metricas
covid
Buscar en
Enfermedades Infecciosas y Microbiología Clínica (English Edition)
Toda la web
Inicio Enfermedades Infecciosas y Microbiología Clínica (English Edition) Susceptibility evolution to antibiotics of Enterobacter cloacae, Morganella morg...
Journal Information
Vol. 38. Issue 4.
Pages 166-169 (April 2020)
Visits
4053
Vol. 38. Issue 4.
Pages 166-169 (April 2020)
Brief report
Full text access
Susceptibility evolution to antibiotics of Enterobacter cloacae, Morganella morganii, Klebsiella aerogenes and Citrobacter freundii involved in urinary tract infections: An 11-year epidemiological surveillance study
Evolución de la sensibilidad a los antibióticos de Enterobacter cloacae, Morganella morganii, Klebsiella aerogenes y Citrobacter freundii causantes de infecciones del tracto urinario: un estudio de vigilancia epidemiológica de 11 años
Visits
4053
Gemma Jiménez-Guerraa, Jaime Borrego-Jiméneza, Blanca Gutiérrez-Sotob, Manuela Expósito-Ruizc, José María Navarro-María, José Gutiérrez-Fernándeza,d,
Corresponding author
josegf@go.ugr.es

Corresponding author.
a Departamento de Microbiología, Hospital Universitario Virgen de las Nieves, IBS-Granada, Granada, Spain
b Unidad de Medicina de Familia, Centro de Salud San Fernando, Badajoz, Spain
c Unidad de Metodología de la Investigación y Bioestadística, Hospital Universitario Virgen de las Nieves, IBS-Granada, Granada, Spain
d Departamento de Microbiología, Facultad de Medicina, Universidad de Granada, IBS-Granada, Granada, Spain
This item has received
Article information
Abstract
Full Text
Bibliography
Download PDF
Statistics
Tables (2)
Table 1. Annualised distribution of urinary clinical isolates of the species E. cloacae, M. morganii, K. aerogenes, C. freundii, S. marcescens and P. stuartii.
Table 2. Percentages of antibiotic susceptibility in isolates of microorganisms obtained from urine cultures.
Show moreShow less
Abstract
Introduction

The objective of this study was to analyse the susceptibility to antibiotic of Citrobacter freundii, Klebsiella aerogenes, Enterobacter cloacae, Serratia marcescens, Providencia stuartii and Morganella morganii (CESPM group), detected in urine cultures.

Methods

Between 2006 and 2016, we analysed CESPM group Enterobacteria isolated from urine cultures from both primary health-care centres and Hospital Virgen de las Nieves (Granada). We studied the susceptibility to aminoglycosides, fosfomycin, nitrofurantoin, quinolones, piperacillin/tazobactam, cefepime, imipenem and trimethoprim/sulfamethoxazole following CLSI interpretation criteria.

Results

A total of 736 isolates were studied: 30.57% E. cloacae, 23.50% M. morganii, 20.38% K. aerogenes, 10.32% C. freundii, 8.83% S. marcescens and 6.38% P. stuartii. A significant decrease in the antibiotic susceptibility was observed. Gentamicin, ciprofloxacin, imipenem and cefepime showed susceptibility over 80%.

Conclusions

E. cloacae, M. morganii and K. aerogenes were the most common isolates. Cefepime and imipenem are still a good empiric therapeutic alternative given its activity in vitro.

Keywords:
Urinary tract infections
Enterobacteriaceae
AmpC
Resumen
Introducción

El objetivo fue la detección en urocultivos de Citrobacter freundii, Klebsiella aerogenes, Enterobacter cloacae, Serratia marcescens, Providencia stuartii y Morganella morganii (grupo CESPM) para el estudio de su perfil de sensibilidad a los antibióticos.

Métodos

Entre 2006 y 2016 se analizaron todos los aislados de enterobacterias del grupo CESPM de urocultivos de centros de atención primaria o del complejo hospitalario Virgen de las Nieves (Granada). Se estudió la sensibilidad a aminoglucósidos, fosfomicina, nitrofurantoína, quinolonas, piperacilina/tazobactam, cefepime, imipenem y trimetoprim/sulfametoxazol, según normas del CLSI.

Resultados

Se estudiaron 736 aislamientos (30,57% E. cloacae; 23,50% M. morganii; 20,38% K. aerogenes; 10,32% C. freundii; 8,83% S. marcescens y 6,38% P. stuartii). Se observó una disminución significativa de la sensibilidad. Para gentamicina, ciprofloxacino, imipenem y cefepime presentaron sensibilidad superior al 80%.

Conclusión

E. cloacae, M. morganii y K. aerogenes fueron las especies más frecuentemente aisladas. Cefepime e imipenem siguen siendo una buena alternativa terapéutica empírica por su actividad in vitro.

Palabras clave:
Infección del tracto urinario
Enterobacteriaceae
AmpC
Full Text
Introduction

Antibiotic resistance rates have increased globally in recent years, especially in gram-negative bacilli. The CESPM group (Citrobacter freundii, Klebsiella aerogenes, Enterobacter cloacae, Serratia marcescens, Providencia stuartii and Morganella morganii) refers to enterobacteria that cause 10% of nosocomial and community-acquired urinary tract infections (UTIs). In addition, they have a high resistance profile due to naturally producing inducible chromosomal AmpC beta lactamases.1–3 Urine cultures from our health area in the last year have demonstrated a prevalence of enterobacteria in adults of 15.2% in the community and 12.8% in hospitalized patients and, in children, 8.3% in the community and 11.1% in hospitalized patients. The objective of this work was the detection of these enterobacteria in our environment to study their susceptibility profile over a period of 11 years, which may help establish a more adequate empirical treatment in risk populations.

Methods

A descriptive analysis of the susceptibility profile of isolated CESPM enterobacteria in urine cultures was performed in the Microbiology Laboratory of the Virgen de las Nieves University Hospital in Granada between 2006 and 2016. Urine was obtained from midstream samples or using catheters (permanent catheter or temporary catheterization) of patients in primary care centres and hospitalized patients. Samples were received in sterile containers or in boric acid tubes (Vacutainer, Becton Dickinson, Franklin Lakes, USA). They were processed within 24h after receipt or stored at 5–8°C for 24h if not processed immediately. They were seeded semiquantitatively with 1μl calibrated loops (COPA, Brescia, Italy) in CHROMagar Orientation chromogenic medium (Becton Dickinson, Franklin Lakes, USA) at 37°C for 18–24h and, in patients with kidney disease, also in Columbia blood agar (Becton Dickinson, Franklin Lakes, USA) in a CO2 atmosphere. Those with one or two uropathogen counts above 100,000CFU/ml (10,000 in urine by probing) or one uropathogen between 10,000 and 100,000CFU/ml (1000–10,000 in urine by probing) were considered positive. The MicroScan Walkaway automated system (Beckman Coulter, Brea, USA), interpreted according to CLSI document M100-S26, was used to identify the microorganisms and for the sensitivity study. In all cases where there was resistance to cefoxitin, the production of AmpC was established through the demonstration of synergy with cloxacillin3 and the production of extended spectrum beta lactamase was excluded by testing synergy with clavulanic acid and the production of carbapenemase with the Rapidec® Carba NP colorimetric test (BioMerieux, France) or, failing that, the Hodge test when necessary.

Duplications of results in urine cultures with an interval of less than 21 days were excluded. For the statistical analysis, IBM SPSS Statistics 19 version 1.7 was used (IMB, Chicago, USA). The categorical variables were expressed as distribution of absolute and relative frequencies, while to analyse the evolution in the rates of susceptibility to the different antibiotics over the study period Pearson's χ2 test for trends was used. A value of p<0.05 was considered significant.

The protocol was conducted in accordance with the Health Research and Ethics Committee of the Hospitals and Health Care Districts; it was a non-interventionist study that only included routine procedures. The data were analysed based on an anonymous database, so no additional permissions were required.

Results

Some 736 isolates (Table 1) of CESPM microorganisms were studied: 225 (30.57%) E. cloacae; 173 (23.50%) M. morganii; 150 (20.38%) K. aerogenes; 76 (10.32%) C. freundii; 65 (8.83%) S. marcescens and 47 (6.38%) P. stuartii. The mean age was 57.8 years (range 0–95 years), with 416 (56.52%) male and 320 (43.48%) female subjects. The departments of origin were: Emergency 222 (30.16%) isolates; Urology 105 (14.26%); Nephrology 94 (12.77%); Paediatrics 66 (8.96%); Digestive Medicine 52 (7.06%); Internal Medicine 42 (5.70%) and 155 (21.05%) belonging to other departments.

Table 1.

Annualised distribution of urinary clinical isolates of the species E. cloacae, M. morganii, K. aerogenes, C. freundii, S. marcescens and P. stuartii.

Species  Annualised distribution of clinical isolates
  2006  2007  2008  2009  2010  2011  2012  2013  2014  2015  2016 
E. cloacae  17  18  19  18  19  21  20  22  21  25  25 
K. aerogenes  10  15  16  16  18  17  17  12  11 
M. morganii  14  14  16  14  14  17  15  17  16  17  19 
C. freundii 
S. marcescens 
P. stuartii 
Total  55  57  61  61  64  72  68  74  71  76  77 

In the susceptibility studies (Table 2) it was observed that, in the four most common microorganisms, this was elevated against aminoglycosides and ciprofloxacin (with exceptions in 2010–2012 for E. cloacae and C. freundii). High susceptibility to imipenem was observed. Cefepime was the antibiotic with the best activity profile for all microorganisms, but presented a significant reduction in susceptibility in 2010. E. cloacae presented a decrease in susceptibility to fosfomycin and was the microorganism with the lowest rate of susceptibility to trimethoprim/sulfamethoxazole and piperacillin/tazobactam. E. cloacae and K. aerogenes saw a decrease in nitrofurantoin susceptibility, with susceptibility rates in 2016 of 28% and 13%, respectively. K. aerogenes was the most susceptible microorganism to nalidixic acid, with an average susceptibility of 86%. The low number of isolates of P. stuartii and S. marcescens meant that it was not possible to show its evolution. In 2015, one isolate of E. cloacae producing a VIM type carbapenemase (in a patient admitted to the Nephrology Department) was identified.

Table 2.

Percentages of antibiotic susceptibility in isolates of microorganisms obtained from urine cultures.

Antibiotics  Microorganisms  2006  2007  2008  2009  2010  2011  2012  2013  2014  2015  2016  MEDIA 
GentamicinE. cloacae  100  100  68  82  86  53*  86  81  94  77  76  82 
K. aerogenes  70  100  92  77*  100  100  100  100  93  100  100  94 
C. freundii  50  100  100  75  63  100  100  100  92  71  75  84 
M. morganii  100  80  67*  100  67*  100  100  100  100  89  90  90 
TobramycinE. cloacae  100  100  68  76  93  58  86  85  94  81  72  83 
K. aerogenes  70*  100  92  77*  88  100  100  100  93  100  100  93 
C. freundii  50**  100  100  75  63**  100  100  100  100  71  75  85 
M. morganii  100  80  67  100  33  67  100  100  100  100  78 
PhosphomycinE. cloacae  90  92*  70  94*  93*  84  59  52  53  58  48  72 
K. aerogenes  60  100  100  92  88  92  81  88  79  88  93  87 
C. freundii  100  100  75*  100  100  100  100  100  92  86  75*  93 
M. morganii  100  100  100  100  100  100  100  100  63*  100  90  96 
NitrofurantoinE. cloacae  75  75  70  59  86  95  82  15*  25*  35*  28*  59 
K. aerogenes  80  100  92  62  76  83  25*  19*  14*  19*  13*  53 
C. freundii  100  100  100  100  88  100  86*  100  58*  100  88  93 
Nalidixic acidE. cloacae  90  100  73  71  86  68  45****  85  88  81  79  79 
K. aerogenes  60*  100  75  68*  88  100  88  88  86  94  100  86 
C. freundii  50  83  75  88  75  67  86  100  50  71  63  73 
M. morganii  75  100  100  100  67  33***  100  100  63***  89  80  82 
CiprofloxacinE. cloacae  95  100  76  82  86  68  59*  85  88  81  72  81 
K. aerogenes  80  100  83  69*  88  100  94  100  100  100  100  92 
C. freundii  100  100  75  86  75  67*  86  100  67*  71*  75  82 
M. morganii  75  100  67*  100  67*  33*  100  100  100  89  90  84 
ImipenemE. cloacae  100  100  97  100  100  84  100  93  84*  81*  93  92 
K. aerogenes  90  100  100  100  100  58*  100  69*  86  88  80  88 
C. freundii  100  100  100  100  100  100  100  67*  83  100  88  94 
M. morganii  100  100  67*  100  100  33*  100  100  100  100  80  89 
Piperacillin/tazobactamE. cloacae  85  83  73  94  86  63*  82  74  81  73  66  78 
K. aerogenes  80  67*  75  69  71  100  88  88  79  88  93  82 
C. freundii  75  100  88  100  88  67  100  100  92  86  88  89 
M. morganii  75  80  67  100  33*  67  100  100  69  100  100  81 
Trimethoprim/sulfamethoxazoleE. cloacae  95  75  65  76  93  74  68  89  78  62  55*  75 
K. aerogenes  70*  100  92  77*  88  100  100  100  100  100  100  93 
C. freundii  75  83  88  75  63  100  100  100  67  71  75  82 
M. morganii  100  80  100  100  67  33  100  100  100  89  80  86 
CefepimeE. cloacae  90  92  70  76  79  84  100  74  81  69*  69*  80 
K. aerogenes  90  100  83*  100  76*  100  100  100  100  100  100  95 
C. freundii  75*  100  100  100  88*  100  100  100  92  100  100  96 
M. morganii  100  60*  67*  100  67*  100  100  100  100  100  100  90 

p values for the decrease in antibiotic susceptibility compared to the mean.

*

p0.001.

**

p=0.011.

***

p=0.015.

****

p=0.021.

Discussion

Knowing the susceptibility profiles of the most common uropathogens is of particular importance in order to establish adequate empirical treatments in UTIs, since, being very common, they generate a high health expenditure. CESPM enterobacteria that are resistant to third-generation cephalosporins and do not produce extended-spectrum beta lactamase may produce AmpC, chromosomal or plasmid-mediated beta lactamase4, which needs to be confirmed.

E. cloacae is an especially important pathogen because of its ability to acquire other resistance mechanisms during treatment in addition to those intrinsic to it.5,6 In our work, the lowest susceptibility percentages for most of the antibiotics studied is presented. Cefepime is a fourth generation cephalosporin that weakly induces AmpC betalactamases, as it penetrates rapidly through the gram-negative outer membrane7; therefore, it is considered an alternative to carbapenemes against AmpC microorganisms.7 However, it was not very useful against E. cloacae.

The current scenario has favoured the re-emergent use of traditional antibiotics, such as fosfomycin, whose resistance rates have traditionally been low.8,9 Nitrofurantoin has been considered an excellent therapeutic option for UTI in southern European countries,10 but it reaches only low concentration levels in parenchyma.11 In our study, the significant reduction in susceptibility to these has been building since 2012, coinciding with the publication of UTI treatment guidelines that recommended their use.12 Considering the susceptibility in Enterobacter spp., we can empirically determine that nitrofurantoin is not useful. Aminoglycosides are not usually recommended in uncomplicated UTIs since they have some toxicity and their administration is parenteral. If we consider their use in hospital settings, there are authors who claim that gentamicin is a good alternative to carbapenemes,13 as in our series. Fluoroquinolones are widely used in UTIs due to their broad spectrum, excellent oral bioavailability, good tolerance and postantibiotic effect, but due to their frequent use there has been a marked decrease in susceptibility in enterobacteria.14,15 In our study, we observed how the reduction in susceptibility to ciprofloxacin was growing, which explains why it is the main resistance in beta lactamase producing bacteria, whose coding shares the same genetic elements.

Carbapenemes are the first-line option against AmpC beta lactamases, although in our series we observed a drop in susceptibility to imipenem in the four species between 2013 and 2015, which we could relate to their possible excessive use. For this, cefepime could be an alternative. Imipenem was the drug of choice for the years in which our laboratory only received hospital samples. This phenomenon would explain the decrease in susceptibility for all antibiotics studied, since the bacteria that cause nosocomial UTI have a more resistant profile.

Although in this work targeted treatment with the alternatives cefepime and imipenem is considered as a conclusion, there is a high rate of susceptibility to other antimicrobials and, therefore, any of them may be the drug of choice depending on the patient's clinical situation. If we were talking about empirical treatment, given the low prevalence of UTIs by these microorganisms, the approach would be different. Antibiotics that retain a susceptibility greater than 80% for all species and that, therefore, would be a good alternative to carbapenemes as an empirical treatment, are gentamicin and ciprofloxacin, despite studies concerning the latter as the most common co-resistance in beta lactamase producing bacteria.

The main limitations of this retrospective study are the impossibility of establishing whether the episodes of UTI were complicated or not and whether a previous antibiotic therapy had been used. Therefore, there may be an overestimation of the resistance of the uropathogens studied. In addition, the type of patients varied throughout the study, which may explain the fluctuations. Finally, enterobacteria with AmpC expressed at a low level, such as Escherichia coli were not included, nor has the presence of acquired AmpC beta lactamases in the isolates studied been reported.

In conclusion, the species E. cloacae, M. morganii and K. aerogenes were the enterobacteria with natural inducible chromosomal AmpC beta lactamases most frequently isolated in urine culture, in which the resistance to several groups of antibiotics was common. Cefepime remains a therapeutic alternative to carbapenemes due to its in vitro activity.

Funding

None.

Conflicts of interest

None.

References
[1]
G.S. Dos Santos, E.G. Solidônio, M.C. Costa, R.O. Melo, I.F. de Souza, G.R. Silvan.
Study of the Enterobacteriaceae group CESP (Citrobacter, Enterobacter, Serratia, Providencia, Morganella and Hafnia): a review.
The battle against microbial pathogens: basic science, technological advances and educational programs, pp. 794-805
[2]
M. Gajdács, E. Urbán.
Resistance trends and epidemiology of Citrobacter–Enterobacter–Serratia in urinary tract infections of inpatients and outpatients (RECESUTI): a 10-year survey.
Medicina (Kaunas), 55 (2019), pp. E285
[3]
G.A. Jacoby.
AmpC beta-lactamases.
Clin Microbiol Rev, 22 (2009), pp. 161-182
[4]
W.L. Yu, K.C. Cheng, C.J. Chi, H.E. Chen, Y.C. Chuang, L.T. Wu.
Characterisation and molecular epidemiology of extended-spectrum beta-lactamase-producing Enterobacter cloacae isolated from a district teaching hospital in Taiwan.
Clin Microbiol Infect, 12 (2006), pp. 579-582
[5]
R. Cantón, A. Oliver, T.M. Coque, M.C. Varela, J.C. Pérez-Díaz, F. Baquero.
Epidemiology of extended-spectrum beta-lactamase-producing Enterobacter isolates in a Spanish hospital during a 12-year period.
J Clin Microbiol, 40 (2002), pp. 1237-1243
[6]
R. Tato-Rodríguez, J. Oteo-Iglesias, P. Álvarez-García, M.J. Zamora-López, J. Martínez-López, A. Pallarés-González, et al.
Outbreak of multidrug-resistant CTX-M-9-producing Enterobacter cloacae complex in an intensive care unit.
Enferm Infecc Microbiol Clin, 34 (2016), pp. 237-242
[7]
S. Meini, C. Tascini, M. Cei, E. Sozio, G.M. Rossolini.
AmpC beta-lactamase-producing Enterobacterales: what a clinician should know.
[8]
A. Sorlozano, A. Jimenez-Pacheco, J.D. Luna del Castillo, A. Sampedro, A. Martinez-Brocal, C. Miranda-Casas, et al.
Evolution of the resistance to antibiotics of bacteria involved in urinary tract infections: a 7-year surveillance study.
Am J Infect Control, 42 (2014), pp. 1033-1038
[9]
A. Sorlózano-Puerto, J.M. Gómez-Luque, J.D. Luna del Castillo, J.M. Navarro-Marí, J. Gutiérrez-Fernández.
Etiological and resistance profile of bacteria involved in urinary tract infections in young children.
Biomed Res Int, 2017 (2017), pp. 4909452
[10]
S. Maraki, E. Mantadakis, L. Michailidis, G. Samonis.
Changing antibiotic susceptibilities of community-acquired uropathogens in Greece, 2005–2010.
J Microbiol Immunol Infect, 46 (2013), pp. 202-209
[11]
J.A. Lorente Garin, J. Placer Santos, M. Salvado Costa, C. Segura Álvarez, A. Gelabert-Mas.
Antibiotic resistance transformation in community-acquired urinary infections.
Rev Clin Esp, 205 (2005), pp. 259-264
[12]
C. Pigrau.
Nocosomial urinary tract infections.
Enferm Infecc Microbiol Clin, 31 (2013), pp. 614-624
[13]
T. Demir, T. Buyukguclu.
Evaluation of the in vitro activity of fosfomycin tromethamine against Gram-negative bacterial strains recovered from community- and hospital-acquired urinary tract infections in Turkey.
Int J Infect Dis, 17 (2013), pp. e966-e970
[14]
A. Aguinaga, A. Gil-Setas, A. Mazón Ramos, A. Álvaro, J.J. García-Irure, A. Navascues, et al.
Uncomplicated urinary tract infections antimicrobial susceptibility study in Navarre.
An Sist San Nav, 2018 (2018), pp. 59989
[15]
D. Tena, A. González-Praetorius, J.C. González, E. Heredero, S. Illescas, C.S. de Baranda, et al.
Changes in the antimicrobial susceptibility of Escherichia coli isolates from community diagnosed urinary tract infections during the period 2003–2007. Multicentre study in Castilla-La Mancha (Spain).
Rev Esp Quimioter, 23 (2010), pp. 36-42

Please cite this article as: Jiménez-Guerra G, Borrego-Jiménez J, Gutiérrez-Soto B, Expósito-Ruiz M, Navarro-Marí JM, Gutiérrez-Fernández J. Evolución de la sensibilidad a los antibióticos de Enterobacter cloacae, Morganella morganii, Klebsiella aerogenes y Citrobacter freundii causantes de infecciones del tracto urinario: un estudio de vigilancia epidemiológica de 11 años. Enferm Infecc Microbiol Clin. 2020;38:166–169.

Copyright © 2019. Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica
Download PDF
Article options
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos