metricas
covid
Buscar en
Gastroenterología y Hepatología (English Edition)
Toda la web
Inicio Gastroenterología y Hepatología (English Edition) The emerging role of artificial intelligence in gastrointestinal endoscopy: a re...
Journal Information

Statistics

Follow this link to access the full text of the article

Special article
The emerging role of artificial intelligence in gastrointestinal endoscopy: a review
María José Aguilera-Chuchucaa,b,
Corresponding author
tberzin@bidmc.harvard.edu

Corresponding author.
, Sergio A. Sánchez-Lunac, Begoña González Suárezd, Kenneth Ernest-Suáreze, Andres Gelrudf, Tyler M. Berzina
a Center for Advanced Endoscopy, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
b Division of Gastroenterology, Hepatology & Endoscopy, Brigham and Women’s Hospital, Boston, Massachusetts, USA
c Basil I. Hirschowitz Endoscopic Center of Excellence, Division of Gastroenterology & Hepatology, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
d Gastroenterology Department. Endoscopy Unit. ICMDiM. Hospital Clinic of Barcelona, Barcelona, Spain
e Servicio de Gastroenterología, Universidad de Costa Rica, Hospital México, Caja Costarricense de Seguro Social, Costa Rica
f Gastro Health and Miami Cancer Institute, Baptist South, Miami, Florida, USA
Read
199
Times
was read the article
53
Total PDF
146
Total HTML
Share statistics
 array:23 [
  "pii" => "S2444382422001031"
  "issn" => "24443824"
  "doi" => "10.1016/j.gastre.2021.11.001"
  "estado" => "S300"
  "fechaPublicacion" => "2022-06-01"
  "aid" => "1889"
  "copyright" => "Elsevier España, S.L.U.. All rights reserved"
  "copyrightAnyo" => "2021"
  "documento" => "article"
  "crossmark" => 1
  "subdocumento" => "ssu"
  "cita" => "Gastroenterol Hepatol. 2022;45:492-7"
  "abierto" => array:3 [
    "ES" => false
    "ES2" => false
    "LATM" => false
  ]
  "gratuito" => false
  "lecturas" => array:1 [
    "total" => 0
  ]
  "Traduccion" => array:1 [
    "es" => array:19 [
      "pii" => "S0210570521003095"
      "issn" => "02105705"
      "doi" => "10.1016/j.gastrohep.2021.11.004"
      "estado" => "S300"
      "fechaPublicacion" => "2022-06-01"
      "aid" => "1889"
      "copyright" => "Elsevier España, S.L.U."
      "documento" => "article"
      "crossmark" => 1
      "subdocumento" => "ssu"
      "cita" => "Gastroenterol Hepatol. 2022;45:492-7"
      "abierto" => array:3 [
        "ES" => false
        "ES2" => false
        "LATM" => false
      ]
      "gratuito" => false
      "lecturas" => array:1 [
        "total" => 0
      ]
      "es" => array:11 [
        "idiomaDefecto" => true
        "cabecera" => "<span class="elsevierStyleTextfn">Art&#237;culo especial</span>"
        "titulo" => "El papel emergente de la inteligencia artificial en la endoscopia gastrointestinal&#58; una revisi&#243;n de la literatura"
        "tienePdf" => "es"
        "tieneTextoCompleto" => "es"
        "paginas" => array:1 [
          0 => array:2 [
            "paginaInicial" => "492"
            "paginaFinal" => "497"
          ]
        ]
        "titulosAlternativos" => array:1 [
          "en" => array:1 [
            "titulo" => "The emerging role of artificial intelligence in gastrointestinal endoscopy&#58; A review"
          ]
        ]
        "contieneTextoCompleto" => array:1 [
          "es" => true
        ]
        "contienePdf" => array:1 [
          "es" => true
        ]
        "resumenGrafico" => array:2 [
          "original" => 0
          "multimedia" => array:7 [
            "identificador" => "fig0005"
            "etiqueta" => "Figura 1"
            "tipo" => "MULTIMEDIAFIGURA"
            "mostrarFloat" => true
            "mostrarDisplay" => false
            "figura" => array:1 [
              0 => array:4 [
                "imagen" => "gr1.jpeg"
                "Alto" => 473
                "Ancho" => 1255
                "Tamanyo" => 106065
              ]
            ]
            "descripcion" => array:1 [
              "es" => "<p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">Detecci&#243;n de displasia de alto grado en un paciente con es&#243;fago de Barrett con el algoritmo CADe en tiempo real&#46;Cortes&#237;a de DocBot Inc<span class="elsevierStyleItalic">&#46;</span></p>"
            ]
          ]
        ]
        "autores" => array:1 [
          0 => array:2 [
            "autoresLista" => "Mar&#237;a Jos&#233; Aguilera-Chuchuca, Sergio A&#46; S&#225;nchez-Luna, Bego&#241;a Gonz&#225;lez Su&#225;rez, Kenneth Ernest-Su&#225;rez, Andres Gelrud, Tyler M&#46; Berzin"
            "autores" => array:6 [
              0 => array:2 [
                "nombre" => "Mar&#237;a Jos&#233;"
                "apellidos" => "Aguilera-Chuchuca"
              ]
              1 => array:2 [
                "nombre" => "Sergio A&#46;"
                "apellidos" => "S&#225;nchez-Luna"
              ]
              2 => array:2 [
                "nombre" => "Bego&#241;a"
                "apellidos" => "Gonz&#225;lez Su&#225;rez"
              ]
              3 => array:2 [
                "nombre" => "Kenneth"
                "apellidos" => "Ernest-Su&#225;rez"
              ]
              4 => array:2 [
                "nombre" => "Andres"
                "apellidos" => "Gelrud"
              ]
              5 => array:2 [
                "nombre" => "Tyler M&#46;"
                "apellidos" => "Berzin"
              ]
            ]
          ]
        ]
      ]
      "idiomaDefecto" => "es"
      "Traduccion" => array:1 [
        "en" => array:9 [
          "pii" => "S2444382422001031"
          "doi" => "10.1016/j.gastre.2021.11.001"
          "estado" => "S300"
          "subdocumento" => ""
          "abierto" => array:3 [
            "ES" => false
            "ES2" => false
            "LATM" => false
          ]
          "gratuito" => false
          "lecturas" => array:1 [
            "total" => 0
          ]
          "idiomaDefecto" => "en"
          "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2444382422001031?idApp=UINPBA00004N"
        ]
      ]
      "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0210570521003095?idApp=UINPBA00004N"
      "url" => "/02105705/0000004500000006/v1_202205180628/S0210570521003095/v1_202205180628/es/main.assets"
    ]
  ]
  "itemAnterior" => array:19 [
    "pii" => "S2444382422000979"
    "issn" => "24443824"
    "doi" => "10.1016/j.gastre.2021.07.002"
    "estado" => "S300"
    "fechaPublicacion" => "2022-06-01"
    "aid" => "1860"
    "copyright" => "Elsevier Espa&#241;a&#44; S&#46;L&#46;U&#46;"
    "documento" => "simple-article"
    "crossmark" => 1
    "subdocumento" => "cor"
    "cita" => "Gastroenterol Hepatol. 2022;45:490-1"
    "abierto" => array:3 [
      "ES" => false
      "ES2" => false
      "LATM" => false
    ]
    "gratuito" => false
    "lecturas" => array:1 [
      "total" => 0
    ]
    "en" => array:11 [
      "idiomaDefecto" => true
      "cabecera" => "<span class="elsevierStyleTextfn">Letter to the Editor</span>"
      "titulo" => "Neoadjuvant combined strategy to surgery based on chemoembolization and lenvatinib in hepatocellular carcinoma"
      "tienePdf" => "en"
      "tieneTextoCompleto" => "en"
      "paginas" => array:1 [
        0 => array:2 [
          "paginaInicial" => "490"
          "paginaFinal" => "491"
        ]
      ]
      "titulosAlternativos" => array:1 [
        "es" => array:1 [
          "titulo" => "Estrategia combinada de neoadyuvancia a cirug&#237;a con quimioembolizaci&#243;n y lenvatinib en carcinoma hepatocelular"
        ]
      ]
      "contieneTextoCompleto" => array:1 [
        "en" => true
      ]
      "contienePdf" => array:1 [
        "en" => true
      ]
      "resumenGrafico" => array:2 [
        "original" => 0
        "multimedia" => array:8 [
          "identificador" => "fig0005"
          "etiqueta" => "Figure 1"
          "tipo" => "MULTIMEDIAFIGURA"
          "mostrarFloat" => true
          "mostrarDisplay" => false
          "figura" => array:1 [
            0 => array:4 [
              "imagen" => "gr1.jpeg"
              "Alto" => 381
              "Ancho" => 1500
              "Tamanyo" => 96688
            ]
          ]
          "detalles" => array:1 [
            0 => array:3 [
              "identificador" => "at0005"
              "detalle" => "Figure "
              "rol" => "short"
            ]
          ]
          "descripcion" => array:1 [
            "en" => "<p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">&#40;A&#41; Pre-treatment index CT scan&#46; HCC closely related to the middle and left suprahepatic veins&#46; &#40;B&#41; Post-TACE PET-CT scan&#46; Absence of metabolic uptake in the HCC with slightly hypermetabolic margins&#46; &#40;C&#41; Post-surgical follow-up CT after one and a half months&#46; Vascular permeability in the suprahepatic veins&#44; with no residual tumour&#46;</p>"
          ]
        ]
      ]
      "autores" => array:1 [
        0 => array:2 [
          "autoresLista" => "Arturo Col&#243;n Rodr&#237;guez, Enrique Velasco S&#225;nchez, Luis Rodr&#237;guez-Bachiller, Benjam&#237;n D&#237;az-Zorita, Jos&#233; &#193;ngel L&#243;pez Baena, Arturo &#193;lvarez Luque, Diego Rinc&#243;n Rodr&#237;guez, Ana Mar&#237;a Matilla Pe&#241;a"
          "autores" => array:8 [
            0 => array:2 [
              "nombre" => "Arturo"
              "apellidos" => "Col&#243;n Rodr&#237;guez"
            ]
            1 => array:2 [
              "nombre" => "Enrique"
              "apellidos" => "Velasco S&#225;nchez"
            ]
            2 => array:2 [
              "nombre" => "Luis"
              "apellidos" => "Rodr&#237;guez-Bachiller"
            ]
            3 => array:2 [
              "nombre" => "Benjam&#237;n"
              "apellidos" => "D&#237;az-Zorita"
            ]
            4 => array:2 [
              "nombre" => "Jos&#233; &#193;ngel"
              "apellidos" => "L&#243;pez Baena"
            ]
            5 => array:2 [
              "nombre" => "Arturo"
              "apellidos" => "&#193;lvarez Luque"
            ]
            6 => array:2 [
              "nombre" => "Diego"
              "apellidos" => "Rinc&#243;n Rodr&#237;guez"
            ]
            7 => array:2 [
              "nombre" => "Ana Mar&#237;a"
              "apellidos" => "Matilla Pe&#241;a"
            ]
          ]
        ]
      ]
    ]
    "idiomaDefecto" => "en"
    "Traduccion" => array:1 [
      "es" => array:9 [
        "pii" => "S0210570521002247"
        "doi" => "10.1016/j.gastrohep.2021.07.006"
        "estado" => "S300"
        "subdocumento" => ""
        "abierto" => array:3 [
          "ES" => false
          "ES2" => false
          "LATM" => false
        ]
        "gratuito" => false
        "lecturas" => array:1 [
          "total" => 0
        ]
        "idiomaDefecto" => "es"
        "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0210570521002247?idApp=UINPBA00004N"
      ]
    ]
    "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2444382422000979?idApp=UINPBA00004N"
    "url" => "/24443824/0000004500000006/v1_202206220657/S2444382422000979/v1_202206220657/en/main.assets"
  ]
  "en" => array:17 [
    "idiomaDefecto" => true
    "cabecera" => "<span class="elsevierStyleTextfn">Special article</span>"
    "titulo" => "The emerging role of artificial intelligence in gastrointestinal endoscopy&#58; a review"
    "subtitulo" => "El papel emergente de la inteligencia artificial en la endoscopia gastrointestinal&#58; una revisi&#243;n de la literatura"
    "tieneTextoCompleto" => true
    "paginas" => array:1 [
      0 => array:2 [
        "paginaInicial" => "492"
        "paginaFinal" => "497"
      ]
    ]
    "autores" => array:1 [
      0 => array:4 [
        "autoresLista" => "Mar&#237;a Jos&#233; Aguilera-Chuchuca, Sergio A&#46; S&#225;nchez-Luna, Bego&#241;a Gonz&#225;lez Su&#225;rez, Kenneth Ernest-Su&#225;rez, Andres Gelrud, Tyler M&#46; Berzin"
        "autores" => array:6 [
          0 => array:4 [
            "nombre" => "Mar&#237;a Jos&#233;"
            "apellidos" => "Aguilera-Chuchuca"
            "email" => array:1 [
              0 => "tberzin@bidmc.harvard.edu"
            ]
            "referencia" => array:3 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">a</span>"
                "identificador" => "aff0005"
              ]
              1 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">b</span>"
                "identificador" => "aff0010"
              ]
              2 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">&#42;</span>"
                "identificador" => "cor0005"
              ]
            ]
          ]
          1 => array:3 [
            "nombre" => "Sergio A&#46;"
            "apellidos" => "S&#225;nchez-Luna"
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">c</span>"
                "identificador" => "aff0015"
              ]
            ]
          ]
          2 => array:3 [
            "nombre" => "Bego&#241;a"
            "apellidos" => "Gonz&#225;lez Su&#225;rez"
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">d</span>"
                "identificador" => "aff0020"
              ]
            ]
          ]
          3 => array:3 [
            "nombre" => "Kenneth"
            "apellidos" => "Ernest-Su&#225;rez"
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">e</span>"
                "identificador" => "aff0025"
              ]
            ]
          ]
          4 => array:3 [
            "nombre" => "Andres"
            "apellidos" => "Gelrud"
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">f</span>"
                "identificador" => "aff0030"
              ]
            ]
          ]
          5 => array:3 [
            "nombre" => "Tyler M&#46;"
            "apellidos" => "Berzin"
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">a</span>"
                "identificador" => "aff0005"
              ]
            ]
          ]
        ]
        "afiliaciones" => array:6 [
          0 => array:3 [
            "entidad" => "Center for Advanced Endoscopy&#44; Beth Israel Deaconess Medical Center and Harvard Medical School&#44; Boston&#44; Massachusetts&#44; USA"
            "etiqueta" => "a"
            "identificador" => "aff0005"
          ]
          1 => array:3 [
            "entidad" => "Division of Gastroenterology&#44; Hepatology &#38; Endoscopy&#44; Brigham and Women&#8217;s Hospital&#44; Boston&#44; Massachusetts&#44; USA"
            "etiqueta" => "b"
            "identificador" => "aff0010"
          ]
          2 => array:3 [
            "entidad" => "Basil I&#46; Hirschowitz Endoscopic Center of Excellence&#44; Division of Gastroenterology &#38; Hepatology&#44; The University of Alabama at Birmingham Heersink School of Medicine&#44; Birmingham&#44; Alabama&#44; USA"
            "etiqueta" => "c"
            "identificador" => "aff0015"
          ]
          3 => array:3 [
            "entidad" => "Gastroenterology Department&#46; Endoscopy Unit&#46; ICMDiM&#46; Hospital Clinic of Barcelona&#44; Barcelona&#44; Spain"
            "etiqueta" => "d"
            "identificador" => "aff0020"
          ]
          4 => array:3 [
            "entidad" => "Servicio de Gastroenterolog&#237;a&#44; Universidad de Costa Rica&#44; Hospital M&#233;xico&#44; Caja Costarricense de Seguro Social&#44; Costa Rica"
            "etiqueta" => "e"
            "identificador" => "aff0025"
          ]
          5 => array:3 [
            "entidad" => "Gastro Health and Miami Cancer Institute&#44; Baptist South&#44; Miami&#44; Florida&#44; USA"
            "etiqueta" => "f"
            "identificador" => "aff0030"
          ]
        ]
        "correspondencia" => array:1 [
          0 => array:3 [
            "identificador" => "cor0005"
            "etiqueta" => "&#8270;"
            "correspondencia" => "Corresponding author&#46;"
          ]
        ]
      ]
    ]
    "resumenGrafico" => array:2 [
      "original" => 0
      "multimedia" => array:8 [
        "identificador" => "fig0010"
        "etiqueta" => "Figure 2"
        "tipo" => "MULTIMEDIAFIGURA"
        "mostrarFloat" => true
        "mostrarDisplay" => false
        "figura" => array:1 [
          0 => array:4 [
            "imagen" => "gr2.jpeg"
            "Alto" => 595
            "Ancho" => 805
            "Tamanyo" => 91344
          ]
        ]
        "detalles" => array:1 [
          0 => array:3 [
            "identificador" => "at0010"
            "detalle" => "Figure "
            "rol" => "short"
          ]
        ]
        "descripcion" => array:1 [
          "en" => "<p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">Endoscopic images captured by the automatic polyp detection system &#40;CADe&#41;&#44; which shows colonic polyps marked on the screen by a blue square denoting their location&#46; &#40;A&#41; 3-mm polyp&#44; IIA according to the Paris classification&#46; &#40;B&#41; 5-mm polyp&#44; IS according to the Paris classification&#46; Images courtesy of Dr Tyler Berzin&#44; Co-director of the Advanced Endoscopy Department at the Beth Israel Deaconess Medical Center&#46;</p>"
        ]
      ]
    ]
    "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0005">Introduction</span><p id="par0005" class="elsevierStylePara elsevierViewall">Artificial Intelligence &#40;AI&#41; has become one of the most important and impactful technological tools in different aspects of health&#44; including clinical performance and medical or surgical treatment&#44; with the subsequent increase in patient quality of life&#46;<a class="elsevierStyleCrossRef" href="#bib0005"><span class="elsevierStyleSup">1</span></a> It is software comprising complex algorithms designed to learn from a vast amount of data and also&#44; at the same time&#44; be updated automatically&#46; Its purpose is to help physicians to interpret images&#44; improve workflow and reduce medical errors&#46;<a class="elsevierStyleCrossRef" href="#bib0010"><span class="elsevierStyleSup">2</span></a></p><p id="par0010" class="elsevierStylePara elsevierViewall">Machine learning &#40;ML&#41; is a computer learning system which&#44; following training to perform a specific task&#44; focuses on the capacity to infer and learn from these computing algorithms in order to make predictions from a new dataset&#46; It has the capacity to automatically learn and improve from each experience and without explicit programming&#46;<a class="elsevierStyleCrossRefs" href="#bib0005"><span class="elsevierStyleSup">1&#44;3</span></a></p><p id="par0015" class="elsevierStylePara elsevierViewall">Deep learning is an advanced and complex form of ML structured with different levels of specific algorithms known as convolutional neural networks &#40;CNN&#47;ConvNet&#41; that make a powerful prediction with the data provided&#46;<a class="elsevierStyleCrossRef" href="#bib0020"><span class="elsevierStyleSup">4</span></a> These networks can learn the characteristics of images based on accumulated images which&#44; when processed automatically and swiftly&#44; can be particularly valuable in clinical medicine for medical image analysis&#44; as well as in imaging-based diagnosis&#46;<a class="elsevierStyleCrossRefs" href="#bib0015"><span class="elsevierStyleSup">3&#44;5&#44;6</span></a></p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0010">Endoscopic applications of AI in Gastroenterology</span><p id="par0020" class="elsevierStylePara elsevierViewall">Oesophagogastroduodenoscopy&#44; together with colonoscopy&#44; are the most commonly-performed procedures by gastroenterologists and are extremely operator-dependent&#46;<a class="elsevierStyleCrossRef" href="#bib0035"><span class="elsevierStyleSup">7</span></a> This means that a high-quality endoscopy will depend on certain variables&#44; such as the time taken to complete the procedure&#44; as well as the endoscopist&#39;s training and technique for recognising certain conditions&#46; These variables in endoscopic practice are likely to hinder the discovery of disease&#46;<a class="elsevierStyleCrossRefs" href="#bib0015"><span class="elsevierStyleSup">3&#44;7</span></a> In recent years&#44; an extensive variety of applications have been proposed and developed for AI algorithms in gastrointestinal endoscopy in order to help guarantee high-quality procedures&#46;</p><p id="par0025" class="elsevierStylePara elsevierViewall">The two areas of endoscopy in which AI has been most extensively studied and developed are&#58; computer-aided detection &#40;CADe&#41; and computer-aided diagnosis &#40;CADx&#41;&#46; The former is used to develop algorithms to detect conditions&#44; whereas in the latter the algorithms are intended mainly to classify conditions correctly by means of optical biopsy and lesion characterisation&#46;<a class="elsevierStyleCrossRef" href="#bib0015"><span class="elsevierStyleSup">3</span></a></p><p id="par0030" class="elsevierStylePara elsevierViewall">The use of CADx has attracted a great deal of attention on account of its usefulness in colonoscopy&#46; It has been shown to facilitate the histological classification of colonic polyps without the need for biopsies&#46; The idea is to perform an optical biopsy based on the amount of surface microstructures that reflect a lesion&#39;s histological characteristics&#46; This procedure helps the endoscopist to &#34;resect and reject&#34; polyps in each individual case&#44; without the need to take a sample and perform a histological analysis&#46; <a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a> describes examples of available AI models&#46;<a class="elsevierStyleCrossRef" href="#bib0040"><span class="elsevierStyleSup">8</span></a></p><elsevierMultimedia ident="tbl0005"></elsevierMultimedia></span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0015">Oesophageal cancer and Barrett&#39;s oesophagus</span><p id="par0035" class="elsevierStylePara elsevierViewall">Oesophageal adenocarcinoma is normally diagnosed at an advanced stage&#44; when the prognosis is already poor&#46; For this reason&#44; appropriate monitoring of Barrett&#39;s oesophagus and the eradication of early associated dysplastic and neoplastic lesions are the key to preventing the transformation to adenocarcinoma&#44; since minimally invasive treatments with a high healing rate are currently available&#46;<a class="elsevierStyleCrossRef" href="#bib0045"><span class="elsevierStyleSup">9</span></a></p><p id="par0040" class="elsevierStylePara elsevierViewall">Screening currently consists of direct observation by endoscopy together with guided or random biopsies&#46; Dysplasia in Barrett&#39;s oesophagus may be difficult to identify&#44; resulting in a lower sensitivity of biopsy samples&#44; despite standardised protocols&#46; As such&#44; it is regarded as relatively inefficient as it is very time-consuming and delivers a low rate of correct diagnoses&#46;</p><p id="par0045" class="elsevierStylePara elsevierViewall">The role of AI in evaluating Barrett&#39;s oesophagus focuses on improving oesophageal adenocarcinoma screening&#46; The joint use of AI and advanced imaging techniques&#44; such as volumetric laser endomicroscopy &#40;VLE&#41;&#44; white light endoscopy and confocal laser endomicroscopy&#44; have delivered high-performance metrics compared to expert endoscopists&#44; thus improving the procedure&#39;s sensitivity and speed&#46; This helps endoscopists to perform targeted biopsies with greater precision&#44; and eliminates the need to perform random biopsies&#44; which have a relatively low sensitivity of around 64&#37; for the detection of dysplasia&#46;<a class="elsevierStyleCrossRefs" href="#bib0015"><span class="elsevierStyleSup">3&#44;10</span></a> AI has been proven to have sensitivities greater than 90&#37; and specificities above 80&#37; in the early diagnosis of oesophageal adenocarcinoma&#44; with a very subtle endoscopic appearance&#46;<a class="elsevierStyleCrossRef" href="#bib0015"><span class="elsevierStyleSup">3</span></a> AI systems are capable of detecting pre-cancerous lesions and early forms of oesophageal squamous cell carcinoma&#44; including those smaller than 10&#8201;mm&#44; with a sensitivity of 98&#46;04&#37; and a specificity of 95&#46;03&#37;&#46;<a class="elsevierStyleCrossRefs" href="#bib0015"><span class="elsevierStyleSup">3&#44;11</span></a><a class="elsevierStyleCrossRef" href="#fig0005">Fig&#46; 1</a> shows severe dysplasia in a segment of Barrett&#39;s oesophagus&#46;</p><elsevierMultimedia ident="fig0005"></elsevierMultimedia></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0020">Gastric cancer</span><p id="par0050" class="elsevierStylePara elsevierViewall">Gastric cancer is primarily detected by upper gastrointestinal endoscopy&#59; a precise prediction based on endoscopic images is important in order to create a better treatment strategy for the patient&#46;</p><p id="par0055" class="elsevierStylePara elsevierViewall">For this reason&#44; it is essential to determine the depth of invasion in order to establish the best treatment strategy&#59; however&#44; the general precision of conventional endoscopy is insufficient to define invasion &#40;69&#37;&#8211;79&#37;&#41;&#46;<a class="elsevierStyleCrossRef" href="#bib0060"><span class="elsevierStyleSup">12</span></a></p><p id="par0060" class="elsevierStylePara elsevierViewall">At this moment in time&#44; AI systems have proven to be useful in diagnosing gastric cancer with great precision&#44; detecting blind points and lesions of less than 5&#8201;mm&#59; in this way&#44; it distinguishes between malignant and non-cancerous areas in the stomach&#44; thereby heralding a substantial improvement in gastric cancer screening quality&#46; Similarly&#44; AI is useful in assessing the depth of invasion of gastric cancer&#44; distinguishing between lesions that invade more than 500 &#956;m of the submucosa and more superficial lesions&#46;<a class="elsevierStyleCrossRefs" href="#bib0015"><span class="elsevierStyleSup">3&#44;12&#44;13</span></a></p><p id="par0065" class="elsevierStylePara elsevierViewall">In a recent study performed by Mori et al&#46;&#44;<a class="elsevierStyleCrossRef" href="#bib0070"><span class="elsevierStyleSup">14</span></a> which evaluated 790 images from different patients with gastric cancer&#44; AI had a sensitivity of 76&#37; and a specificity of 96&#37; in the identification of deeper cancers compared to visual inspection performed by endoscopists&#46; Similar results were reported in parallel in the study by Zhu et al&#46;<a class="elsevierStyleCrossRef" href="#bib0060"><span class="elsevierStyleSup">12</span></a></p></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0025">Identification of <span class="elsevierStyleItalic">Helicobacter pylori</span> infection</span><p id="par0070" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleItalic">Helicobacter pylori</span> has been proven to be associated with gastric cancer by inducing atrophy of the gastric mucosa&#44; as well as intestinal metaplasia&#46; Gastroscopy is useful for improving the diagnostic precision of <span class="elsevierStyleItalic">H&#46; pylori</span> gastritis&#44; although it has a sensitivity of 62&#37; and a specificity of 89&#37;&#46;<a class="elsevierStyleCrossRef" href="#bib0075"><span class="elsevierStyleSup">15</span></a> AI is useful to support decision-making related to the diagnosis of <span class="elsevierStyleItalic">H&#46; pylori</span>&#46; Shichijo et al&#46;<a class="elsevierStyleCrossRef" href="#bib0080"><span class="elsevierStyleSup">16</span></a> developed a 22-layer-deep CNN algorithm to predict <span class="elsevierStyleItalic">H&#46; pylori</span> during gastroscopy and compared its diagnostic accuracy to that of endoscopists&#46; The CNN&#39;s sensitivity&#44; specificity and accuracy were 81&#46;9&#37;&#44; 83&#46;4&#37; and 83&#46;1&#37;&#44; respectively&#46; Similarly&#44; Nakashima et al&#46;<a class="elsevierStyleCrossRef" href="#bib0050"><span class="elsevierStyleSup">10</span></a> created an AI system to diagnose <span class="elsevierStyleItalic">H&#46; pylori</span> using blue laser imaging-bright and linked colour imaging&#44; finding sensitivity figures of 96&#46;7&#37; and 96&#46;7&#37;&#44; respectively&#44; for this model&#44; sufficient for introduction into clinical practice&#46;</p></span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0030">Capsule endoscopy</span><p id="par0075" class="elsevierStylePara elsevierViewall">The capsule endoscopy is a technique developed to obtain endoscopic images of the entire small intestine to detect and diagnose different conditions&#46; Interpreting the images obtained constitutes a challenge for most gastroenterologists in that it requires a high level of concentration and dedication&#46;<a class="elsevierStyleCrossRefs" href="#bib0045"><span class="elsevierStyleSup">9&#44;11</span></a></p><p id="par0080" class="elsevierStylePara elsevierViewall">Artificial intelligence&#44; specifically computer viewing and automatic learning methodologies&#44; uses algorithms focused essentially on the detection of bleeding and lesions&#44; decreased viewing time&#44; the location of the capsule&#39;s position in the small intestine and&#47;or improvements in video quality&#46; All these tools help physicians to read and interpret images&#44; thereby improving efficiency and diagnostic accuracy&#46;<a class="elsevierStyleCrossRefs" href="#bib0015"><span class="elsevierStyleSup">3&#44;17</span></a></p><p id="par0085" class="elsevierStylePara elsevierViewall">Computer-aided diagnostic algorithms help to increase diagnostic accuracy through the classification of anomalies&#46; The characteristics of endoscopically-obtained images can be classified using automatic learning algorithms&#44; such as a support vector machine&#44; a neural network or a binary classifier&#46;<a class="elsevierStyleCrossRef" href="#bib0085"><span class="elsevierStyleSup">17</span></a> The most efficacious tool used in computer-aided diagnosis is the identification of bleeding in the small intestine&#46; This AI system uses colour-based feature extraction&#44; using ratios of the intensity values of the images in the red&#44; green and blue&#44; or hue&#44; saturation and intensity domain&#44; to help distinguish bleeding-containing frames from those without bleeding&#46;<a class="elsevierStyleCrossRef" href="#bib0045"><span class="elsevierStyleSup">9</span></a></p><p id="par0090" class="elsevierStylePara elsevierViewall">Leenhardt et al&#46;<a class="elsevierStyleCrossRef" href="#bib0090"><span class="elsevierStyleSup">18</span></a> reported the use of convolutional neural networks to improve the detection of gastrointestinal angiodysplasia in the small intestine identified with wireless capsule endoscopy&#46; The sensitivity and specificity of the computer-aided diagnostic algorithm were 100&#37; and 96&#37;&#44; respectively&#44; for the detection of these vascular ectasias&#46; Moreover&#44; Tsuboi et al&#46;<a class="elsevierStyleCrossRef" href="#bib0095"><span class="elsevierStyleSup">19</span></a>&#44; after training a deep convolutional neural network based on 2&#44;237 capsule endoscopy angiodysplasia images&#44; found that they had a sensitivity and specificity of 98&#46;8&#37; and 98&#46;4&#37;&#44; respectively&#46; With regard to its effectiveness in polyp detection&#44; Saito et al&#46;<a class="elsevierStyleCrossRef" href="#bib0030"><span class="elsevierStyleSup">6</span></a> trained a deep convolutional neural network&#58; using 30&#44;584 capsule endoscopy images of protuberant lesions from 292 patients as a training image data set&#46; In total&#44; 17&#44;507 images from 93 patients were used to test the CNN&#46; The sensitivity and specificity of the conventional neural networks were 90&#46;7&#37; &#40;95&#37; CI&#58; 90&#46;0&#37;&#8211;91&#46;4&#37;&#41; and 79&#46;8&#37; &#40;95&#37; CI&#58; 79&#46;0&#37;&#8211;80&#46;6&#37;&#41;&#44; respectively&#46; In a subgroup analysis of the category of protuberant lesions&#44; such as polyps&#44; nodules&#44; epithelial tumours&#44; submucosal tumours and venous structures&#44; the sensitivities were 86&#46;5&#37;&#44; 92&#46;0&#37;&#44; 95&#46;8&#37;&#44; 77&#46;0&#37; and 94&#46;4&#37;&#44; respectively&#46;</p><p id="par0095" class="elsevierStylePara elsevierViewall">Although these systems have the potential to be an excellent method of detection&#44; identifying areas of bleeding and&#47;or vascular and neoplastic lesions&#44; there is still room for improvement and further studies are called for to achieve better diagnostic performance&#46;</p></span><span id="sec0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0035">Detection of colorectal polyps</span><p id="par0100" class="elsevierStylePara elsevierViewall">Colorectal cancer is one of the leading causes of death worldwide&#46; Colonoscopy is the technique of choice for preventing colorectal cancer&#44; the incidence of which can be reduced by adenoma detection and resection&#46; However&#44; the lesion detection rate varies between endoscopists&#44; with a percentage loss of up to 27&#37; due to factors related to the characteristics of the polyp and the operator&#46;<a class="elsevierStyleCrossRef" href="#bib0040"><span class="elsevierStyleSup">8</span></a> This reduction in lesion detection increases the likelihood that the lesion will subsequently progress to colorectal cancer&#46; For every 1&#46;0&#37; increase in the adenoma detection rate&#44; there is an associated 3&#46;0&#37; reduction in the risk of interval colorectal cancer&#46;<a class="elsevierStyleCrossRefs" href="#bib0005"><span class="elsevierStyleSup">1&#44;9</span></a></p><p id="par0105" class="elsevierStylePara elsevierViewall">AI and automatic learning systems&#44; particularly in the domain of deep learning&#44; have prompted the development of computer-aided detection programs to help endoscopists detect polyps and adenomas during colonoscopy&#44; essentially focusing on the detection of flat or small lesions&#46;<a class="elsevierStyleCrossRef" href="#bib0100"><span class="elsevierStyleSup">20</span></a> The CADe system used in <a class="elsevierStyleCrossRef" href="#fig0010">Fig&#46; 2</a> is Wision AI&#44; which helps the operator to locate polyps that are difficult to detect due to their size or location&#46;</p><elsevierMultimedia ident="fig0010"></elsevierMultimedia><p id="par0110" class="elsevierStylePara elsevierViewall">The meta-analysis of prospective trials published by Barua et al&#46;<a class="elsevierStyleCrossRef" href="#bib0100"><span class="elsevierStyleSup">20</span></a> showed that colonoscopy with AI increased the adenoma detection rate &#40;rate of 29&#46;6&#37; &#91;95&#37; CI&#58; 22&#46;2&#8211;37&#46;0&#93;&#41; and polyp detection rate compared to colonoscopy without AI &#40;rate of 19&#46;3&#37; &#91;95&#37; CI&#58; 12&#46;7&#8211;25&#46;9&#93;&#41;&#46; Another study conducted by Wang et al&#46;<a class="elsevierStyleCrossRef" href="#bib0085"><span class="elsevierStyleSup">17</span></a> found that the automatic real-time polyp detection system significantly increases the adenoma detection rate &#40;29&#46;1&#37; versus 20&#46;3&#37;&#44; p&#8201;&#60;&#8201;0&#46;001&#41;&#46; Min et al&#46; created a CADx system to predict adenomatous polyps compared to the histology of non-adenomatous polyps using colour images&#46; The system achieved a sensitivity of 83&#46;3&#37;&#44; a specificity of 70&#46;1&#37; and a precision of 78&#46;4&#37;&#44;<a class="elsevierStyleCrossRef" href="#bib0055"><span class="elsevierStyleSup">11</span></a> demonstrating that the CADe system can be combined with a CADx system to support the detection and diagnosis strategy of hyperplastic polyps that do not require polypectomies&#44; to thereby improve the workflow and workload of endoscopists and pathologists&#46;</p></span><span id="sec0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Endoscopic ultrasound</span><p id="par0115" class="elsevierStylePara elsevierViewall">Endoscopic ultrasound &#40;EU&#41; has been established as an important tool for the diagnosis and treatment of gastrointestinal diseases&#44; although it has certain limitations&#44; such as image interpretation&#46;<a class="elsevierStyleCrossRef" href="#bib0105"><span class="elsevierStyleSup">21</span></a> The processing and analysis of EU images using AI-related CAD &#40;AI-CAD&#41; can overcome these limitations&#46;<a class="elsevierStyleCrossRef" href="#bib0110"><span class="elsevierStyleSup">22</span></a></p><p id="par0120" class="elsevierStylePara elsevierViewall">EU-based CNN data are still limited&#44; although some studies have reported positive results with its use&#46; The study performed by Chang et al&#46;&#44; in which they developed a EU-CNN for discriminating gastric subepithelial tumours in EU images&#44; distinguishing between GIST and leiomyomas&#44; obtained an AUC per image of 0&#46;9234&#44; with a corresponding sensitivity of 95&#46;6&#37; and a specificity of 82&#46;1&#37;&#44; and an AUC per patient of 0&#46;9929&#44; with a corresponding sensitivity of 100&#46;0&#37; and specificity of 85&#46;7&#37;&#46;<a class="elsevierStyleCrossRef" href="#bib0115"><span class="elsevierStyleSup">23</span></a> These findings could be due to EU-CNN&#39;s capacity to analyse images at pixel level&#44; which is difficult for humans to accomplish&#46; In another study&#44; Minoda et al&#46;<a class="elsevierStyleCrossRef" href="#bib0110"><span class="elsevierStyleSup">22</span></a> obtained similar findings&#44; concluding that EU-AI delivers high-performance in the prediction of GIST and good prediction for the diagnosis of gastric subepithelial tumours&#46;<a class="elsevierStyleCrossRef" href="#bib0115"><span class="elsevierStyleSup">23</span></a> Research is still ongoing into other uses of AI in EU&#44; such as EU elastography&#44; EU with contrast and EU-guided fine-needle aspiration&#46; While the results seem to be positive for evaluating both benign and malignant conditions&#44; further studies are still required&#46;<a class="elsevierStyleCrossRef" href="#bib0105"><span class="elsevierStyleSup">21</span></a></p></span><span id="sec0045" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0045">Costs to health systems</span><p id="par0125" class="elsevierStylePara elsevierViewall">AI has been implemented effectively in different endoscopic techniques&#46; Although it is expected to be accompanied by a reduction in costs&#44; at this moment in time the evidence is scant&#46; A single study in the literature&#44; published by Mori et al&#46;&#44;<a class="elsevierStyleCrossRef" href="#bib0120"><span class="elsevierStyleSup">24</span></a> addresses this topic&#46; The authors calculated the costs of colonoscopy applying an AI-aided diagnosis strategy and not resecting small polyps defined as non-neoplastic compared to the approach of resecting all polyps identified&#46; In 207 patients with 250 small polyps located in the rectum and sigmoid colon&#44; procedure costs fell by 18&#46;9&#37;&#44; 6&#46;9&#37;&#44; 7&#46;6&#37; and 10&#46;9&#37; in Japan&#44; England&#44; Norway and the United States&#44; respectively&#44; using the first strategy compared to the second type of approach&#46;</p></span><span id="sec0050" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0050">Conclusion</span><p id="par0130" class="elsevierStylePara elsevierViewall">AI algorithms initially emerged for the purpose of limiting intraoperative variability&#44; preventing human error and reducing diagnostic failures&#46; As such&#44; they lead to increased productivity&#44; capacity and diagnostic quality&#44; and facilitate a more efficient way of working that has a positive impact on patient care&#46; In the field of gastrointestinal endoscopy&#44; AI has progressed significantly in recent years&#44; particularly in terms of its potential impact in improving various aspects of endoscopy quality&#46;</p><p id="par0135" class="elsevierStylePara elsevierViewall">The future of AI is promising&#44; with multiple studies showing that it can improve the detection rate of numerous conditions&#44; such as the identification of polypoid lesions&#44; the detection of gastrointestinal cancers and small intestine bleeding areas&#44; and even the endoscopic identification of <span class="elsevierStyleItalic">H&#46; pylori</span>&#46;</p><p id="par0140" class="elsevierStylePara elsevierViewall">Despite all these breakthroughs&#44; there are still challenges in terms of its application in clinical practice&#46; High-quality prospective clinical trials are required to evaluate the true clinical impact and the impact on costs for healthcare systems&#46; Moreover&#44; many more endoscopic images may potentially be required for the database&#46; This will ensure continuous improvement of the models through regular updates and lead to reliable performance in the clinical setting&#46; We believe that this new technology for endoscopy could be implemented on a large scale in clinical practice in the near future&#46;</p></span><span id="sec0055" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0055">Funding</span><p id="par0145" class="elsevierStylePara elsevierViewall">Non-funded study&#46;</p></span><span id="sec0060" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0060">Authors</span><p id="par0150" class="elsevierStylePara elsevierViewall">All the authors contributed equally to this article&#46;</p></span><span id="sec0065" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0065">Conflicts of interest</span><p id="par0155" class="elsevierStylePara elsevierViewall">Kenneth Ernest-Su&#225;rez is a consultant for Janssen&#44; Pfizer&#44; Astra Zeneca&#44; Ferring and Sandoz&#46;</p><p id="par0160" class="elsevierStylePara elsevierViewall">Tyler M&#46; Berzin has acted as a consultant for Wision AI&#44; Magentiq Eye&#44; Docbot&#44; Endovigilant and Medtronic&#46;</p><p id="par0165" class="elsevierStylePara elsevierViewall">The remaining authors have no conflicts of interest to declare&#46;</p></span></span>"
    "textoCompletoSecciones" => array:1 [
      "secciones" => array:14 [
        0 => array:2 [
          "identificador" => "sec0005"
          "titulo" => "Introduction"
        ]
        1 => array:2 [
          "identificador" => "sec0010"
          "titulo" => "Endoscopic applications of AI in Gastroenterology"
        ]
        2 => array:2 [
          "identificador" => "sec0015"
          "titulo" => "Oesophageal cancer and Barrett&#39;s oesophagus"
        ]
        3 => array:2 [
          "identificador" => "sec0020"
          "titulo" => "Gastric cancer"
        ]
        4 => array:2 [
          "identificador" => "sec0025"
          "titulo" => "Identification of Helicobacter pylori infection"
        ]
        5 => array:2 [
          "identificador" => "sec0030"
          "titulo" => "Capsule endoscopy"
        ]
        6 => array:2 [
          "identificador" => "sec0035"
          "titulo" => "Detection of colorectal polyps"
        ]
        7 => array:2 [
          "identificador" => "sec0040"
          "titulo" => "Endoscopic ultrasound"
        ]
        8 => array:2 [
          "identificador" => "sec0045"
          "titulo" => "Costs to health systems"
        ]
        9 => array:2 [
          "identificador" => "sec0050"
          "titulo" => "Conclusion"
        ]
        10 => array:2 [
          "identificador" => "sec0055"
          "titulo" => "Funding"
        ]
        11 => array:2 [
          "identificador" => "sec0060"
          "titulo" => "Authors"
        ]
        12 => array:2 [
          "identificador" => "sec0065"
          "titulo" => "Conflicts of interest"
        ]
        13 => array:1 [
          "titulo" => "References"
        ]
      ]
    ]
    "pdfFichero" => "main.pdf"
    "tienePdf" => true
    "fechaRecibido" => "2021-06-21"
    "fechaAceptado" => "2021-11-07"
    "NotaPie" => array:1 [
      0 => array:2 [
        "etiqueta" => "&#9734;"
        "nota" => "<p class="elsevierStyleNotepara" id="npar0005">Please cite this article as&#58; Aguilera-Chuchuca MJ&#44; S&#225;nchez-Luna SA&#44; Gonz&#225;lez Su&#225;rez B&#44; Ernest-Su&#225;rez K&#44; Gelrud A&#44; Berzin TM&#44; El papel emergente de la inteligencia artificial en la endoscopia gastrointestinal&#58; una revisi&#243;n de la literatura&#44; Gastroenterolog&#237;a y Hepatolog&#237;a&#46; 2022&#59;96&#58;492&#8211;497&#46;</p>"
      ]
    ]
    "multimedia" => array:3 [
      0 => array:8 [
        "identificador" => "fig0005"
        "etiqueta" => "Figure 1"
        "tipo" => "MULTIMEDIAFIGURA"
        "mostrarFloat" => true
        "mostrarDisplay" => false
        "figura" => array:1 [
          0 => array:4 [
            "imagen" => "gr1.jpeg"
            "Alto" => 473
            "Ancho" => 1255
            "Tamanyo" => 106065
          ]
        ]
        "detalles" => array:1 [
          0 => array:3 [
            "identificador" => "at0005"
            "detalle" => "Figure "
            "rol" => "short"
          ]
        ]
        "descripcion" => array:1 [
          "en" => "<p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">Detection of high-grade dysplasia in a patient with Barrett&#39;s oesophagus with the real-time CADe algorithm&#46; Courtesy of DocBot Inc&#46;</p>"
        ]
      ]
      1 => array:8 [
        "identificador" => "fig0010"
        "etiqueta" => "Figure 2"
        "tipo" => "MULTIMEDIAFIGURA"
        "mostrarFloat" => true
        "mostrarDisplay" => false
        "figura" => array:1 [
          0 => array:4 [
            "imagen" => "gr2.jpeg"
            "Alto" => 595
            "Ancho" => 805
            "Tamanyo" => 91344
          ]
        ]
        "detalles" => array:1 [
          0 => array:3 [
            "identificador" => "at0010"
            "detalle" => "Figure "
            "rol" => "short"
          ]
        ]
        "descripcion" => array:1 [
          "en" => "<p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">Endoscopic images captured by the automatic polyp detection system &#40;CADe&#41;&#44; which shows colonic polyps marked on the screen by a blue square denoting their location&#46; &#40;A&#41; 3-mm polyp&#44; IIA according to the Paris classification&#46; &#40;B&#41; 5-mm polyp&#44; IS according to the Paris classification&#46; Images courtesy of Dr Tyler Berzin&#44; Co-director of the Advanced Endoscopy Department at the Beth Israel Deaconess Medical Center&#46;</p>"
        ]
      ]
      2 => array:8 [
        "identificador" => "tbl0005"
        "etiqueta" => "Table 1"
        "tipo" => "MULTIMEDIATABLA"
        "mostrarFloat" => true
        "mostrarDisplay" => false
        "detalles" => array:1 [
          0 => array:3 [
            "identificador" => "at0015"
            "detalle" => "Table "
            "rol" => "short"
          ]
        ]
        "tabla" => array:1 [
          "tablatextoimagen" => array:1 [
            0 => array:1 [
              "tabla" => array:1 [
                0 => """
                  <table border="0" frame="\n
                  \t\t\t\t\tvoid\n
                  \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n
                  \t\t\t\t\ttable-head\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Artificial intelligence system&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t\t\t</th><th class="td" title="\n
                  \t\t\t\t\ttable-head\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Company&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t\t\t</th><th class="td" title="\n
                  \t\t\t\t\ttable-head\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Type&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t\t\t</th><th class="td" title="\n
                  \t\t\t\t\ttable-head\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Function&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">ENDO-AID&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">Olympus&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">CADe&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">Detection of possible lesions such as colonic polyps&#44; malignant neoplasms and adenomas&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">The GI Genius&#8482;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">Medtronic&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">CADe&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">Wision AI&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">Shanghai Wision AI Co&#46;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">CADe&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">Discovery&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">Pentax Medical&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">CADe&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">ME-APDS&#8482;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">Magentiq Eye LTD&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">CADe&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">Ultivision&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">Docbot&#44; Inc&#46;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">CADe&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">EndoBRAIN-EYE&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">Cybernet&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">CADe&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">EndoAngel&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">Wuhan EndoAngel Medical Technology Company&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">CADe&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">CAD EYE&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">Fujifilm&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">CADe-CADx&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">Real-time detection and diagnosis of the histology of gastrointestinal lesions&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">CADDIE&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">OdinVision&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">CADe-CADx&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr></tbody></table>
                  """
              ]
            ]
          ]
        ]
        "descripcion" => array:1 [
          "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Examples of artificial intelligence systems&#46;</p>"
        ]
      ]
    ]
    "bibliografia" => array:2 [
      "titulo" => "References"
      "seccion" => array:1 [
        0 => array:2 [
          "identificador" => "bibs0005"
          "bibliografiaReferencia" => array:24 [
            0 => array:3 [
              "identificador" => "bib0005"
              "etiqueta" => "1"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Artificial intelligence in gastrointestinal endoscopy&#58; The future is almost here"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:4 [
                            0 => "M&#46; Alagappan"
                            1 => "J&#46;R&#46;G&#46; Brown"
                            2 => "Y&#46; Mori"
                            3 => "T&#46;M&#46; Berzin"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.4253/wjge.v10.i10.239"
                      "Revista" => array:7 [
                        "tituloSerie" => "World J Gastrointest Endosc"
                        "fecha" => "2018"
                        "volumen" => "10"
                        "numero" => "10"
                        "paginaInicial" => "239"
                        "paginaFinal" => "249"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/30364792"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            1 => array:3 [
              "identificador" => "bib0010"
              "etiqueta" => "2"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Position statement on priorities for artificial intelligence in GI endoscopy&#58; a report by the ASGE Task Force"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:6 [
                            0 => "T&#46;M&#46; Berzin"
                            1 => "S&#46; Parasa"
                            2 => "M&#46;B&#46; Wallace"
                            3 => "S&#46;A&#46; Gross"
                            4 => "A&#46; Repici"
                            5 => "P&#46; Sharma"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1016/j.gie.2020.06.035"
                      "Revista" => array:6 [
                        "tituloSerie" => "Gastrointest Endosc"
                        "fecha" => "2020"
                        "volumen" => "92"
                        "paginaInicial" => "951"
                        "paginaFinal" => "959"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/32565188"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            2 => array:3 [
              "identificador" => "bib0015"
              "etiqueta" => "3"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "A primer on artificial intelligence and its application to endoscopy"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:2 [
                            0 => "D&#46; Chahal"
                            1 => "M&#46;F&#46; Byrne"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1016/j.gie.2020.04.074"
                      "Revista" => array:5 [
                        "tituloSerie" => "Gastrointest Endosc"
                        "fecha" => "2020"
                        "volumen" => "3"
                        "paginaInicial" => "222"
                        "paginaFinal" => "232"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            3 => array:3 [
              "identificador" => "bib0020"
              "etiqueta" => "4"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Review of computational methods for the detection and classification of polyps in colonoscopy imaging"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:5 [
                            0 => "C&#46; S&#225;nchez-Montes"
                            1 => "J&#46; Bernal"
                            2 => "A&#46; Garc&#237;a-Rodr&#237;guez"
                            3 => "H&#46; C&#243;rdova"
                            4 => "G&#46; Fern&#225;ndez-Esparrach"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1016/j.gastrohep.2019.11.004"
                      "Revista" => array:7 [
                        "tituloSerie" => "Gastroenterol Hepatol"
                        "fecha" => "2020"
                        "volumen" => "43"
                        "numero" => "4"
                        "paginaInicial" => "222"
                        "paginaFinal" => "232"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/32143918"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            4 => array:3 [
              "identificador" => "bib0025"
              "etiqueta" => "5"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "The potential for artificial intelligence in healthcare"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:2 [
                            0 => "T&#46; Davenport"
                            1 => "R&#46; Kalakota"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.7861/futurehosp.6-1-s94"
                      "Revista" => array:7 [
                        "tituloSerie" => "Future Healthc J"
                        "fecha" => "2019"
                        "volumen" => "6"
                        "numero" => "2"
                        "paginaInicial" => "94"
                        "paginaFinal" => "98"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/31363613"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            5 => array:3 [
              "identificador" => "bib0030"
              "etiqueta" => "6"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Automatic detection and classification of protruding lesions in wireless capsule endoscopy images based on a deep convolutional neural network"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => true
                          "autores" => array:6 [
                            0 => "H&#46; Saito"
                            1 => "T&#46; Aoki"
                            2 => "K&#46; Aoyama"
                            3 => "Y&#46; Kato"
                            4 => "A&#46; Tsuboi"
                            5 => "A&#46; Yamada"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1016/j.gie.2020.01.054"
                      "Revista" => array:7 [
                        "tituloSerie" => "Gastrointest Endosc"
                        "fecha" => "2020"
                        "volumen" => "92"
                        "numero" => "1"
                        "paginaInicial" => "144"
                        "paginaFinal" => "151"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/32084410"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            6 => array:3 [
              "identificador" => "bib0035"
              "etiqueta" => "7"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Use of artificial intelligence-based analytics from live colonoscopies to optimize the quality of the colonoscopy examination in real time&#58; proof of concept"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:4 [
                            0 => "S&#46; Thakkar"
                            1 => "N&#46;M&#46; Carleton"
                            2 => "B&#46; Rao"
                            3 => "A&#46; Syed"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1053/j.gastro.2019.12.035"
                      "Revista" => array:7 [
                        "tituloSerie" => "Gastroenterology"
                        "fecha" => "2020"
                        "volumen" => "158"
                        "numero" => "5"
                        "paginaInicial" => "1219"
                        "paginaFinal" => "1221"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/31945357"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            7 => array:3 [
              "identificador" => "bib0040"
              "etiqueta" => "8"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates&#58; a prospective randomised controlled study"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => true
                          "autores" => array:6 [
                            0 => "P&#46; Wang"
                            1 => "T&#46;M&#46; Berzin"
                            2 => "J&#46;R&#46; Glissen Brown"
                            3 => "S&#46; Bharadwaj"
                            4 => "A&#46; Becq"
                            5 => "X&#46; Xiao"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1136/gutjnl-2018-317500"
                      "Revista" => array:7 [
                        "tituloSerie" => "Gut"
                        "fecha" => "2019"
                        "volumen" => "68"
                        "numero" => "10"
                        "paginaInicial" => "1813"
                        "paginaFinal" => "1819"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/30814121"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            8 => array:3 [
              "identificador" => "bib0045"
              "etiqueta" => "9"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Artificial intelligence in gastrointestinal endoscopy&#58; general overview"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:2 [
                            0 => "A&#46;E&#46;L&#46; Hajjar"
                            1 => "J&#46;F&#46; Rey"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1097/CM9.0000000000000623"
                      "Revista" => array:6 [
                        "tituloSerie" => "Chin Medl J"
                        "fecha" => "2020"
                        "volumen" => "133"
                        "numero" => "3"
                        "paginaInicial" => "326"
                        "paginaFinal" => "334"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            9 => array:3 [
              "identificador" => "bib0050"
              "etiqueta" => "10"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Artificial intelligence diagnosis of <span class="elsevierStyleItalic">Helicobacter pylori</span> infection using blue laser imaging-bright and linked color imaging &#58; a single-center prospective study"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:4 [
                            0 => "H&#46; Nakashima"
                            1 => "H&#46; Kawahira"
                            2 => "H&#46; Kawachi"
                            3 => "N&#46; Sakaki"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:2 [
                    0 => array:2 [
                      "doi" => "10.20524/aog.2018.0269"
                      "Revista" => array:6 [
                        "tituloSerie" => "Ann Gastroenterol"
                        "fecha" => "2018"
                        "volumen" => "31"
                        "paginaInicial" => "462"
                        "paginaFinal" => "468"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/29991891"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                    1 => array:2 [
                      "doi" => "10.20524/aog.2018.0269"
                      "WWW" => array:1 [
                        "link" => "https&#58;&#47;&#47;doi&#46;org&#47;10&#46;20524&#47;aog&#46;2018&#46;0269"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            10 => array:3 [
              "identificador" => "bib0055"
              "etiqueta" => "11"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Artificial intelligence in gastrointestinal endoscopy"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:4 [
                            0 => "A&#46;P&#46; Abadir"
                            1 => "M&#46;F&#46; Ali"
                            2 => "W&#46; Karnes"
                            3 => "J&#46;B&#46; Samarasena"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:2 [
                    0 => array:2 [
                      "doi" => "10.5946/ce.2020.038"
                      "Revista" => array:6 [
                        "tituloSerie" => "Clin Endosc"
                        "fecha" => "2020"
                        "volumen" => "53"
                        "paginaInicial" => "132"
                        "paginaFinal" => "141"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/32252506"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                    1 => array:2 [
                      "doi" => "10.5946/ce.2020.038"
                      "WWW" => array:1 [
                        "link" => "https&#58;&#47;&#47;doi&#46;org&#47;10&#46;5946&#47;ce&#46;2020&#46;038"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            11 => array:3 [
              "identificador" => "bib0060"
              "etiqueta" => "12"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Application of convolutional neural network in the diagnosis of the invasion depth of gastric cancer based on conventional endoscopy"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:5 [
                            0 => "Y&#46; Zhu"
                            1 => "Q&#46; Wang"
                            2 => "M&#46; Xu"
                            3 => "Z&#46; Zhang"
                            4 => "J&#46; Cheng"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1016/j.gie.2018.11.011"
                      "Revista" => array:6 [
                        "tituloSerie" => "Gastrointest Endosc"
                        "fecha" => "2019"
                        "volumen" => "89"
                        "paginaInicial" => "806"
                        "paginaFinal" => "815"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/30452913"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            12 => array:3 [
              "identificador" => "bib0065"
              "etiqueta" => "13"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Comparing blind spots of unsedated ultrafine&#44; sedated&#44; and unsedated conventional gastroscopy with and without artificial intelligence&#58; a prospective&#44; single-blind&#44; 3-parallel-group&#44; randomized&#44; single-center trial"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => true
                          "autores" => array:6 [
                            0 => "D&#46; Chen"
                            1 => "L&#46; Wu"
                            2 => "Y&#46; Li"
                            3 => "J&#46; Zhang"
                            4 => "J&#46; Liu"
                            5 => "L&#46; Huang"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1016/j.gie.2019.09.016"
                      "Revista" => array:6 [
                        "tituloSerie" => "Gastrointest Endosc"
                        "fecha" => "2020"
                        "volumen" => "91"
                        "paginaInicial" => "332"
                        "paginaFinal" => "339"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/31541626"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            13 => array:3 [
              "identificador" => "bib0070"
              "etiqueta" => "14"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Artificial intelligence for early gastric cancer&#58; early promise and the path ahead"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:3 [
                            0 => "Y&#46; Mori"
                            1 => "T&#46;M&#46;B&#46; Ms"
                            2 => "S&#46; Kudo"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1016/j.gie.2018.12.019"
                      "Revista" => array:7 [
                        "tituloSerie" => "Gastrointest Endosc"
                        "fecha" => "2019"
                        "volumen" => "89"
                        "numero" => "4"
                        "paginaInicial" => "816"
                        "paginaFinal" => "817"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/30902205"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            14 => array:3 [
              "identificador" => "bib0075"
              "etiqueta" => "15"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Current status and future perspective"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => true
                          "autores" => array:6 [
                            0 => "Y&#46; Mori"
                            1 => "S&#46; Kudo"
                            2 => "H&#46;E&#46;N&#46; Mohmed"
                            3 => "M&#46; Misawa"
                            4 => "N&#46; Ogata"
                            5 => "H&#46; Itoh"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1111/den.13317"
                      "Revista" => array:6 [
                        "tituloSerie" => "Dig Endosc"
                        "fecha" => "2019"
                        "volumen" => "31"
                        "paginaInicial" => "378"
                        "paginaFinal" => "388"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/30549317"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            15 => array:3 [
              "identificador" => "bib0080"
              "etiqueta" => "16"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "EBioMedicine application of convolutional neural networks in the diagnosis of <span class="elsevierStyleItalic">Helicobacter pylori</span> infection based on endoscopic images"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:5 [
                            0 => "S&#46; Shichijo"
                            1 => "S&#46; Nomura"
                            2 => "K&#46; Aoyama"
                            3 => "Y&#46; Nishikawa"
                            4 => "M&#46; Miura"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1016/j.ebiom.2017.10.014"
                      "Revista" => array:6 [
                        "tituloSerie" => "EBioMedicine"
                        "fecha" => "2017"
                        "volumen" => "25"
                        "paginaInicial" => "106"
                        "paginaFinal" => "111"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/29056541"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            16 => array:3 [
              "identificador" => "bib0085"
              "etiqueta" => "17"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Effect of a deep-learning computer-aided detection system on adenoma detection during colonoscopy &#40;CADe-DB trial&#41;&#58; a double-blind randomised study"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => true
                          "autores" => array:6 [
                            0 => "P&#46; Wang"
                            1 => "X&#46; Liu"
                            2 => "T&#46;M&#46; Berzin"
                            3 => "J&#46;R&#46; Glissen Brown"
                            4 => "P&#46; Liu"
                            5 => "C&#46; Zhou"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1016/S2468-1253(19)30411-X"
                      "Revista" => array:6 [
                        "tituloSerie" => "Lancet"
                        "fecha" => "2020"
                        "volumen" => "5"
                        "numero" => "4"
                        "paginaInicial" => "343"
                        "paginaFinal" => "351"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            17 => array:3 [
              "identificador" => "bib0090"
              "etiqueta" => "18"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "CAD-CAP&#58; a 25&#44;000-image database serving the development of artificial intelligence for capsule endoscopy"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => true
                          "autores" => array:6 [
                            0 => "R&#46; Leenhardt"
                            1 => "C&#46; Li"
                            2 => "J&#46;-F&#46; Mouel"
                            3 => "G&#46; Rahmi"
                            4 => "J&#46;C&#46; Saurin"
                            5 => "F&#46; Cholet"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:2 [
                    0 => array:1 [
                      "Revista" => array:5 [
                        "tituloSerie" => "Endosc Int Open"
                        "fecha" => "2020"
                        "volumen" => "8"
                        "paginaInicial" => "415"
                        "paginaFinal" => "420"
                      ]
                    ]
                    1 => array:1 [
                      "WWW" => array:1 [
                        "link" => "https&#58;&#47;&#47;doi&#46;org&#47;10&#46;1055&#47;a-1035-9088"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            18 => array:3 [
              "identificador" => "bib0095"
              "etiqueta" => "19"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Artificial intelligence using a convolutional neural network for automatic detection of small-bowel angioectasia in capsule endoscopy images"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => true
                          "autores" => array:6 [
                            0 => "A&#46; Tsuboi"
                            1 => "S&#46; Oka"
                            2 => "K&#46; Aoyama"
                            3 => "H&#46; Saito"
                            4 => "T&#46; Aoki"
                            5 => "A&#46; Yamada"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1111/den.13507"
                      "Revista" => array:7 [
                        "tituloSerie" => "Dig Endosc"
                        "fecha" => "2020"
                        "volumen" => "32"
                        "numero" => "3"
                        "paginaInicial" => "382"
                        "paginaFinal" => "390"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/31392767"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            19 => array:3 [
              "identificador" => "bib0100"
              "etiqueta" => "20"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Artificial intelligence for polyp detection during colonoscopy&#58; a systematic review and meta-analysis"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => true
                          "autores" => array:6 [
                            0 => "I&#46; Barua"
                            1 => "D&#46; Vinsard"
                            2 => "H&#46; Jodal"
                            3 => "M&#46; L&#248;berg"
                            4 => "M&#46; Kalager"
                            5 => "&#216;&#46; Holme"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1055/a-1201-7165"
                      "Revista" => array:2 [
                        "tituloSerie" => "Endoscopy"
                        "fecha" => "2020"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            20 => array:3 [
              "identificador" => "bib0105"
              "etiqueta" => "21"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Artificial intelligence the new wave of innovation"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:3 [
                            0 => "Enshuo Liu"
                            1 => "S&#46; Manoop"
                            2 => "Siyu Sun Bhutani"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:2 [
                    0 => array:1 [
                      "Libro" => array:3 [
                        "fecha" => "2021"
                        "paginaInicial" => "4"
                        "paginaFinal" => "15"
                      ]
                    ]
                    1 => array:1 [
                      "WWW" => array:1 [
                        "link" => "https&#58;&#47;&#47;doi&#46;org&#47;10&#46;4103&#47;EUS-D-21-00052"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            21 => array:3 [
              "identificador" => "bib0110"
              "etiqueta" => "22"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Efficacy of endoscopic ultrasound with artificial intelligence for the diagnosis of gastrointestinal stromal tumors"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => true
                          "autores" => array:6 [
                            0 => "Y&#46; Minoda"
                            1 => "E&#46; Ihara"
                            2 => "K&#46; Komori"
                            3 => "H&#46; Ogino"
                            4 => "Y&#46; Otsuka"
                            5 => "T&#46; Chinen"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1007/s00535-020-01725-4"
                      "Revista" => array:7 [
                        "tituloSerie" => "J Gastroenterol"
                        "fecha" => "2020"
                        "volumen" => "55"
                        "numero" => "12"
                        "paginaInicial" => "1119"
                        "paginaFinal" => "1126"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/32918102"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            22 => array:3 [
              "identificador" => "bib0115"
              "etiqueta" => "23"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Convolutional neural network-based object detection model to identify gastrointestinal stromal tumors in endoscopic ultrasound images"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => true
                          "autores" => array:6 [
                            0 => "C&#46;K&#46; Oh"
                            1 => "T&#46; Kim"
                            2 => "Y&#46;K&#46; Cho"
                            3 => "D&#46;Y&#46; Cheung"
                            4 => "B&#46;I&#46; Lee"
                            5 => "Y&#46;S&#46; Cho"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1111/jgh.15653"
                      "Revista" => array:2 [
                        "tituloSerie" => "J Gastroenterol Hepatol"
                        "fecha" => "2021"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            23 => array:3 [
              "identificador" => "bib0120"
              "etiqueta" => "24"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Cost savings in colonoscopy with artificial intelligence-aided polyp diagnosis&#58; an add-on analysis of a clinical trial &#40;with Video&#41;"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => true
                          "autores" => array:6 [
                            0 => "Y&#46; Mori"
                            1 => "Kudo Sei"
                            2 => "J&#46;E&#46; East"
                            3 => "A&#46; Rastogi"
                            4 => "M&#46; Bretthauer"
                            5 => "M&#46; Misawa"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1016/j.gie.2020.03.3759"
                      "Revista" => array:6 [
                        "tituloSerie" => "Gastrointest Endosc"
                        "fecha" => "2020"
                        "volumen" => "92"
                        "paginaInicial" => "905"
                        "paginaFinal" => "911"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/32240683"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
          ]
        ]
      ]
    ]
  ]
  "idiomaDefecto" => "en"
  "url" => "/24443824/0000004500000006/v1_202206220657/S2444382422001031/v1_202206220657/en/main.assets"
  "Apartado" => array:4 [
    "identificador" => "48444"
    "tipo" => "SECCION"
    "en" => array:2 [
      "titulo" => "Special article"
      "idiomaDefecto" => true
    ]
    "idiomaDefecto" => "en"
  ]
  "PDF" => "https://static.elsevier.es/multimedia/24443824/0000004500000006/v1_202206220657/S2444382422001031/v1_202206220657/en/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/"
  "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2444382422001031?idApp=UINPBA00004N"
]
Article information
ISSN: 24443824
Original language: English
The statistics are updated each day
Year/Month Html Pdf Total
2024 November 4 0 4
2024 October 18 7 25
2024 September 23 9 32
2024 August 35 10 45
2024 July 32 12 44
2024 June 25 15 40
2024 April 2 0 2
2024 March 1 0 1
2023 December 1 0 1
2023 November 1 0 1
2023 October 1 0 1
2023 March 2 0 2
2022 June 1 0 1
Show all

Follow this link to access the full text of the article

es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos