covid
Buscar en
Infectio
Toda la web
Inicio Infectio Fototerapia para el tratamiento de la leishmaniasis cutánea
Journal Information
Vol. 15. Issue 4.
Pages 277-288 (December 2011)
Share
Share
Download PDF
More article options
Vol. 15. Issue 4.
Pages 277-288 (December 2011)
Articulo De Revisión
Open Access
Fototerapia para el tratamiento de la leishmaniasis cutánea
Phototherapy in treatment of cutaneous leishmaniasis
Visits
3800
Viviana M. Taylor1, David L. Cedeño2, Sara M. Robledo1,
Corresponding author
srobledo@guajiros.udea.edu

Correspondencia: PECET, Sede de Investigación Universitaria, Universidad de Antioquia, Calle 62 N° 52-59, Laboratorio 632, Medellín, Colombia. Teléfono: (574) 219-6503.
1 Programa de Estudio y Control de Enfermedades Tropicales, Universidad de Antioquia, Medellín, Colombia
2 Departamento de Química, Illinois State University, Normal, Illinois, USA
This item has received

Under a Creative Commons license
Article information
Resumen

La leishmaniasis es una enfermedad endémica en 98 países, con más de 350 millones de personas en riesgo de adquirir la infección y 12 millones de casos. Los antimonios pentavalentes, la anfotericina B y la miltefosina han sido el tratamiento de elección para todas las formas de leishmaniasis. Sin embargo, desventajas como el alto costo, la duración del tratamiento y los efectos tóxicos asociados, promueven la falta de cumplimiento del tratamiento o su abandono y la aparición de cepas resistentes o poco sensibles al medicamento. Estos factores han estimulado la búsqueda de alternativas terapéuticas que sean económicas, sin efectos adversos y con resultados cosméticos favorables. La fototerapia es un procedimiento en el cual un agente fotosensibilizador, al ser activado por luz da lugar a la producción de especies reactivas del oxígeno. Este tratamiento utilizado en varias formas de cáncer, herpes y otras enfermedades e infecciones localizadas, surge como una prometedora estrategia para la leishmaniasis cutánea, con amplias ventajas como bajo costo, fácil manejo y resolución total de la lesión, haciéndola favorable frente a otras alternativas de manejo de la enfermedad.

Palabras clave:
fototerapia
Leishmania spp
agente fotosensibilizador
luz
especies reactivas de oxígeno
Abstract

Leishmaniasis is an endemic disease in 98 countries around the world, with 12 million cases and more than 350 million people at risk of acquiring infection. Available drugs such as pentavalent antimony, amphotericin B and miltefosine, have been the treatment of choice for all clinical forms of leishmaniasis. However, disadvantages such as high cost, duration of treatment and toxicity, promote non-adherence or neglect of treatment and the emergence of resistant or less sensitive to medicine. These problems have stimulated the search of new therapeutic alternatives that are affordable, without adverse effects and favorable cosmetic results. Phototherapy is a procedure in which an agent photosensitizer when activated by light leads to production reactive oxygen species. This therapy used in the treatment of various forms of cancer, herpes and other and localized infectious diseases, is emerging as a promising strategy for the treatment of cutaneous leishmaniasis with large advantages such as low cost, easy handling and total resolution injury, becoming a very promising alternative compared to the traditional treatment approaches.

Key words:
photodynamic therapy
Leishmania spp
agent photosensitizer
light
reactive oxygen species
Full text is only aviable in PDF
Bibliografía
[1.]
WHO Control of the leishmaniasis.
Reports of a meeting of the WHO expert committee on the control of leishmaniasis.
WHO, (2010),
[2.]
Vigilancia epidemiológica de las enfermedades transmitidas por vectores, 2010. Fecha de consulta: 9 de Febrero de 2011. Disponible en: http://www.medellin.gov.co/irj/go/km/docs/wpccontent/Sites/Subportal%20del%20Ciudadano/Salud/Secciones/Publicaciones/Documentos/2010/Boletin%2001-2010/Anexo03.pdf.
[3.]
Instituto Nacional de Salud: Subdirección de Vigilancia y Control de Salud Pública. Boletín epidemiológico semanal. Semana epidemiológica número 39 de 2011 (25 de septiembre al 1 de octubre de 2011). Fecha de consulta: 24 de Noviembre de 2011. Disponible en http://www.minproteccionsocial.gov.co/Documentos%20y%20Publicaciones/Boletin%20epidemiol%C3%B3gico%20SE%2039.pdf
[4.]
T. Hasan, B. Ortel, A.C.E. Moor, B.W. Pogue.
Photodynamic therapy of cancer.
Oncology, 6 (2003), pp. 605-622
[5.]
O.E. Akilov, K. O’Riordan, S. Kosaka, T. Hasan.
Photodynamic therapy against intracellular pathogens: Problems and potentials.
Med Laser Appl, 21 (2006), pp. 251-260
[6.]
C. Hooper.
Photodynamic therapy: A clinical reality in the treatment of cancer.
Lancet Oncol, 1 (2000), pp. 212-219
[7.]
C.A. Robertson, D. Hawkins, H. Abrahamse.
Photodynamic therapy (PDT): A short review on cellular mechanisms and cancer research applications for PDT.
Photochem Photobiol B, 96 (2009), pp. 1-8
[8.]
A.P. Castano, T.N. Demidova, M.R. Hamblin.
Mechanisms in photodynamic therapy. Part one. Photosensitizers, photochemistry and cellular localization.
Photodiagn Photodyn Ther, 1 (2004), pp. 279-293
[9.]
A.L. Derycke, P.A. de Witte.
Liposomes for photodynamic therapy.
Adv Drug Deliver Rev, 56 (2004), pp. 17-30
[10.]
C.M. Négre, S.Y. Hanboula, M. Monsigny, A.C. Roche, R.M. Mayer, M. Hommel.
Antileishmanial drug targeting through glycosylated polymers specifically internalized by macrophage membrane lectins.
Antimicrob Agents Chemother, 36 (1992), pp. 2228-2232
[11.]
K. Chen, A. Preuß, S. Hackbarth, M. Wacker, K. Langer, B. Röder.
Novel photosensitizer-protein nanoparticles for photodynamic therapy.
J Photochem Photobiol, 96 (2009), pp. 66-74
[12.]
M. Detty, S.L. Gibson, S.J. Wagner.
Current clinical and preclinical photosensitizers for use in photodynamic therapy.
J Med Chem, 47 (2004), pp. 3897-3915
[13.]
R. Allison, G. Downie, R. Cuenca, X. Hua Hu, C. Childs, C.P. Sibata.
Photosensitizers in clinical PDT.
Photodiagn Photodyn Ther, 1 (2004), pp. 27-42
[14.]
L. Josefsen, R.W. Boyle.
Photodynamic therapy: novel third-generation photosensitizer's one step closer?.
Brit J Clin Pharmacol, 154 (2008), pp. 1-3
[15.]
T.J. Dougherty, C.J. Gomer, B.W. Henderson.
Photodynamic therapy.
J Natl Cancer Inst, 90 (1998), pp. 889-905
[16.]
C.S. Chang, K.P. Chang.
Heme requirement and acquisition by extracellular and intracellular stages of Leishmania mexicana amazonensis.
Mol Biochem Parasitology, 16 (1985), pp. 267-276
[17.]
A.P. Castano, T.N. Demidovaa, M.R. Hamblin.
Mechanisms in photodynamic therapy: part two cellular signaling, cell metabolism, modes of cell death.
Photodiagn Photodyn Ther, 2 (2005), pp. 1-23
[18.]
M.P. Santini, C. Talora, T. Seki, L. Bolgan, G.P. Dotto.
Cross talk among calcineurin, Sp1/Sp3, and NFAT in control of p21 (WAF1/CIP1) expression in keratinocyte differentiation.
Proc Natl Acad Sci USA, 98 (2001), pp. 9575-9580
[19.]
R.D. Almeida, B.J. Manadas, A.P. Carvalho, C.B. Duarte.
Intracellular signaling mechanism in photodynamic therapy.
Biochem Biophys, 1704 (2004), pp. 59-86
[20.]
L.O. Svaasand, P. Wyss, Wyss Mt, Y. Tadir, B.J. Tromberg, M.W. Berns.
Dosimetry model for photodynamic therapy with topically administered photosensitisers.
[21.]
B.C. Wilson, W.P. Jeeves, D.M. Lowe.
In vivo and post mortem measurements of the attenuation spectra of light in mammalian tissues.
Photochem Photobiol, 42 (1985), pp. 153-162
[22.]
M.R. Hamblin, T. Zahra, C.H. Contag, A.T. McManus, T. Hasan.
Optical monitoring and treatment of potentially lethal wound infections in vivo.
J Infect Dis, 187 (2003), pp. 1717-1725
[23.]
I. Cecic, M. Korbelik.
Mediators of peripheral blood neutrophilia induced by photodynamic therapy of solid tumors.
Cancer Lett, 183 (2002), pp. 43-51
[24.]
D. Nowis, T. Stoktosa, M. Legar, T. Issat, M. Jakóbisiak, J. Galab.
The influence of photodynamic therapy on the immune response.
Photodiagn Photodyn Ther, 2 (2005), pp. 283-298
[25.]
A. Juarranz, B. Jaén, F. Sanz-Rodríguez, J. Cuevas, S. González.
Photodynamic therapy of cancer: Basic principles and applications.
Clin Trans Oncol, 10 (2009), pp. 148-154
[26.]
G. Canti, D. Lattuada, A. Nicolin, P. Taroni, G. Valentini, R. Cubeddu.
Immunopharmacology studies on photosensitizers used in photodynamic therapy (PDT).
Photodyn Ther Cancer, 2078 (1994), pp. 268-275
[27.]
S.O. Gollnick, C.M. Brackett.
Enhancement of anti-tumor immunity by photodynamic therapy.
Immunol Res, 46 (2010), pp. 216-226
[28.]
A.P. Castano, P. Mioz, M.R. Hamblin.
Photodynamic therapy and antitumor immunity.
Nat Rev Cancer, 6 (2006), pp. 535-545
[29.]
A. Castano, P. Mroz, M.X. Wu, M.R. Hamblin.
Photodynamic therapy plus low-dose cyclophosphamide generates antitumor immunity in a mouse model.
PNA, 15 (2008), pp. 5495-5500
[30.]
M. Korbelik, J. Sun.
Photodynamic therapy generated vaccine for cancer therapy.
Cancer Immunol Immunother, 55 (2005), pp. 900-909
[31.]
K. O’Riordan, O.E. Akilov, T. Hasan.
The potential for photodynamic therapy in the treatment of localized infections.
Photodiagn Photodyn Ther, 2 (2005), pp. 247-262
[32.]
M.C. Teichert, J.W. Jones, M.N. Usacheva, M.A. Biel.
Treatment of oral candidiasis with methylene blue-mediated photodynamic therapy in an immunodeficient murine model.
Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 93 (2002), pp. 155-160
[33.]
K. Muller-Breitkreutz, H. Mohr.
Infection cycle of herpes viruses after photodynamic treatment with methylene blue and light.
Beitr Infusion Transfusions Med, 34 (1997), pp. 37-42
[34.]
T. Dai, Y.Y. Huang, M.R. Hamblin.
Photodynamic therapy for localized infections. State of the art.
Photodiagn Photodyn Ther, 6 (2009), pp. 170-188
[35.]
N.C. Hepburn.
Cutaneous leishmaniasis: Current and future management.
Expert Rev Anti Infect Ther, 1 (2003), pp. 563-570
[36.]
U. González, M. Pinart, M. Rengifo-Pardo, A. Macaya, J. Alvar, J.A. Tweed.
Interventions for American cutaneous and mucocutaneous leishmaniasis.
Cochrane Collaboration, (2009), pp. 1-145
[37.]
M. Mahreen.
Cutaneous and mucocutaneous leishmaniasis: Emerging therapies and progress in disease management.
Expert Opin Pharmacother, 11 (2010), pp. 557-569
[38.]
C.D. Enk, C. Fritsch, F. Jonas, A. Nasereddin, A. Ingber, C.L. Jaffe, et al.
Treatment of cutaneous leishmaniasis with photodynamic therapy.
Arch Dermatol, 139 (2003), pp. 432-434
[39.]
O.E. Akilov, S. Kosaka, K. O’Riordan, T. Hasan.
Parasiticidal effect of delta-aminolevulinic acid-based photodynamic therapy for cutaneous leishmaniasis is indirect and mediated through the killing of the host cells.
Exp Dermatol, 16 (2007), pp. 651-660
[40.]
S. Kosaka, O.E. Akilov, K. O’Riordan, T. Hasan.
A mechanistic study of delta-aminolevulinic acid-based photodynamic therapy for cutaneous leishmaniasis.
J Invest Dermatol, 127 (2007), pp. 1546-1549
[41.]
S. Dutta, B.K. Kolli, A. Tang, S. Sassa, K.P. Chang.
Transgenic Leishmania model for delta-aminolevulinate-inducible monospecific uroporphyria: Cytolytic phototoxicity initiated by singlet oxygen-mediated inactivation of proteins and its ablation by endosomal mobilization of cytosolic uroporphyrin.
Eukaryot Cell, 7 (2008), pp. 1146-1157
[42.]
S. Dutta, D. Ray, B.K. Kolli, K.P. Chang.
Photodynamic sensitization of Leishmania amazonensis in both extracellular and intracellular stages with aluminum phtalocyanine chloride for photolysis in vitro.
Antimicrob Agents Chemother, 49 (2005), pp. 4474-4484
[43.]
P. Escobar, I.P. Hernández, C.M. Rueda, F. Martínez, E. Páez.
Photodynamic activity of aluminum (III) and zinc (II) phthalocyanines in Leishmania promastigotes.
Biomédica, 26 (2006), pp. 49-56
[44.]
A. Sazgarnia, M.H. Bahreyni -Toosi, P. Layegh, O. Rajabi.
Liposomal zinc phthalocyanine as a potential agent for photodynamic therapy of leishmaniasis.
Indian J Dermatol Venereol Leprol, 76 (2010), pp. 417-418
[45.]
C.A. Bristow, R. Hudson, T.A. Paget, R.W. Boyle.
Potential of cationic porphyrins for treatment of cutaneous Leishmaniasis.
Photodiagn Photodyn Ther, 3 (2006), pp. 162-167
[46.]
J.B. Morgenthaler, S.J. Peters, D.L. Cedeno, M.H. Constantino, K.A. Edwards, E.M. Kamowski, et al.
Carbaporphyrin ketals as potential agents for a new photodynamic therapy treatment of leishmaniasis.
Bioorg Med Chem, 16 (2008), pp. 7033-7038
[47.]
O.E. Akilov, S. Kosaka, K. O’Riordan, X. Song, M. Sherwood, T.J. Flotte, et al.
The role of photosensitizer molecular charge and structure on the efficacy of photodynamic therapy against Leishmania parasites.
Chem Bio, 13 (2006), pp. 839-847
[48.]
O.E. Akilov, W. Yousaf, S.X. Lukjan, S. Verma, T. Hasan.
Optimization of topical photodynamic therapy with 3,7-bis(din-butylamino) phenothiazin- 5-ium bromide for cutaneous leishmaniasis.
Lasers Surg Med, 41 (2009), pp. 358-365
[49.]
K. Gardlo, Z. Horska, C.D. Enk, L. Rauch, M. Megahed, T. Ruzicka, et al.
Treatment of cutaneous leishmaniasis by photodynamic therapy.
J Am Acad Dermatol, 48 (2003), pp. 893-896
[50.]
A. Asilian, M. Davami.
Comparison between the efficacy of photodynamic therapy and topical paromomycin in the treatment of Old World cutaneous leishmaniasis: A placebo-controlled, randomized clinical trial.
Clin Exp Dermatol, 31 (2006), pp. 634-637
[51.]
S. Sohl, F. Kauer, U. Paasch, J.C. Simon, T. Wetzig.
Photodynamic treatment of cutaneous leishmaniasis.
[52.]
E.M. van der Snoek, D.J. Robinson, J.J. van Hellemond, H.A. Neumann.
A review of photodynamic therapy in cutaneous leishmaniasis.
J Eur Acad Dermatol Venereol, 22 (2008), pp. 918-922
[53.]
R.J. Willard, A.M. Jeffcoat, P.M. Benson, D.S. Walsh.
Cutaneous leishmaniasis in soldiers from Fort Campbell, Kentucky, returning from Operation Iraqi Freedom highlights diagnostic and therapeutic options.
J Am Acad Dermatol, 52 (2005), pp. 977-987
[54.]
I.M. Lobo, M.B. Soares, T.M. Correia, L.A. De Freitas, M.I. Oliveira, M. Nakatani, et al.
Heat therapy for cutaneous leishmaniasis elicits a systemic cytokine response similar to that of antimonial (Glucantime) therapy.
Trans R Soc Trop Med Hyg, 100 (2006), pp. 642-649
[55.]
S. Fukamachi, M. Nakamura, Y. Tokura.
Successful treatment of cutaneous leishmaniasis by photodynamic therapy and cryotherapy.
EJD, 19 (2009), pp. 172-173
[56.]
J.X. Kelly, M.V. Ignatushchenko, H.G. Bouwer, D.H. Peyton, D.J. Hinrichs, R.W. Winter, M. Riscoe.
Antileishmanial drug development: Exploitation of parasite heme dependency.
Mol Biochem Parasitol, 126 (2003), pp. 43-49
[57.]
S. Kumari, M. Samant, P. Khare, P. Misra, S. Dutta, B.K. Kolli, et al.
Photodynamic vaccination of hamsters with inducible suicidal mutants of Leishmania amazonensis elicits immunity against visceral leishmaniasis.
Eur J Immunol, 39 (2009), pp. 178-191
[58.]
F. Ghaffarifar, O. Jorjani, M. Mirshams, M.H. Miranbaygi, Z.K. Hosseini.
Photodynamic therapy as a new treatment of cutaneous leishmaniasis.
East Mediterr Health J, 12 (2006), pp. 902-908
Copyright © 2011. Asociación Colombiana de Infectología (ACIN)
Download PDF
Article options