metricas
covid
Buscar en
Enfermedades Infecciosas y Microbiología Clínica
Toda la web
Inicio Enfermedades Infecciosas y Microbiología Clínica New tuberculosis vaccines
Información de la revista
Vol. 29. Núm. S1.
Update on tuberculosis
Páginas 57-62 (marzo 2011)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 29. Núm. S1.
Update on tuberculosis
Páginas 57-62 (marzo 2011)
Acceso a texto completo
New tuberculosis vaccines
Nuevas vacunas contra la tuberculosis
Visitas
3754
Carlos Martín Montañésa,
Autor para correspondencia
carlos@unizar.es

Corresponding author.
, Brigitte Gicquelb
a Departamento de Microbiología, Facultad de Medicina, Universidad de Zaragoza, CIBER Enfermedades Respiratorias, Zaragoza, Spain
b Unité de Génétique Mycobactérienne, Institut Pasteur, Paris, France
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas
Abstract

The current tuberculosis (TB) vaccine, bacille Calmette-Guerin (BCG), is a live vaccine used worldwide, as it protects against severe forms of the disease, saving thousands of lives every year, but its efficacy against pulmonary forms of TB, responsible for transmission of the diseases, is variable.

For more than 80 years now no new TB vaccines have been successfully developed. Over the last decade the effort of the scientific community has resulted in the design and construction of promising vaccine candidates. The goal is to develop a new generation of vaccines effective against respiratory forms of the disease. We will focus this review on new prophylactic vaccine candidates that aim to prevent TB diseases.

Two are the main strategies used to improve the immunity conferred by the current BCG vaccine, by boosting it with new subunit vaccines, and a second strategy is focused on the construction of new more effective live vaccines, capable to replace the current BCG and to be used as prime vaccines.

After rigorous preclinical studies in different animal models new TB vaccine candidates enter in clinical trials in humans. First, a small Phase I for safety followed by immunological evaluation in Phase II trials and finally evaluated in large population Phase III efficacy trials in endemic countries. At present BCG prime and boost with different subunit vaccine candidates are the more advanced assessed in Phase II. Two prime vaccines (based on recombinant BCG) have been successfully evaluated for safety in Phase I trials. A short number of live attenuated vaccines are in advance preclinical studies and the candidates ready to enter Phase I safety trials are produced under current good manufacturing practices.

Keywords:
Bacille Calmette-Guerin (BCG)
Tuberculosis
Subunit vaccines
Live vaccines
Resumen

La actual vacuna contra la tuberculosis, bacilo de Calmette-Guerin (BCG), en uso desde 1921, protege contra las formas más graves de la enfermedad, pero su eficacia es muy variable contra las formas de tuberculosis pulmonar, por lo que la investigación y desarrollo de nuevas vacunas es un reto importante para la comunidad científica.

En la última década, importantes esfuerzos en investigación han dado como resultado el diseño y construcción de nuevos candidatos a vacunas contra la tuberculosis. El objetivo es desarrollar una nueva generación de vacunas eficaces contra las formas respiratorias de la enfermedad, responsables de la transmisión de la tuberculosis.

Esta revisión se centra en el progreso preclínico y clínico de nuevas vacunas profilácticas, dirigidas a prevenir la enfermedad. Dos son las principales estrategias: la primera busca mejorar la inmunidad conferida por BCG, revacunando con vacunas subunidades, y la segunda estrategia se centra en la construcción de nuevas vacunas vivas más eficaces, capaces de sustituir la actual BCG.

Tras rigurosos estudios preclínicos en modelos animales, algunos candidatos a la vacuna contra la tuberculosis han entrado en ensayos clínicos en humanos. Actualmente, las vacunas subunidades son las más avanzadas en estos ensayos y están siendo evaluadas en fase II en individuos previamente vacunados con BCG. Vacunas vivas basadas en BCG recombinante se están evaluado en fase I, y nuevas vacunas vivas atenuadas han mostrado buenos resultados de atenuación y protección en estudios preclínicos, y están listas para entrar en ensayos de fase I en humanos.

Palabras clave:
Bacilo de Calmette-Guérin (BCG)
Tuberculosis
Vacunas subunidades
Vacunas vivas atenuadas
El Texto completo está disponible en PDF
References
[1.]
J.W. Almond.
Vaccine renaissance.
Nat Rev Microbiol, 5 (2007), pp. 478-481
[2.]
P.E. Fine.
Variation in protection by BCG: implications of and for heterologous immunity.
Lancet, 346 (1995), pp. 1339-1345
[3.]
B.B. Trunz, P. Fine, C. Dye.
Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: a meta-analysis and assessment of cost-effectiveness.
Lancet, 367 (2006), pp. 1173-1180
[4.]
E. Bonifachich, M. Chort, A. Astigarraga, N. Díaz, B. Brunet, S.M. Pezzotto, et al.
Protective effect of Bacillus Calmette-Guerin (BCG) vaccination in children with extra-pulmonary tuberculosis, but not the pulmonary disease. A case-control study in Rosario, Argentina.
Vaccine, 24 (2006), pp. 2894-2899
[5.]
C. Demangel, T. Garnier, I. Rosenkrands, S.T. Cole.
Differential effects of prior exposure to environmental mycobacteria on vaccination with Mycobacterium bovis BCG or a recombinant BCG strain expressing RD1 antigens.
Infect Immun, 73 (2005), pp. 2190-2196
[6.]
N.E. Aronson, M. Santosham, G.W. Comstock, R.S. Howard, L.H. Moulton, E.R. Rhoades, et al.
Long-term efficacy of BCG vaccine in American Indians and Alaska Natives: A 60-year follow-up study.
Jama, 291 (2004), pp. 2086-2091
[7.]
K. Ewer, J. Deeks, L. Álvarez, G. Bryant, S. Waller, P. Andersen, et al.
Comparison of T-cell-based assay with tuberculin skin test for diagnosis of Mycobacterium tuberculosis infection in a school tuberculosis outbreak.
Lancet, 361 (2003), pp. 1168-1173
[8.]
M. Eisenhut, S. Paranjothy, I. Abubakar, S. Bracebridge, M. Lilley, R. Mulla, et al.
BCG vaccination reduces risk of infection with Mycobacterium tuberculosis as detected by gamma interferon release assay.
Vaccine, 27 (2009), pp. 6116-6120
[9.]
C. Vilaplana, E. Montane, S. Pinto, A.M. Barriocanal, G. Domenech, F. Torres, et al.
Double-blind, randomized, placebo-controlled Phase I Clinical Trial of the therapeutical antituberculous vaccine RUTI.
Vaccine, 28 (2010), pp. 1106-1116
[10.]
D. Young, C. Dye.
The development and impact of tuberculosis vaccines.
[11.]
M.A. Behr, M.A. Wilson, W.P. Gill, H. Salamon, G.K. Schoolnik, S. Rane, et al.
Comparative genomics of BCG vaccines by whole-genome DNA microarray.
Science, 284 (1999), pp. 1520-1523
[12.]
M.A. Behr, P.M. Small.
Has BCG attenuated to impotence?.
Nature, 389 (1997), pp. 133-134
[13.]
M.A. Behr.
BCG--different strains, different vaccines?.
Lancet Infect Dis, 2 (2002), pp. 86-92
[14.]
R. Brosch, S.V. Gordon, T. Garnier, K. Eiglmeier, W. Frigui, P. Valenti, et al.
Genome plasticity of BCG and impact on vaccine efficacy.
Proc Natl Acad Sci USA, 104 (2007), pp. 5596-5601
[15.]
M. Seki, I. Honda, I. Fujita, I. Yano, S. Yamamoto, A. Koyama.
Whole genome sequence analysis of Mycobacterium bovis bacillus Calmette-Guerin (BCG) Tokyo 172: a comparative study of BCG vaccine substrains.
Vaccine, 27 (2009), pp. 1710-1716
[16.]
A.S. Leung, V. Tran, Z. Wu, X. Yu, D.C. Alexander, G.F. Gao, et al.
Novel genome polymorphisms in BCG vaccine strains and impact on efficacy.
BMC Genomics, 9 (2008), pp. 413
[17.]
C.F. Von Reyn, L. Mtei, R.D. Arbeit, R. Waddell, B. Cole, T. Mackenzie, et al.
Prevention of tuberculosis in Bacille Calmette-Guerin-primed. HIV-infected adults boosted with an inactivated whole-cell mycobacterial vaccine.
[18.]
I.M. Orme, D.N. McMurray, J.T. Belisle.
Tuberculosis vaccine development: recent progress.
Trends Microbiol, 9 (2001), pp. 115-118
[19.]
A. Williams, G.J. Hatch, S.O. Clark, K.E. Gooch, K.A. Hatch, G.A. Hall, et al.
Evaluation of vaccines in the EU TB Vaccine Cluster using a guinea pig aerosol infection model of tuberculosis.
Tuberculosis (Edinb), 85 (2005), pp. 29-38
[20.]
F.A. Verreck, R.A. Vervenne, I. Kondova, K.W. Van Kralingen, E.J. Remarque, G. Braskamp, et al.
MVA.85A boosting of BCG and an attenuated, phoP deficient M. tuberculosis vaccine both show protective efficacy against tuberculosis in rhesus macaques.
[21.]
J.V. Brooks, A.A. Frank, M.A. Keen, J.T. Bellisle, I.M. Orme.
Boosting vaccine for tuberculosis.
Infect Immun, 69 (2001), pp. 2714-2717
[22.]
S.G. Reed, R.N. Coler, W. Dalemans, E.V. Tan, E.C. DeLa Cruz, R.J. Basaraba, et al.
Defined tuberculosis vaccine, Mtb72F/AS02A, evidence of protection in cynomolgus monkeys.
Proc Natl Acad Sci U.S.A., 106 (2009), pp. 2301-2306
[23.]
K. Von Eschen, R. Morrison, M. Braun, O. Ofori-Anyinam, E. De Kock, P. Pavithran, et al.
The candidate tuberculosis vaccine Mtb72F/AS02A: tolerability and immunogenicity in humans.
Hum Vaccin, 5 (2009), pp. 475-482
[24.]
J. Dietrich, C. Andersen, R. Rappuoli, T.M. Doherty, C.G. Jensen, P. Andersen.
Mucosal administration of Ag85B-ESAT-6 protects against infection with Mycobacterium tuberculosis and boosts prior bacillus Calmette-Guerin immunity.
J Immunol, 177 (2006), pp. 6353-6360
[25.]
J.T. Van Dissel, S.M. Arend, C. Prins, P. Bang, P.N. Tingskov, K. Lingnau, et al.
Ag85B-ESAT-6 adjuvanted with IC31® promotes strong and long-lived Mycobacterium tuberculosis specific T cell responses in naïve human volunteers.
Vaccine, 28 (2010), pp. 3571-3581
[26.]
H. McShane, A.A. Pathan, C.R. Sander, S.M. Keating, S.C. Gilbert, K. Huygen, et al.
Recombinant modified vaccinia virus Ankara expressing antigen 85A boosts BCG-primed and naturally acquired antimycobacterial immunity in humans.
Nat Med, 10 (2004), pp. 1240-1244
[27.]
K.T. Whelan, A.A. Pathan, C.R. Sander, H.A. Fletcher, I. Poulton, N.C. Alder, et al.
Safety and immunogenicity of boosting BCG vaccinated subjects with BCG: comparison with boosting with a new TB vaccine, MVA85A.
[28.]
M.K. Hondalus, S. Bardarov, R. Russell, J. Chan, W.R. Jacobs Jr, B.R. Bloom.
Attenuation of and protection induced by a leucine auxotroph of Mycobacterium tuberculosis.
Infect Immun, 68 (2000), pp. 2888-2898
[29.]
D.F. Hoft, A. Blazevic, G. Abate, W.A. Hanekom, G. Kaplan, J.H. Soler, et al.
A new recombinant bacille Calmette-Guerin vaccine safely induces significantly enhanced tuberculosis-specific immunity in human volunteers.
J Infect Dis, 198 (2008), pp. 1491-1501
[30.]
A.S. Pym, P. Brodin, L. Majlessi, R. Brosch, C. Demangel, A. Williams, et al.
Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis.
Nat Med, 9 (2003), pp. 533-539
[31.]
P. Brodin, L. Majlessi, R. Brosch, D. Smith, G. Bancroft, S. Clark, et al.
Enhanced protection against tuberculosis by vaccination with recombinant Mycobacterium microti vaccine that induces T cell immunity against region of difference 1 antigens.
J Infect Dis, 190 (2004), pp. 115-122
[32.]
L. Grode, P. Seiler, S. Baumann, J. Hess, V. Brinkmann, A.N. Eddine, et al.
Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacille Calmette-Guerin mutants that secrete listeriolysin.
J Clin Invest, 115 (2005), pp. 2472-2479
[33.]
S.H. Kaufmann.
Envisioning future strategies for vaccination against tuberculosis.
Nat Rev Immunol, 6 (2006), pp. 699-704
[34.]
K.S. Rosenthal, D.H. Zimmerman.
Vaccines: all things considered.
Clin Vaccine Immunol, 13 (2006), pp. 821-829
[35.]
C.F. Von Reyn, J.M. Vuola.
New vaccines for the prevention of tuberculosis.
Clin Infect Dis, 35 (2002), pp. 465-474
[36.]
J.E. Ziegler, M.L. Edwards, D.W. Smith.
Exogenous reinfection in experimental airborne tuberculosis.
Tubercle, 66 (1985), pp. 121-128
[37.]
C. Martin, J. Timm, J. Rauzier, R. Gómez-Lus, J. Davies, B. Gicquel.
Transposition of an antibiotic resistance element in mycobacteria.
Nature, 345 (1990), pp. 739-743
[38.]
M.G. Ranes, J. Rauzier, M. Lagranderie, M. Gheorghiu, B. Gicquel.
Functional analysis of pAL5000, a plasmid from Mycobacterium fortuitum: construction of a “mini” Mycobacterium-Escherichia coli shuttle vector.
J Bacteriol, 172 (1990), pp. 2793-2797
[39.]
W.R. Jacobs Jr, M. Tuckman, B.R. Bloom.
Introduction of foreign DNA into mycobacteria using a shuttle phasmid.
Nature, 327 (1987), pp. 532-535
[40.]
V.K. Sambandamurthy, X. Wang, B. Chen, R.G. Russell, S. Derrick, F.M. Collins, et al.
A pantothenate auxotroph of Mycobacterium tuberculosis is highly attenuated and protects mice against tuberculosis.
Nat Med, 8 (2002), pp. 1171-1174
[41.]
V.K. Sambandamurthy, S.C. Derrick, T. Hsu, B. Chen, M.H. Larsen, K.V. Jalapathy, et al.
Mycobacterium tuberculosis DeltaRD1 Deltapan CD: a safe and limited replicating mutant strain that protects immunocompetent and immunocompromised mice against experimental tuberculosis.
Vaccine, 24 (2006), pp. 6309-6320
[42.]
V.K. Sambandamurthy, S.C. Derrick, K.V. Jalapathy, B. Chen, R.G. Russell, S.L. Morris, et al.
Long-term protection against tuberculosis following vaccination with a severely attenuated double lysine and pantothenate auxotroph of Mycobacterium tuberculosis.
Infect Immun, 73 (2005), pp. 1196-1203
[43.]
J. Hinchey, S. Lee, B.Y. Jeon, R.J. Basaraba, M.M. Venkataswamy, B. Chen, et al.
Enhanced priming of adaptive immunity by a proapoptotic mutant of Mycobacterium tuberculosis.
J Clin Invest, 117 (2007), pp. 2279-2288
[44.]
S. Samper, C. Martín, A. Pinedo, A. Rivero, J. Blázquez, F. Baquero, et al.
Transmission between HIV-infected patients of multidrug-resistant tuberculosis caused by Mycobacterium bovis.
Aids, 11 (1997), pp. 1237-1242
[45.]
S. Samper, C. Martín.
Spread of extensively drug-resistant tuberculosis.
Emerg Infect Dis, 13 (2007), pp. 647-648
[46.]
C. Martín, A. Williams, R. Hernández-Pando, P.J. Cardona, E. Gormley, Y. Bordat, et al.
The live Mycobacterium tuberculosis phoP mutant strain is more attenuated than BCG and confers protective immunity against tuberculosis in mice and guinea pigs.
Vaccine, 24 (2006), pp. 3408-3419
[47.]
E. Pérez, S. Samper, Y. Bordás, C. Guilhot, B. Gicquel, C. Martín.
An essential role for phoP in Mycobacterium tuberculosis virulence.
Mol Microbiol, 41 (2001), pp. 179-187
[48.]
J. Gonzalo Asensio, C. Maia, N.L. Ferrer, N. Barilone, F. Laval, C.Y. Soto, et al.
The virulence-associated two-component PhoP-PhoR system controls the biosynthesis of polyketide-derived lipids in Mycobacterium tuberculosis.
J Biol Chem, 281 (2006), pp. 1313-1316
[49.]
P.J. Cardona, J.G. Asensio, A. Arbues, I. Otal, C. Lafoz, O. Gil, et al.
Extended safety studies of the attenuated live tuberculosis vaccine SO2 based on phoP mutant.
Vaccine, 27 (2009), pp. 2499-2505
[50.]
A.T. Kamath, U. Fruth, M.J. Brennan, R. Dobbelaer, P. Hubrechts, M.M. Ho, et al.
New live mycobacterial vaccines: the Geneva consensus on essential steps towards clinical development.
Vaccine, 23 (2005), pp. 3753-3761
[51.]
M.J. Brennan, U. Fruth, J. Milstien, R. Tiernan, S. De Andrade Nishioka, L. Chocarro.
Development of new tuberculosis vaccines: a global perspective on regulatory issues.
[52.]
K.B. Walker, M.J. Brennan, M.M. Ho, J. Eskola, G. Thiry, J. Sadoff, et al.
The second Geneva Consensus: recommendations for novel live TB vaccines.
Vaccine, 28 (2010), pp. 2259-2270
[53.]
C. Martín.
Tuberculosis vaccines: past, present and future.
Curr Opin Pulm Med, 12 (2006), pp. 186-191
Copyright © 2011. Elsevier España S.L.. All rights reserved
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos