metricas
covid
Buscar en
Enfermedades Infecciosas y Microbiología Clínica
Toda la web
Inicio Enfermedades Infecciosas y Microbiología Clínica Virología molecular del virus de la hepatitis B
Journal Information
Vol. 26. Issue S7.
La hepatitis B en 2008
Pages 2-10 (May 2008)
Share
Share
Download PDF
More article options
Vol. 26. Issue S7.
La hepatitis B en 2008
Pages 2-10 (May 2008)
Full text access
Virología molecular del virus de la hepatitis B
Molecular virology of the hepatitis B virus
Visits
30109
Francisco Rodríguez-Frias, Rosendo Jardi
Corresponding author
rjardi@vhebron.net

Correspondencia: Servicio de Bioquímica. Hospital Vall d’Hebron. Passeig Vall d’Hebron, s/n. 08035 Barcelona. España.
Servicio de Bioquímica. Unidad de Hepatología. Hospital Vall d’Hebron. Barcelona. España
This item has received
Article information

El virus de la hepatitis B (VHB) pertenece a la familia de los hepadnavirus. El genoma del virus, formado por una pequeña molécula de ADN de 3.200 pares de bases, consta de 4 regiones codificantes de proteínas (ORF) fuertemente solapadas: ORF preS/S, correspondiente a las proteínas de la envuelta que constituyen el antígeno de superficie del VHB (HBsAg); ORF preC/C, que codifica el componente de la cápside viral (antígeno core o HBcAg) y una proteína no estructural que tras su modificación postraduccional es secretada y constituye el denominado antígeno «e» (HBeAg); ORF P, que codifica la polimerasa viral (poliproteína con actividad ADN polimerasa, transcriptasa reversa y ARN-asa) y la ORF X, que codifica una proteína que actúa como regulador multifuncional, tanto para el ciclo viral como para el celular. El VHB presenta una tasa de mutación de 1,4-3,2 × 105 sustituciones/nucleótido/año. Como consecuencia de esta variabilidad, el virus circula como una mezcla compleja de variantes genéticas, constituyendo una quasiespecie, que evoluciona a lo largo de la infección dependiendo de la presión evolutiva de factores como la respuesta inmunológica y los tratamientos antivirales. Sobre la base de esta variabilidad, el VHB se ha clasificado en 8 genotipos (A-H) definidos por una diferencia > 8% en las secuencias del genoma viral completo. Esta variabilidad es, además, la causante de la resistencia del VHB a los tratamientos antivirales con análogos de nucleótidos y nucleósidos. El diagnóstico de la infección por VHB incluye la determinación de marcadores virológicos: antígenos víricos (HBsAg, HBeAg), anticuerpos específicos (anti-HBc, anti-HBe, anti-HBs) y el estudio del ADN-VHB para su detección, cuantificación y determinación de genotipos y variantes víricas.

Palabras clave:
Virus de la hepatitis B
ADN-VHB
Genotipos VHB
Resistencia antivirales
Variabilidad VHB
Replicación viral

The hepatitis B virus (HBV) belongs to the hepadnavirus family. The genome of the virus, formed by a small DNA molecule with 3,200 base pairs, has 4 strongly overlapping protein coding regions: ORF preS/S, corresponding to the envelope proteins that constitute the HBV surface antigen (HBsAg); ORF preC/C, which encodes the viral capsid component (core antigen or HBcAg) and a non-structural protein that, after postranslation modification, is secreted and constitutes the «e» antigen (HBeAg); ORF P, which encodes the viral polymerase (polyprotein with DNA polymerase activity, reverse transcriptase and RNAase), and ORF X, which encodes a protein that acts as a multifunctional regulator for both the viral and cell cycles. HBV has a mutation rate of 1.4-3.2 × 105 substitutions/nucleotide/year. As a result of this variability, the virus circulates as a complex mixture of genetic variants, constituting a semi-species, that evolves throughout the infection depending on the evolutionary pressure of factors such as the immune response and antiviral treatments. Based on this variability, HBV has been classified into 8 genotypes (A-H) defined by a difference of more than 8% in the sequences of the complete viral genome. This variability is also responsible for HBV resistance to antiviral treatments with nucleotide and nucleoside analogs. Diagnosis of HBV infection includes determination of virological markers: viral antigens (HBsAg, HBeAg), specific antibodies (anti-HBc, anti-HBe, anti-HBs) and study of HBV-DNA for its detection and quantification and determination of genotypes and viral variants.

Key words:
Hepatitis B virus
HBV-DNA
HBV genotypes
Antiviral resistance
HBV variability
Viral replication
Full text is only aviable in PDF
Bibliografía
[1.]
D.S. Dane, C.H. Cameron, M. Briggs.
Virus-like particles in serum of patients with Australia-antigen-associated hepatitis.
Lancet, 1 (1970), pp. 695-698
[2.]
W.S. Mason, G. Seal, J. Summers.
Virus of Peking ducks with structural and biological relatedness to human hepatitis B virus.
J Virol, 36 (1980), pp. 829-836
[3.]
W.S. Robinson, R.L. Greenman.
DNA polymerase in the core of the human hepatitis B virus candidate.
J Virol, 13 (1974), pp. 1231-1236
[4.]
J. Hu, D.O. Toft, S.T. Seeger.
Hepadnavirus assembly and reverse transcription require a multi-component chaperone complex, which is incorporated into nucleocapsids.
EMBO J, 16 (1997), pp. 59-68
[5.]
C.H. Yang, T.H. Kuo, L.P. Ting.
Human hepatitis viral e antigen interacts with cellular interleukin 1 receptor accessory protein and triggers interleukin 1 response.
J Biol Chem, 281 (2006), pp. 34525-34536
[6.]
J. Summers, J.M. Smolec, R. Snyder.
A virus similar to human hepatitis B virus associated with hepatitis and hepatoma in woodchucks.
Proc Natl Acad Sci USA, 75 (1978), pp. 4533-4537
[7.]
P.L. Marion, L.S. Oshiro, D.C. Regnery, G.H. Scullard, W.S. Robinson.
A virus in Beechey ground squirrels that is related to hepatitis B virus of humans.
Proc Natl Acad Sci USA, 77 (1980), pp. 2941-2945
[8.]
F. Sattler, W.S. Robinson.
Hepatitis B viral DNA molecules have cohesive ends.
J Virol, 32 (1979), pp. 226-233
[9.]
H. Okamoto, F. Tsuda, H. Sakugawa, R.I. Sastrosoewignjo, M. Imai, Y. Miyakawa, et al.
Typing hepatitis B virus by homology in nucleotide sequence: comparison of surface antigen subtypes.
J Gen Virol, 69 (1988), pp. 2575-2583
[10.]
G. Moraleda, J. Saputelli, C.E. Aldrich, D. Averett, L. Condreay, W.S. Mason.
Lack of effect of antiviral therapy in non-dividing hepatocyte cultures on the closed circular DNA of woodchuck hepatitis virus.
J Virol, 71 (1997), pp. 9392-9399
[11.]
J. Beck, M. Nassal.
Hepatitis B virus replication.
World J Gastroenterol, 13 (2007), pp. 48-64
[12.]
M. Nassal, H. Schaller.
Hepatitis B virus replication: an update.
J Viral Hepatol, 3 (1996), pp. 217-226
[13.]
C.T. Bock, S. Schwinn, S. Locarnini, J. Fyfe, M.P. Manns, C. Trautwein, et al.
Structural organization of the hepatitis B virus minichromosome.
J Mol Biol, 307 (2001), pp. 183-186
[14.]
L. Belloni, T. Pollicino, F. De Nicola, G. Raffa, G. Squadrito, M. Fanciulli, et al.
Epigenetic regulation of HBV ccc-DNA function.
J Hepatol, 46 (2007), pp. s3
[15.]
T. Pollicino, L. Belloni, G. Raffa, N. Pediconi, G. Squadrito, G. Raimondo, et al.
Hepatitis B virus replication is regulated by the acetylation status of hepatitis B virus cccDNA-bound H3 and H4 histones.
Gastroenterol, 130 (2006), pp. 823-837
[16.]
M. Junker-Niepmann, R. Bartenschlager, H. Schaller.
A short cis-acting sequence is required for hepatitis B virus pregenome encapsulation and sufficient for packaging of foreign RNA.
EMBO J, 9 (1990), pp. 3389-3396
[17.]
J.R. Pollack, D. Ganem.
An RNA stem-loop structure directs hepatitis B virus genomic RNA encapsulation.
J Virol, 67 (1993), pp. 3254-3263
[18.]
A.H. Kidd, Kidd-Ljunggren.
A revised secondary structure model for the 3’-end of hepatitis B virus pregenomic RNA.
Nucleic Acids Res, 24 (1996), pp. 3295-3301
[19.]
R.H. Miller, S. Kaneko, C.T. Chung, R. Girones, R.H. Purcell.
Compact organization of the hepatitis B virus genome.
Hepatology, 9 (1989), pp. 322-327
[20.]
R.H. Miller, W.S. Robinson.
Common evolutionary origin of hepatitis B virus and retroviruses.
Proc Natl Acad Sci USA, 83 (1986), pp. 2531-2535
[21.]
G. Radziwill, W. Tucker, H. Schaller.
Mutational analysis of the hepatitis B virus P gene product: domain structure and RNase H activity.
J Virol, 64 (1990), pp. 613-620
[22.]
R. Bartenschlager, H. Schaller.
The amino-terminal domain of the hepadnaviral P-gene encodes the terminal protein (genome-linked protein) believed to prime reverse transcription.
EMBO J, 7 (1988), pp. 4185-4192
[23.]
V. Bosch, R. Bartenschlager, G. Radziwill, H. Schaller.
The duck hepatitis B virus P-gene codes for protein strongly associated with the 5’-end of the viral DNA minus strand.
Virology, 166 (1988), pp. 475-485
[24.]
K. Das, X. Xiong, H. Yang, C.E. Westland, C. Gibbs, S.G. Sarafianos, et al.
Molecular modeling and biochemical characterization reveal the mechanism of hepatitis B virus polymerase resistance to lamivudine (3TC) and Emtricitabine (FTC).
[25.]
A. Bartholomeusz, S. Schaefer.
Hepatitis B virus genotypes: comparison of genotyping methods.
Rev Med Virol, 14 (2004), pp. 3-16
[26.]
D.R. Langley, A.W. Walsh, C.J. Baldick, B.J. Eggers, R.E. Rose, S.M. Levine, et al.
Inhibition of hepatitis B virus polymerase by entecavir.
J Virol, 81 (2007), pp. 3992-4001
[27.]
H. Tang, N. Oishi, S. Kaneko, S. Murakami.
Molecular functions and biological roles of hepatitis B virus x protein.
Cancer Sci, 97 (2006), pp. 977-983
[28.]
M.J. Bouchard, L.H. Wang, R.J. Schneider.
Calcium signalling by HBx protein in hepatitis B virus DNA replication.
Science, 294 (2001), pp. 2376-2378
[29.]
C.Z. Song, Z.L. Bai, C.C. Song, Q.W. Wang.
Aggregate formation of hepatitis B virus X protein affects cell cycle and apoptosis.
World J Gastroenterol, 9 (2003), pp. 1521-1524
[30.]
D. Glebe, S. Urban.
Viral and cellular determinants involved in hepadnaviral entry.
Worl J Gastroenterol, 13 (2007), pp. 22-38
[31.]
L. Stoeckl, A. Funk, A. Kopitzki, B. Brandenburg, S. Oess, H. Will, et al.
Identification of a structural motif crucial for infectivity of hepatitis B viruses.
Proc Natl Acad Sci USA, 103 (2006), pp. 6730-6734
[32.]
C.T. Yeh, S.W. Wong, Y.K. Fung, J.H. Ou.
Cell cycle regulation of nuclear localization of hepatitis B virus core protein.
Proc Natl Acad Sci USA, 90 (1993), pp. 6459-6463
[33.]
N. Aiba, M.J. McGarvey, J. Waters, S.J. Hadziyannis, H.C. Thomas, P. Karayiannis.
The precore sequence of hepatitis B virus is required for nuclear localization of the core protein.
Hepatology, 26 (1997), pp. 1311-1317
[34.]
Y. Zhu, T. Yamamoto, J. Cullen, J. Saputelli, C.E. Aldrich, D.S. Miller, et al.
Kinetics of hepadnavirus loss from the liver during inhibition of viral DNA synthesis.
[35.]
M. Nassal.
Hepatitis B virus replication: novel roles for virus-host interactions.
Intervirology, 42 (1999), pp. 100-116
[36.]
D.A. Mangus, M.C. Evans, A. Jacobson.
Poly(A)-binding proteins: multifunctional scaffolds for the post-transcriptional control of gene expression.
Genome Biol, 4 (2003), pp. 223
[37.]
E. Orito, M. Mizokami, Y. Ina, E.N. Moriyama, N. Kameshima, M. Yama-moto, et al.
Host-independent evolution and a genetic classification of the hepadnavirus family based on nucleotide sequences.
Proc Natl Acad Sci USA, 86 (1989), pp. 7059-7062
[38.]
M.A. Fares, E.C. Holmes.
Revised evolutionary history of hepatitis B virus (HBV).
J Mol Evol, 54 (2002), pp. 807-814
[39.]
C. Osiowy, E. Giles, Y. Tanaka, M. Mizokami, G.Y. Minuk.
Molecular evolution of hepatitis B virus over 25 years.
J Virol, 80 (2006), pp. 10307-10314
[40.]
P. Simmonds, S. Midgley.
Recombination in the genesis and evolution of hepatitis B virus genotypes.
[41.]
L. Stuyver, S. De Gendt, C. Van Geyt, F. Zoulim, M. Freíd, R.F. Schinazi, et al.
A new genotype of hepatitis B virus: complete genome and phylogenetic relatedness.
J Gen Virol, 81 (2000), pp. 67-74
[42.]
H. Norder, A.M. Couroce, P. Coursaget, J.M. Echevarria, S.D. Lee, I.K. Mushahwar, et al.
Genetic diversity of hepatitis B virus strains derived worldwide: genotypes, subgenotypes and HBsAg subtypes.
Intervirol, 47 (2004), pp. 289-309
[43.]
P. Arauz-Ruiz, H. Norder, B.H. Robertson, L.O. Magnius.
Genotype H: a new Amerindian genotype of hepatitis B virus revealed in Central America.
J Gen Virol, 83 (2002), pp. 2059-2073
[44.]
A. Kay, F. Zoulim.
Hepatitis B virus genetic variability and evolution.
Virus Res, 127 (2007), pp. 164-176
[45.]
F. Rodriguez-Frias, R. Jardi, M. Buti, M. Schaper, E. Hermosilla, A. Valdes, et al.
Hepatitis B virus genotypes and G1896A precore mutation in 486 Spanish patients with acute and chronic HBV infection.
J Viral Hepat, 13 (2006), pp. 343-350
[46.]
J.M. Sanchez-Tapias, J. Costa, A. Mas, M. Bruguera, J. Rodes.
Influence of hepatitis B virus genotype on the long-ter outcome of chronic B in western patients.
Gastroenterol, 123 (2002), pp. 1848-1856
[47.]
H.L.A. Janssen, M. Van Zonneveld, H. Senturk, S. Zeuzem, U.S. Akarca, Y. Cakaloglu, For the HBV 99 -01 Study Group, et al.
Pegylated interferon alfa 2b alone or in combination with lamivudine for HBeAg-positive chronic hepatitis B: a randomised trial.
[48.]
M.F. Yuen, D.K. Wong, B.J. Zheng, C.C. Chan, J.C. Yuen, B.C. Wong, et al.
Difference in T helper responses during hepatitis flares in hepatitis B e antigen (HBeAg)-positive patients with genotypes B and C: implication for early HBeAg seroconversion.
J Viral Hepat, 14 (2007), pp. 269-275
[49.]
H. Sumi, O. Yokosuka, N. Seki.
Influence of hepatitis B virus genotypes on the progression of chronic type B liver disease.
Hepatology, 37 (2003), pp. 19-26
[50.]
C.J. Chu, M. Hussain, A.S. Lok.
Hepatitis B virus genotype B is associated with earlier HBeAg seroconversion compared with hepatitis B virus genotype C.
Gastroenterol, 122 (2002), pp. 1756-1762
[51.]
C.T. Wai, R.J. Fontana.
Clinical significance of hepatitis B virus genotypes, variants and mutants.
Clin Liver Dis, 8 (2004), pp. 321-352
[52.]
B. Zollner, J. Peteersen, E. Puchhammer-Stockl, J. Kletzmayr, M. Sternecki, L. Fischer, et al.
Viral features of lamivudine rresistant hepatitis B genotypes A and D.
Hepatology, 39 (2004), pp. 42-50
[53.]
R.N. Chien, C.T. Yeh, D.L. Tsai, C.M. Chu, Y.F. Liaw.
Determinants for sustained HBeAg response to lamivudine therapy.
Hepatology, 38 (2003), pp. 1267-1273
[54.]
M. Buti, I. Elefsiniotis, R. Jardi, V. Vargas, F. Rodriguez Frias, M. Schapper, et al.
Viral genotype ans baseline load predict the response to adefovir treatment in lamivudine resistant chronic hepatitis B patients.
J Hepatol, 47 (2007), pp. 366-372
[55.]
W.F. Carman, M.R. Jacyna, S. Hadziyannis, P. Karayiannis, M. McGarvey, A. Makris, et al.
Mutation preventing formation of e antigen in patients with chronic HBV infection.
Lancet, 2 (1989), pp. 588-591
[56.]
R. Jardi, F. Rodríguez, M. Buti, X. Costa, X. Valdes, H. Allende, et al.
Mutations in the basic core promoter region of hepatitis B virus. Relationship with precore variants and HBV genotypes in a Spanish population of HBV carriers.
J Hepatol, 40 (2004), pp. 507-514
[57.]
F. Rodriguez-Frias, M. Buti, R. Jardi, M. Cotrina, L. Viladomiu, R. Esteban, et al.
Hepatitis B virus infection: precore mutants and its relation to viral genotypes and core mutations.
Hepatology, 22 (1995), pp. 1641-1647
[58.]
H. Okamoto, F. Tsuda, Y. Akahane, Y. Sugai, M. Yoshiba, K. Moriyama, et al.
Hepatititis B virus with mutations in the core promoter for an e antigen-negative phenotype in carriers with antibody to e antigen.
J Virol, 68 (1994), pp. 8102-8110
[59.]
G. Dal Molin, A. Poli, L.S. Croce, P. D’Agaro, C. Biagi, M. Comar, et al.
Hepatitis B virus genotypes, core promoter variants, and precore stop codon variants in patients infected chronically in North-Eastern Italy.
J Med Virol, 78 (2006), pp. 734-740
[60.]
D. Durantel, M.N. Brunelle, E. Gros, S. Carrouee-Durantel, C. Pichoud, S. Villet, et al.
Resistance of human hepatitis B virus to reverse transcriptase inhibitors: from genoypic to phenotypic testing.
J Clin Virol, 34 (2005), pp. S34-S43
[61.]
H.Y. Hsu, M.H. Chang, Y.H. Ni, H.L. Chen.
Survey of hepatitis B surface variants infection in children after a nationwide vaccination programme in taiwan.
Gut, 53 (2004), pp. 1499-1503
[62.]
A. Hatzakis, E. Magiorkinis, C. Haida.
HBV virological assessment?.
J Hepatol, 44 (2006), pp. S71-S76
[63.]
B.J. McMahon.
The natural history of chronic hepatitis B virus infection.
Semin Liv Dis, 24 (2004), pp. 17-21
[64.]
M. Bruguera, F. Bañares, J. Cordoba, R. Jardi, J. Gonzalez, J. Ladero, et al.
Documento de consenso de la AEEH sobre el tratamiento de las infecciones por los virus de las hepatitis B y C.
Gastroenterol Hepatol, 29 (2006), pp. 216-230
[65.]
S. Hochberger, D. Althof, R.G. De Schrott, N. Nachbaur, H. Rock, H. Leying.
Fully automated quantitation of hepatitis B virus (HBV) DNA in human plasma by COBAS® Ampliprep (COBAS® Taq Man® System).
J Clin Virol, 35 (2006), pp. 373-380
[66.]
J.P. Allain.
Occult hepatitis B infection: implication in transfusion.
Vox Sanguinis, 86 (2004), pp. 83-91
[67.]
A.S.F. Lok, B.J. McMahon.
Chronic Hepatitis B: Update of recomendations.
Hepatology, (2004), pp. 857-861
[68.]
EASL International Consensus Conference on Hepatitis B. J Hepatol. 2003;39:S3-S25.
[69.]
Jardi R, Rodriguez-Frias F, Schaeper M, Ruiz G, Elefsiniotis I, Esteban R, et al. HBV polymerase variants associated with entecavir drug resistance in treatment naïve patients. J Viral Hepatitis. 2007. En prensa.
[70.]
F. Zoulim.
In vitro models for studying hepatitis B virus drug resistance.
Sem Liv Dis, 26 (2006), pp. 171-180
Copyright © 2008. Elsevier España S.L.. Todos los derechos reservados
Download PDF
Article options
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos