicrob Agents Chemother, 44 (2000), pp. 2600-2603
[59.]
L.Y. Park-Wyllie, D.N. Juurlink, A. Kopp, B.R. Shah, T.A. Stukel, C. Stumpo, et al.
Outpatient gatifloxacin therapy and dysglycemia in older adults.
N Engl J Med, 354 (2006), pp. 1352-1361
[60.]
T. Lu, K. Drlica.
In vitro activity of C-8-methoxy fluoroquinolones against mycobacteria when combined with anti-tuberculosis agents.
J Antimicrob Chemother, 52 (2003), pp. 1025-1028
[61.]
M.H. Cynamon, M. Sklaney.
Gatifloxacin and ethionamide as the foundation for therapy of tuberculosis.
Antimicrob Agents Chemother, 47 (2002), pp. 2442-2444
[62.]
K. Yanagihara, Y. Kaneko, T. Sawai, Y. Miyazaki, K. Tsukamoto, Y. Hirakata, et al.
Efficacy of linezolid against methicillin-resistant or vancomycin-insensitive Staphylococcus aureus in a model of hematogenous pulmonary infection.
Antimicrob Agents Chemother, 46 (2002), pp. 3288-3291
[63.]
L. Alcalá, M.J. Ruiz-Serrano, C. Pérez-Fernández Turégano.
In vitro activities of linezolid against clinical isolates of Mycobacterium tuberculosis that are susceptible or resistant to first-line antituberculous drugs.
Antimicrob Agents Chemother, 47 (2003), pp. 416-417
[64.]
R.J. Wallace Jr, B.A. Brown-Elliott, S.C. Ward.
Activities of linezolid against rapidly growing mycobacteria.
Antimicrob Agents Chemother, 45 (2001), pp. 764-767
[65.]
M.H. Cynamon, S.P. Klemens, C.A. Sharpe.
Activities of several novel oxazolidinones against Mycobacterium tuberculosis in a murine model.
Antimicrob Agents Chemother, 43 (1999), pp. 1189-1191
[66.]
M.E. Valencia, V. Moreno, F. Laguna.
Multiresistant tuberculosis caused by Mycobacterium bovis and human immunodeficiency virus infection. Are there new therapeutic possibilities?.
Enferm Infecc Microbiol Clin, 19 (2001), pp. 37-39
[67.]
B.A. Brown-Elliott, R.J. Wallace Jr, R. Blinkhorn, C.J. Crist, L.B. Mann.
Successful treatment of disseminated Mycobacterium chelonae infection with linezolid.
Clin Infect Dis, 33 (2001), pp. 1433-1434
[68.]
G.B. Migliori, B. Eker, M.D. Richardson, G. Sotgiu, J.P. Zellweger, A. Skrahina, TBNET Study Group, et al.
A retrospective TBNET assessment of linezolid, safety, tolerability and efficacy in multidrug resistant tuberculosis.
Eur Respir J, 34 (2009), pp. 387-393
[69.]
E. Rubinstein, R. Isturiz, H.C. Standiford.
Worldwide assessment of linezolid's clinical safety and tolerability:comparator controlled phase III studies.
Antimicrob Agents Chemother, 47 (2003), pp. 1824-1831
[70.]
S.L. Gerson, S.L. Kaplan, J.B. Bruss.
Hematologic effects of linezolid:summary of clinical experience.
Antimicrob Agents Chemother, 46 (2002), pp. 2723-2726
[71.]
A.M. Bressler, S.M. Zimmer, J.L. Gilmore.
Peripheral neuropathy associated with prolonged use of linezolid.
Lancet Infect Dis, 4 (2004), pp. 528-531
[72.]
J. Fortún, P. Martín-Dávila, E. Navas, M.J. Pérez-Elías, J. Cobo, M. Tato, et al.
Linezolid for the treatment of multidrug resistant tuberculosis.
J Antimicrobl Chemother, 56 (2005), pp. 180-185
[73.]
I.N. Park, S.B. Hong, Y.M. Oh, M.N. Kim, C.M. Lim, S.D. Lee, et al.
Efficacy and tolerability of daily half-dose of linezolid in patients with intractable multidrug resistant tuberculosis.
J Antimicrob Chemother, 58 (2006), pp. 701-704
[74.]
K. Andries, P. Verhasselt, J. Guillemont, H.W. Gohlmann, J.M. Neefs, H. Winkler, et al.
A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis.
Science, 307 (2005), pp. 223-227
[75.]
M.R. De Jonge, L.H. Koymans, J.E. Guillemont, A. Koul, K. Andries.
A computational model of the inhibition of Mycobacterium tuberculosis ATPase by a new drug candidate R207910.
Proteins, 67 (2007), pp. 971-980
[76.]
A.H. Diacon, A. Pym, M. Grobusch, R. Patientia, R. Rustomjee, L. Page-Shipp, et al.
The diarylquinoline TMC207 for multidrug resitant tuberculosis.
N Eng J Med, 360 (2009), pp. 2397-2405
[77.]
S. Petrella, E. Cambau, A. Chauffour, K. Andries, V. Jarlier, W. Sougakoff.
Genetic basis for natural and acquired resistance to the diarylquinoline R207910 in mycobacteria.
Antimicrob Agents Chemother, 50 (2006), pp. 2853-2856
[78.]
R. Rustomjee, A.H. Diacon, J. Allen, A. Venter, C. Reddy, R.F. Patientia, et al.
Early bactericidal activity and pharmacokinetics of the diarylquinoline TMC207 in treatment of pulmonary tuberculosis.
Antimicrob Agents Chemother, 52 (2008), pp. 2831-2835
[79.]
N. Lounis, T. Gevers, J. Van Den Berg, K. Andries.
Impact of the interaction of R207910 with rifampin on the treatment of tuberculosis studied in the mouse model.
Antimicrob. Agents Chemother, 52 (2008), pp. 3568-3572
[80.]
E. Huitric, P. Verhasselt, K. Andries, S.E. Hoffner.
In vitro antimycobacterial spectrum of a diarylquinoline ATP synthase inhibitor.
Antimicrob Agents Chemother, 51 (2007), pp. 4202-4204
[81.]
N. Veziris, M. Ibrahim, N. Lounis, A. Chauffour, C. Truffot-Pernot, K. Andries, et al.
A once-weekly R207910-containing regimen exceeds activity of the standard daily regimen in murine tuberculosis.
Am J Respir Crit Care Med, 179 (2009), pp. 75-79
[82.]
M. Ibrahim, K. Andries, N. Lounis, A. Chauffour, C. Truffot-Pernot, V. Jarlier, et al.
Synergistic activity of R207910 combined with pyrazinamide against murine tuberculosis.
Antimicrob Agents Chemother, 51 (2007), pp. 1011-1015
[83.]
A.J. Lenaerts, D. Hoff, S. Aly, S. Ehlers, K. Andries, L. Cantarero, et al.
Location of persisting mycobacteria in a guinea pig model of tuberculosis revealed by R207910.
Antimicrob Agents Chemother, 51 (2007), pp. 3338-3345
[84.]
M.V. Papadopoulou, W.D. Bloomer, M.R. McNeil.
NLCQ-1 and NLCQ-2, two new agents with activity against dormant Mycobacterium tuberculosis.
Int J Antimicrob Agents, 29 (2007), pp. 724-727
[85.]
M.K. Spigelman.
New tuberculosis therapeutics: a growing pipeline.
J Infect Dis, 196 (2006), pp. S28-S34
[86.]
C.K. Stover, P. Warrener, D.R. Van Devanter, D.R. Sherman, T.M. Arain, M.H. Langhorne, et al.
A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis.
Nature, 405 (2000), pp. 962-966
[87.]
K.P. Choi, T.B. Bair, Y.M. Bae, L. Daniels.
Use of transposon Tn5367 mutagenesis and a nitroimidazopyran-based selection system to demonstrate a requirement for fbiA and fbiB in coenzyme F420 biosynthesis by Mycobacterium bovis BCG.
J Bacteriol, 183 (2001), pp. 7058-7066
[88.]
U.H. Manjunatha, H. Boshoff, C.S. Dowd, L. Zhang, T.J. Albert, J.E. Norton, et al.
Identification of a nitroimidazo-oxazine-specific protein involved in PA-824 resistance in Mycobacterium tuberculosis.
Proc Natl Acad Sci USA, 103 (2006), pp. 431-436
[89.]
E. Nuermberger, I. Rosenthal, S. Tyagi, K.N. Williams, D. Almeida, C.A. Peloquin, et al.
Combination chemotherapy with the nitroimidazopyran PA-824 and first-line drugs in a murine model of tuberculosis.
Antimicrob Agents Chemother, 50 (2006), pp. 2621-2625
[90.]
S. Tyagi, E. Nuermberger, T. Yoshimatsu, K. Williams, I. Rosenthal, S. Lounis, et al.
Bactericidal activity of the nitroimidazopyran PA-824 in a murine model of tuberculosis.
Antimicrob Agents Chemother, 49 (2005), pp. 2289-2293
[91.]
A.J. Lenaerts, V. Gruppo, K.S. Marietta, C.M. Johnson, D.K. Driscoll, N.M. Tompkins, et al.
Mycobacterium tuberculosis in a series of in vitro and in vivo models.
Antimicrob Agents Chemother, 49 (2005), pp. 2294-2301
[92.]
I. Rosenthal, J.H. Grosset.
Powerful bactericidal and sterilizing activity of a regimen containing PA-824, moxifloxacin, and pyrazinamide in a murine model of tuberculosis.
Antimicrob Agents Chemother, 52 (2008), pp. 1522-1524
[93.]
R. Tasneen, S. Tyagi, K. Williams, J. Grosset, E. Nuermberger.
Enhanced bactericidal activity of rifampin and/or pyrazinamide when combined with PA-824 in a murine model of tuberculosis.
Antimicrob Agents Chemother, 52 (2008), pp. 3664-3668
[94.]
H. Sasaki, Y. Haraguchi, M. Itotani, H. Kuroda, H. Hashizume, T. Tomishige, et al.
Synthesis and antituberculosis activity of a novel series of optically active 6-nitro-2-,3-dihydroimidazo[2,1-b]oxazoles.
J Med Chem, 49 (2006), pp. 7854-7860
[95.]
M. Matsumoto, H. Hashizume, T. Tomishige, M. Kawasaki, H. Tsubouchi, H. Sasaki, et al.
OPC-67683, a nitrodihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice.
[96.]
L. Jia, J.E. Tomaszewski, P.E. Noker, G.S. Gorman, E. Glaze, M. Protopopova.
Simultaneous estimation of pharmacokinetic properties in mice of three anti-tubercular ethambutol analogs obtained from combinatorial lead optimization.
J Pharm Biomed Anal, 37 (2005), pp. 793-799
[97.]
P. Chen, J. Gearhart, M. Protopopova, L. Einck, C.A. Nacy.
Synergistic interactions of SQ109, a new ethylene diamine, with front-line antitubercular drugs in vitro.
J Antimicrob Chemother, 58 (2006), pp. 332-337
[98.]
L. Jia, P.E. Noker, L. Coward, G.S. Gorman, M. Protopopova, J.E. Tomaszewski.
Interspecies pharmacokinetics and in vitro metabolism of SQ109.
Br J Pharmacol, 147 (2006), pp. 476-485
[99.]
Horwith G, Protopopova M, Lyer L, Mirsalis J, Li Y, Swezey R. Drug-drug interaction studies of SQ109 with first-line anti-TB drugs, abstr. 16. Abstr. 1st Int. Workshop Clin. Pharmacol. Tuberculosis Drugs. 2008; Toronto, Canada.
[100.]
P. Chen, J. Gearhart, M. Protopopova, L. Einck, C.A. Nacy.
Synergistic interactions of SQ109, a new ethylene diamine, with front-line antitubercular drugs in vitro.
J Antimicrob Chemother, 58 (2006), pp. 332-337
[101.]
B.V. Nikonenko, M. Protopopova, R. Samala, L. Einck, C.A. Nacy.
Drug therapy of experimental tuberculosis (TB): improved outcome by combining SQ109, a new diamine antibiotic, with existing TB drugs.
Antimicrob Agents Chemother, 51 (2007), pp. 1563-1565
[102.]
S.K. Arrora, N. Sinha, R. Sinha, R. Bateja, S. Sharma, R.S. Upadhayaya.
Design, synthesis, modelling and activity of novel antitubercular compounds.
Am Chem Soc Meet, (2004),
[103.]
M. Protopopova, E. Bogatcheva, B. Nikonenko, S. Hundert, L. Einck, C.A. Nacy.
In search of new cures for tuberculosis.
Med Chem, 3 (2007), pp. 301-316
[104.]
Tuberculosis. Ll-3858. Tuberculosis (Edinburgh). 2008; 88:126.
[105.]
T. Cohen, M. Murray.
Incident tuberculosis among recent US immigrants and exogenous reinfection.
Emerg Infect Dis, 11 (2005), pp. 725-728
Copyright © 2011. Elsevier España S.L.. All rights reserved
Download PDF
Article options
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos