metricas
covid
Buscar en
Enfermedades Infecciosas y Microbiología Clínica
Toda la web
Inicio Enfermedades Infecciosas y Microbiología Clínica Streptococcus pneumoniae virulence factors and their clinical impact: an update
Journal Information
Vol. 24. Issue 8.
Pages 512-517 (October 2006)
Share
Share
Download PDF
More article options
Vol. 24. Issue 8.
Pages 512-517 (October 2006)
Revisión
Full text access
Streptococcus pneumoniae virulence factors and their clinical impact: an update
Visits
14275
María del Mar García-Suáreza,
Corresponding author
garciamar@uniovi.es

Correspondencia: Dra. M.M. García-Suárez. Área de Microbiología. Departamento de Biología Funcional. Facultad de Medicina. Universidad de Oviedo. Julián Clavería, 6. 33006 Oviedo. España.
, Fernando Vázqueza,b, Francisco J. Méndeza,c
a Área de Microbiología. Departamento de Biología Funcional. Facultad de Medicina. Universidad de Oviedo. Oviedo. España
b Hospital Monte Naranco. Oviedo. España
c Hospital Universitario Central de Asturias. Oviedo. España
This item has received
Article information

The morbidity and mortality rates associated with Streptococcus pneumoniae remain very high worldwide. The virulence of this bacterium is largely dependent on its polysaccharide capsule, which is quite heterogeneous and represents a serious obstacle for designing effective vaccines. However, it has been demonstrated that numerous protein virulence factors are involved in the pathogenesis of pneumococcal disease. An important related finding from experimental animal models is that non-capsulated strains of pneumococci are protective against capsulated ones. Hence, new vaccine designs are focused on the surface proteins (e. g., PspA and PspC) and on the cytolysin, pneumolysin. Moreover, several virulence factors have potential value for pneumococcal diagnosis by urinalysis. In this paper, we review the virulence factors involved in bacteria-host interactions, and the new developments in vaccines and diagnostic methods.

Key words:
Streptococcus pneumoniae
Virulence factors
Vaccines
Diagnosis

Las tasas de morbimortalidad por Streptococcus pneumoniae permanecen muy elevadas en todo el mundo. La cápsula polisacarídica es esencial para la virulencia y, por su heterogeneidad, es un serio obstáculo en la generación de una vacuna más eficaz. Sin embargo, se ha demostrado que múltiples factores de virulencia proteicos están implicados en la patogénesis de la enfermedad neumocócica. Un importante hallazgo es el hecho de que cepas no capsuladas de neumococo ofrezcan protección frente a cepas capsuladas, en modelos animales de experimentación. Por ello, el diseño de nuevas vacunas se ha centrado en proteínas de superficie, como PspA y PspC, y en la citolisina neumolisina. Además, varios factores de virulencia tienen valor potencial para el diagnóstico del neumococo en muestras de orina. En este trabajo, revisamos los factores de virulencia implicados en la interacción bacteria-huésped, y en el desarrollo de nuevas vacunas y métodos de diagnóstico.

Full text is only aviable in PDF
References
[1.]
M.P. Girard, T. Cherian, Y. Pervikov, M.P. Kieny.
A review of vaccine research and development: Human acute respiratory infections.
Vaccine, 50 (2005), pp. 5708-5724
[2.]
R.R. Reinert.
Pneumococcal conjugate vaccines – a European perspective.
Int J Med Microbiol, 294 (2004), pp. 277-294
[3.]
S.A. Madhi, K.P. Klugman, The Vaccine Trialist Group.
A role for Streptococcus pneumoniae in virus-associated pneumonia.
Nat Med, 10 (2004), pp. 811-813
[4.]
H.J. Zar.
Pneumonia in HIV-infected and HIV-uninfected children in developing countries: epidemiology, clinical features, and management.
Curr Opin Pulm Med, 10 (2004), pp. 176-182
[5.]
A. Fenoll, G. Asensio, I. Jado, S. Berron, M.T. Camacho, M. Ortega, et al.
Antimicrobial susceptibility and pneumococcal serotypes.
J Antimicrob Chemother, 50 (2002), pp. 13-19
[6.]
J.J. Granizo, L. Aguilar, J. Casal, C. García-Rey, R. Dal-Re, F. Baquero.
2000. Streptococcus pneumoniae resistance to erythromycin and penicillin in relation to macrolide and beta-lactam consumption in Spain (1979-1997).
J Antimicrob Chemother, 46 (2000), pp. 767-773
[7.]
R.R. Reinert, A. Ringelstein, M. Van der Linden, M.Y. Cil, A. Al-Lahham, F. Schmitz.
Molecular epidemiology of macrolide-resistant Streptococcus pneumoniae isolates in Europe.
J Clin Microbiol, 43 (2005), pp. 1294-1300
[8.]
D. Guillemot, E. Varon, C. Bernede, P. Weber, L. Henriet, S. Simon, et al.
Reduction of antibiotic use in the community reduces the rate of colonization with penicillin G-nonsusceptible Streptococcus pneumoniae.
Clin Infect Dis, 41 (2005), pp. 930-938
[9.]
N. Frazao, A. Brito-Avo, C. Simas, J. Saldanha, R. Mato, S. Nunes, et al.
Effect of the seven-valent conjugate pneumococcal vaccine on carriage and drug resistance of Streptococcus pneumoniae in healthy children attending day-care centers in Lisbon.
Pediatr Infect Dis J, 24 (2005), pp. 243-252
[10.]
D. Bogaert, A. Van Belkum, M. Sluijter, A. Luijendijk, R. De Groot, H.C. Rumke, et al.
Colonisation by Streptococcus pneumoniae and Staphylococcus aureus in healthy children.
Lancet, 363 (2004), pp. 1871-1872
[11.]
M. Hentzer, M. Givskov.
Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections.
J Clin Invest, 112 (2003), pp. 1300-1307
[12.]
J.M. Jefferies, A. Smith, S.C. Clarke, C. Dowson, T.J. Mitchell.
Genetic analysis of diverse disease-causing pneumococci indicates high levels of diversity within serotypes and capsule switching.
J Clin Microbiol, 42 (2004), pp. 5681-5688
[13.]
W.P. Hausdorff, D.R. Feikin, K.P. Klugman.
Epidemiological differences among pneumococcal serotypes.
Lancet Infect Dis, 5 (2005), pp. 83-93
[14.]
W.P. Hanage, T.H. Kaijalainen, R.K. Syrjanen, K. Auranen, M. Leinonen, P.H. Makela, et al.
Invasiveness of serotypes and clones of Streptococcus pneumoniae among children in Finland.
Infect Immun, 73 (2005), pp. 431-435
[15.]
M.M. Pettigrew, K.P. Fennie.
Genomic subtraction followed by dot blot screening of Streptococcus pneumoniae clinical and carriage isolates identifies genetic differences associated with strains that cause otitis media.
Infect Immun, 73 (2005), pp. 2805-2811
[16.]
S. Hammerschmidt, S. Wolff, A. Hocke, S. Rosseau, E. Muller, M. Rohde.
Illustration of pneumococcal polysaccharide capsule during adherence and invasion of epithelial cells.
Infect Immun, 73 (2005), pp. 4653-4667
[17.]
D.E. Briles, L. Novak, M. Hotomi, F.W. Van Ginkel, J. King.
Nasal colonization with Streptococcus pneumoniae includes subpopulations of surface and invasive pneumococci.
Infect Immun, 73 (2005), pp. 6945-6951
[18.]
M.J. Jedrzejas.
Pneumococcal virulence factors: structure and function.
Microbiol Mol Biol Rev, 65 (2001), pp. 187-207
[19.]
R. Austrian.
Pneumococcal otitis media and pneumococcal vaccines, a historical perspective.
Vaccine, 19 (2001), pp. 71-77
[20.]
D.E. Briles, S.K. Hollingshead, G.S. Nabors, J.C. Paton, A. Brooks-Walter.
The potential for using protein vaccines to protect against otitis media caused by Streptococcus pneumoniae.
Vaccine, 19 (2000), pp. 87-95
[21.]
D. Bogaert, P.W.M. Hermansa, P.V. Adrian, H.C. Rümke, R. De Groot.
Pneumococcal vaccines: an update on current strategies.
Vaccine, 22 (2004), pp. 2209-2220
[22.]
R. López, E. García.
Recent trends on the molecular biology of pneumococcal capsules, lytic enzymes, and bacteriophage.
FEMS Microbiol Rev, 28 (2004), pp. 553-580
[23.]
C.J. Lee, L.H. Lee, X.X. Gu.
Mucosal immunity induced by pneumococcal glycoconjugate.
Crit Rev Microbiol, 31 (2005), pp. 137-144
[24.]
S.L. Harris, M.K. Park, M.H. Nahm, B. Diamond.
Peptide mimic of phosphorylcholine, a dominant epitope found on Streptococcus pneumoniae.
Infect Immun, 68 (2000), pp. 5778-5784
[25.]
J.H. Kim, H. Seo, S.H. Han, J. Lin, M.K. Park, U.B. Sorensen, et al.
Monoacyl lipoteichoic acid from pneumococci stimulates human cells but not mouse cells.
Infect Immun, 73 (2005), pp. 834-840
[26.]
I.G. Boneca.
The role of peptidoglycan in pathogenesis.
Curr Opin Microbiol, 8 (2005), pp. 46-53
[27.]
L.A. Carneiro, L.H. Travassos, D.J. Philpott.
Innate immune recognition of microbes through Nod1 and Nod2: implications for disease.
Microbes Infect, 6 (2004), pp. 609-616
[28.]
G.S. Nabors, P.A. Braun, D.J. Herrmann, M.L. Heise, D.J. Pyle, S. Gravenstein, et al.
Immunization of healthy adults with a single recombinant pneumococcal surface protein A (PspA) variant stimulates broadly cross-reactive antibodies.
Vaccine, 18 (2000), pp. 1743-1754
[29.]
M.T. Coats, W.H. Benjamin, S.K. Hollingshead, D.E. Briles.
Antibodies to the pneumococcal surface protein A, PspA, can be produced in splenectomized and can protect splenectomized mice from infection with Streptococcus pneumoniae.
Vaccine, 23 (2005), pp. 4257-4262
[30.]
D.O. Gor, X. Ding, D.E. Briles, M.R. Jacobs, N.S. Greenspan.
Relationship between surface accessibility for PpmA, PsaA, and PspA and antibody-mediated immunity to systemic infection by Streptococcus pneumoniae.
Infect Immun, 73 (2005), pp. 1304-1312
[31.]
A.M. Berry, J.C. Paton.
Additive attenuation of virulence of Streptococcus pneumoniae by mutation of the genes encoding pneumolysin and other putative pneumococcal virulence proteins.
Infect Immun, 68 (2000), pp. 133-140
[32.]
A.D. Ogunniyi, M.C. Woodrow, J.T. Poolman, J.C. Paton.
Protection against Streptococcus pneumoniae elicited by immunization with pneumolysin and CbpA.
Infect Immun, 69 (2001), pp. 5997-6003
[33.]
E. Ling, G. Feldman, M. Portnoi, R. Dagan, K. Overweg, F. Mulholland, et al.
Glycolytic enzymes associated with the cell surface of Streptococcus pneumoniae are antigenic in humans and elicit protective immune responses in the mouse.
Clin Exp Immunol, 138 (2004), pp. 290-298
[34.]
S. Guiral, T.J. Mitchell, B. Martin, J.P. Claverys.
Competence-programmed predation of noncompetent cells in the human pathogen Streptococcus pneumoniae: genetic requirements.
Proc Natl Acad Sci, 102 (2005), pp. 8710-8715
[35.]
J.Y. Seo, S.Y. Seong, B.Y. Ahn, I.C. Kwon, H. Chung, S.Y. Jeong.
Cross-protective immunity of mice induced by oral immunization with pneumococcal surface adhesin A encapsulated in microspheres.
Infect Immun, 70 (2002), pp. 1143-1149
[36.]
M. Jomaa, J. Yuste, J.C. Paton, C. Jones, G. Dougan, J.S. Brown.
Antibodies to the iron uptake ABC transporter lipoproteins PiaA and PiuA promote opsonophagocytosis of Streptococcus pneumoniae.
Infect Immun, 73 (2005), pp. 6852-6859
[37.]
K. Overweg, A. Kerr, M. Sluijter, M.H. Jackson, T.J. Mitchell, A.P. De Jong, et al.
The putative proteinase maturation protein A of Streptococcus pneumoniae is a conserved surface protein with potential to elicit protective immune responses.
Infect Immun, 68 (2000), pp. 4180-4188
[38.]
J.P. Long, H.H. Tong, T.F. DeMaria.
Immunization with native or recombinant Streptococcus pneumoniae neuraminidase affords protection in the chinchilla otitis media model.
Infect Immun, 72 (2004), pp. 4309-4313
[39.]
M.M. García-Suárez, M.D. Cima-Cabal, N. Flórez, P. García, A. Astudillo, R. Cernuda-Cernuda, et al.
Protection against pneumococcal pneumonia in mice by monoclonal antibodies to pneumolysin.
Infect Immun, 72 (2004), pp. 4534-4540
[40.]
R. Cockeran, R. Anderson, C. Feldman.
Pneumolysin as a vaccine and drug target in the prevention and treatment of invasive pneumococcal disease.
Arch Immunol Ther Exp, 53 (2005), pp. 189-198
[41.]
A. Kadioglu, P.W. Andrew.
The innate immune response to pneumococcal lung infection: the untold story.
Trends Immunol, 25 (2004), pp. 143-149
[42.]
S. Akira, S. Uematsu, O. Takeuchi.
Pathogen recognition and innate immunity.
Cell, 4 (2006), pp. 783-801
[43.]
S. Rapola, V. Jantti, M. Eerola, P.H. Makela, H. Kayhty, T. Kilpi.
Anti-PsaA and the risk of pneumococcal AOM and carriage.
Vaccine, 21 (2003), pp. 3608-3613
[44.]
T.L. McCool, T.R. Cate, E.I. Tuomanen, P. Adrian, T.J. Mitchell, J.N. Weiser.
Serum immunoglobulin G response to candidate vaccine antigens during experimental human pneumococcal colonization.
Infect Immun, 71 (2003), pp. 5724-5732
[45.]
E. Holmlund, B. Quiambao, J. Ollgren, H. Nohynek, H. Kayhty.
Development of natural antibodies to pneumococcal surface protein A, pneumococcal surface adhesin A and pneumolysin in Filipino pregnant women and their infants in relation to pneumococcal carriage.
[46.]
R. Palaniappan, S. Singh, U.P. Singh, S.K.K. Sakthivel, E.W. Ades, D.E. Briles, et al.
Differential PsaA-, PspA-, PspC-, and PdB-specific immune responses in a mouse model of pneumococcal carriage.
Infect Immun, 73 (2005), pp. 1006-1013
[47.]
S.E. Johnson, J.K. Dykes, D.L. Jue, J.S. Sampson, G.M. Carlone, E.W. Ades.
Inhibition of pneumococcal carriage in mice by subcutaneous immunization with peptides from the common surface protein pneumococcal surface adhesina.
J Infect Dis, 185 (2002), pp. 489-496
[48.]
M. Lipsitch, C.G. Whitney, E. Zell, T. Kaijalainen, R. Dagan, R. Malley.
Are anticapsular antibodies the primary mechanism of protection against invasive pneumococcal disease?.
[49.]
R. Malley, M. Lipsitch, A. Stack, R. Saladino, G. Fleisher, S. Pelton, et al.
Intranasal immunization with killed unencapsulated whole cells prevents colonization and invasive disease by capsulated pneumococci.
Infect Immun, 69 (2001), pp. 4870-4873
[50.]
R. Malley, K. Trzcinski, A. Srivastava, C.M. Thompson, P.W. Anderson, M. Lipsitch.
CD4+ T cells mediate antibody-independent acquired immunity to pneumococcal colonization.
Proc Natl Acad Sci, 102 (2005), pp. 4848-4853
[51.]
M.D. Cima-Cabal, F. Vázquez, J.R. De los Toyos, F.J. Méndez.
Rapid and reliable identification of S. pneumoniae isolates by pneumolysin mediated agglutination?.
J Clin Microbiol, 37 (1999), pp. 1964-1966
[52.]
H.C. Slotved, M. Kaltoft, I.C. Skovsted, M.B. Kerrn, F. Espersen.
Simple, rapid latex agglutination test for serotyping of pneumococci (Pneumotest-Latex).
J Clin Microbiol, 42 (2004), pp. 2518-2522
[53.]
C.A. Petti, C.W. Woods, L.B. Reller.
Streptococcus pneumoniae antigen test using positive blood culture bottles as an alternative method to diagnose pneumococcal bacteremia.
J Clin Microbiol, 43 (2005), pp. 2510-2512
[54.]
M.D. Cima-Cabal, F.J. Méndez, F. Vázquez, C. Aranaz, J. Rodríguez-Álvarez, J.M. García-García, et al.
Immunodetection of pneumolysin in human urine by ELISA.
J Microbiol Methods, 54 (2003), pp. 47-55
[55.]
J.P. Leeming, K. Cartwright, R. Morris, S.A. Martin, M.D. Smith, On behalf of the South-West Pneumococcus Study Group.
Diagnosis of invasive pneumococcal infection by serotype-specific urinary antigen detection.
J Clin Microbiol, 43 (2005), pp. 4972-4976
[56.]
M. Díaz-González, M.B. González-García, A. Costa-García.
Detection of pneumolysin in human urine using an immunosensor on screen-printed carbon electrodes.
Sensors and Actuators B, 113 (2006), pp. 1005-1011
[57.]
L.F. Menezes-Martins, J.J. Menezes-Martins, V.S. Michaelsen, B.B. Aguiar, T. Ermel, D.C. Machado.
Diagnosis of parapneumonic pleural effusion by polymerase chain reaction in children.
J Pediatr Surg, 40 (2005), pp. 1106-1110
[58.]
M. Falguera, A. López, A. Nogues, J.M. Porcel, M. Rubio-Caballero.
Evaluation of the polymerase chain reaction method for detection of Streptococcus pneumoniae DNA in pleural fluid samples.
Chest, 122 (2002), pp. 2212-2216
[59.]
S. Yang, S. Lin, A. Khalil, C. Gaydos, E. Nuemberger, G. Juan, et al.
Quantitative PCR assay using sputum samples for rapid diagnosis of pneumococcal pneumonia in adult emergency department patients.
J Clin Microbiol, 43 (2005), pp. 3221-3226
[60.]
A. Saukkoriipi, K. Leskela, E. Herva, M. Leinonen.
Streptococcus pneumoniae in nasopharyngeal secretions of healthy children: comparison of real-time PCR and culture from STGG-transport medium.
Mol Cell Probes, 3 (2004), pp. 147-153
[61.]
M.D. Cima-Cabal, F.J. Méndez, F. Vázquez, M.M. García-Suárez, J.R. De los Toyos.
A specific and ultrasensitive chemiluminescent sandwich ELISA tests for the detection and quantitation of pneumolysin.
J Immunoassay Immunochem, 22 (2001), pp. 99-112
[62.]
M. Seki, Y. Yamashita, H. Torigoe, H. Tsuda, S. Sato, M. Maeno.
Loop-mediated isothermal amplification method targeting the lytA gene for detection of Streptococcus pneumoniae.
J Clin Microbiol, 4 (2005), pp. 1581-1586
[63.]
S.L. Batt, B.M. Charalambous, T.D. McHugh, S. Martin, S.H. Gillespie.
Novel PCR-restriction fragment length polymorphism method for determining serotypes or serogroups of Streptococcus pneumoniae isolates.
J Clin Microbiol, 43 (2005), pp. 2656-2661
[64.]
D.M. O’Halloran, M.T. Cafferkey.
Multiplex PCR for identification of seven Streptococcus pneumoniae serotypes targeted by a 7-valent conjugate vaccine.
J Clin Microbiol, 43 (2005), pp. 3487-3490
[65.]
F. Kong, W. Wang, J. Tao, L. Wang, Q. Wang, A. Sabananthan, et al.
A molecular-capsular-type prediction system for 90 Streptococcus pneumoniae serotypes using partial cpsA-cpsB sequencing and wzy- or wzx-specific PCR.
J Med Microbiol, 54 (2005), pp. 351-356
[66.]
W.P. Hanage, T. Kaijalainen, E. Herva, A. Saukkoriipi, R. Syrjanen, B.G. Spratt.
Using multilocus sequence data to define the pneumococcus.
J Bacteriol, 187 (2005), pp. 6223-6230
Copyright © 2006. Elsevier España S.L.. All rights reserved
Download PDF
Article options
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos