covid
Buscar en
Estudios Gerenciales
Toda la web
Inicio Estudios Gerenciales Superioridad relativa de los estimadores Kiviet y Blundell-Bond (GMM1) en panele...
Journal Information
Vol. 28. Issue 125.
Pages 81-86 (October - December 2012)
Share
Share
Download PDF
More article options
Vol. 28. Issue 125.
Pages 81-86 (October - December 2012)
Open Access
Superioridad relativa de los estimadores Kiviet y Blundell-Bond (GMM1) en paneles dinámicos. Un experimento Monte Carlo con muestras finitas
Relative superiority of the Kiviet and Blundell-Bond (GMM1) estimators in dynamic panels. A Monte Carlo experiment with finite samples
Superioridade relativa dos avaliadores Kiviet e Blundell-Bond (GMM1) em painéis dinâmicos. Uma experiência Monte Carlo com amostras finitas
Visits
4243
Andrés Eduardo Rangel Jiménez
Corresponding author
aerangel@uao.edu.co

Autor para correspondencia: Calle 11 # 43-36, Cali, Colombia.
Profesor de Planta, Departamento de Economía, Universidad Autónoma de Occidente, Colombia
This item has received

Under a Creative Commons license
Article information
Resumen

Dado el amplio uso de los datos de panel en modelos dinamicos, es relevante evaluar el desempeno de sus diferentes estimadores en muestras finitas en presencia de baja y alta persistencia. El presente articulo tiene como objetivo analizar, mediante simulaciones tipo Monte Carlo, las propiedades de los estimadores de efectos fijos (LSDV), Arellano y Bond (AB-GMM1), Blundell y Bond (BB-GMM1), Anderson y Hsiao (AH) y Kiviet. Se concluye que en series no persistentes el estimador de Kiviet es el de mejor desempeno, basandose en los criterios de error cuadratico medio, sesgo y desviacion estandar; con alta persistencia, el estimador BB-GMM1 es el de mejor desempeno seguido por el estimador de Kiviet, que se comporta bien excepto en micropaneles con series persistentes.

Palabras clave:
Datos de panel
Modelos dinámicos
Kiviet
Método de momentos
Abstract

Given the widespread use of panel data in dynamic models, it is worth evaluating the performance of different estimators in finite samples in the presence of low and high persistence, with the latter being present in many macroeconomic series. This article analyzes the properties of the Least Square Dummy Variable (LSDV) estimators, Arellano-Bond Generalized Method of Moments Stage 1 (AB-GMM1), BBGMM1 (), AH (Anderson-Hsiao), and Kiviet using a Monte Carlo experiment. The results show that, in the presence of low persistence, the Kiviet estimator is the best performer based on the criteria of Root-Mean-Square Error (RMSE), bias and standard deviation. Meanwhile in the case of high persistence, the system estimator of Blundell and Bond (GMM1) is the best performing estimator against their rivals, followed by Kiviet estimator that exhibits good behavior, except in micropanels.

Keywords:
Panel data
Dynamic models
Kiviet
Generalized method of moments
Resumo

Devido a ampla utilizacao dos dados do painel em modelos dinamicos, e relevante avaliar o desempenho dos seus diferentes avaliadores em amostras finitas na presenca de baixa e alta persistencia. O presente artigo tem como objectivo analisar, atraves de simulacoes tipo Monte Carlo, as propriedades dos avaliadores de Efeitos Fixos (LSDV), Arrellano e Bond (AB-GMM1), Blundell e Bond (BB-GMM1), Anderson e Hsiao (AH) e Kiviet. Conclui-se que em series nao persistentes o avaliador de Kiviet e o de melhor desempenho baseando-se nos criterios de erro quadratico medio, obliquidade e desvio padrao; com alta persistencia o avaliador BB-GMM1 e o melhor desempenho seguido pelo avaliador de Kiviet que se comporta bem excepto em micro-paineis com series persistentes.

Palavras-chave:
Dados de Painel
Modelos dinâmicos
Kiviet
Método de momentos
Full text is only aviable in PDF
Bibliografía
[Anderson and Hsiao, 1982]
T.W. Anderson, C. Hsiao.
Formulation and estimation of dynamic models using panel data.
Journal of Econometrics, 18 (1982), pp. 243-261
[Arellano and Bond, 1991]
M. Arellano, S. Bond.
Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations.
Review of Economic Studies, 58 (1991), pp. 277-297
[Blanchflower and Oswald, 1994]
D. Blanchflower, A. Oswald.
Estimating a wage curve for Britain: 1973–90.
Economic Journal Royal Economic Society, 104 (1994), pp. 1025-1043
[Blundell and Bond, 2000]
R.W. Blundell, S. Bond.
GMM Estimation with persistent panel data: an application to production functions.
Econometric Reviews, 19 (2000), pp. 321-340
[Bond, 2002]
Bond, S. (2002). Dynamic panel data models: a guide to micro data methods and practice (The Institute for Fiscal Studies Department of Economics, UCL Cemmap Working Paper CWP09/02). Disponible: http://www.cemmap.ac.uk/wps/cwp0209.pdf
[Bruno, 2004]
Bruno, G. (2004). Estimation, inference and Monte Carlo analysis in dynamic panel data models with a small number of individuals. Universita Bocconi. Istituto di Economia Politica. Disponible en: http://www.stata.com/meeting/1italian/bruno.pdf
[Bun and Kiviet, 2003]
M. Bun, J. Kiviet.
On the diminishing returns of higher-order terms in asymptotic expansions of bias.
Economics Letters, 79 (2003), pp. 145-152
[Hsiao, 2003]
C. Hsiao.
Analysis of panel data.
2.ª, University Press, (2003),
[Judson and Owen, 1999]
R. Judson, A. Owen.
Estimating dynamic panel data models: a guide for macroeconomists.
Economics Letters, 65 (1999), pp. 9-15
[Kiviet, 1995]
J.F. Kiviet.
On Bias, inconsistency and efficiency of various estimators in dynamic panel data models.
Journal of Econometrics, 68 (1995), pp. 53-78
[Nickell, 1981]
S.J. Nickell.
Biases in dynamic models with fixed effects.
Econometrica, 49 (1981), pp. 1417-1426
Copyright © 2012. Universidad ICESI
Download PDF
Article options