covid
Buscar en
Inmunología
Toda la web
Inicio Inmunología Células T reguladoras y tolerancia en trasplante: Efecto de la inmunosupresión...
Journal Information
Vol. 26. Issue 3.
Pages 157-168 (July - September 2007)
Share
Share
Download PDF
More article options
Vol. 26. Issue 3.
Pages 157-168 (July - September 2007)
Full text access
Células T reguladoras y tolerancia en trasplante: Efecto de la inmunosupresión farmacológica
Regulatory t cells and tolerance in transplantation: effect of immunosuppression
Visits
5609
D. San Segundo1, M.J. Benito1, G. Fernández-Fresnedo2, M.J. Marín1, M. Arias2, M. López-Hoyos1, Nicole Thielens1,
Corresponding author
nicole.thielens@ibs.fr

Correspondence to: Laboratoire d'Enzymologie Moléculaire, Institut de Biologie Structurale Jean-Pierre Ebel, 41 rue Jules Horowitz, 38027 Grenoble Cedex 1 (France). Phone number: 33 4 38 78 95 79. Fax: 33 4 38 78 54 94
1 Servicios de Inmunología, Santander
2 Nefrología, Hospital Universitario Marqués de Valdecilla, Santander
This item has received
Article information
Resumen

El beneficio sustancial que supone el trasplante en aquellos pacientes con enfermedades terminales se contrarresta por la tasa moderada de supervivencia del injerto a largo plazo. Esto se debe en gran medida a los fármacos inmunosupresores que inhiben inespecíficamente la respuesta inmunitaria para evitar el rechazo pero que acarrean gran número de efectos adversos responsables del rechazo crónico. Por ello, el principal objetivo en el trasplante es alcanzar una ausencia de respuesta inmunitaria frente a los aloantígenos del donante sin necesidad de administraciones prolongadas de fármacos inmunosupresores. En los últimos años, las células T reguladoras, sobre todo aquellas que muestran el fenotipo CD4+CD25highFOXP3+ (conocidas como células Tregs), han demostrado su capacidad de controlar las respuestas inmunitarias frente a aloantígenos del donante, por lo que poseen un gran potencial en el establecimiento de tolerancia del trasplante in vivo. La mayoría de las evidencias proceden de modelos experimentales aunque últimamente han aparecido trabajos que abordan el papel de las células Tregs en el contexto clínico del trasplante. En dicho contexto, un factor esencial a considerar es la presencia de inmunosupresión farmacológica en prácticamente el 100% de los pacientes. Hallazgos recientes demuestran cómo existen fármacos que favorecen la inducción y/o mantenimiento de las células Tregs en pacientes trasplantados. De todos ellos, los inhibidores de mTOR se muestran como los que más favorecen el desarrollo de Tregs en el trasplante de órganos actual. Estrategias que se plantean en un futuro cercano son la estimulación ex vivo de células Tregs purificadas con aloantígenos del donante, o incluso la transfección con FOXP3 de células alorreactivas CD4+CD25.

Palabras clave:
CD25
Células Tregs
FOXP3
Inmunosupresión
Tolerancia
Trasplante
Abstract

The poor long-term graft survival rate counteracts the important advance that transplantation is for end-stage disease patients. This is mainly due to the use of immunosuppressants that nonspecifically inhibit the immune response to avoid graft rejection but that bring a number of adverse effects leading to chronic rejection. Thus, the major goal in transplant medicine is to reach an absence of immune response towards donor alloantigens without the need of long-term immunosuppressant drugs. In the last years, regulatory T cells, mainly those with a CD4+CD25highFOXP3+ phenotype (named as Treg cells), have demonstrated an inhibitory effect on immune responses against donor alloantigens. As a consequence, they are a potential tool in the development of transplant tolerance in vivo. Most of the evidence comes from experimental models, although recent works address the role of Treg cells in the clinical setting of transplantation. In such a setting, the coexistence of immunosuppression in almost 100% of the patients is an essential factor to consider. Recent findings show that different drugs favour the induction and/or maintenance of Treg cells in transplant recipients. Among them, mTOR inhibitors seem to promote the development of Treg cells at present. Next strategies include the ex vivo stimulation of sorted Treg cells with donor alloantigens or the transfection of alloreactive CD4+CD25– cells with FOXP3.

Key words:
CD25
FOXP3
Immunosuppression
Tolerance
Transplantation
Treg cells
Full text is only aviable in PDF
Bibliografía
[1.]
M.H. Sayegh, C.B. Carpenter.
Transplantation 50 years later: progress, challenges, and promises.
N Eng J Med, 351 (2004), pp. 2761-2766
[2.]
P.F. Halloran.
Immunosuppressive drugs for kidney transplantation.
N Engl J Med, 351 (2005), pp. 2715-2729
[3.]
H.U. Meier-Kriesche, J.D. Schold, T.R. Srinivas, B. Kaplan.
Lack of improvement in renal allograft survival despite a marked decrease in acute rejection rates over the most recent era.
Am J Transplant, 4 (2004), pp. 378-383
[4.]
H.U. Meier-Kriesche, J.D. Schold, B. Kaplan.
Long-term renal allograft survival despite a marked decrease in acute rejection rates over the most recent era.
Am J Transplant, 4 (2004), pp. 1289-1295
[5.]
M.A. Quantz, R.J. Novick.
Outcomes following cardiac transplantation.
Curr Opin Organ Transplant, 5 (2000), pp. 158-164
[6.]
B.J. Nankivell, R.J. Borrows, C.L. Fung, P.J. O’Connell, R.D. Allen, J.R. Chapman.
The natural history of chronic allograft nephropathy.
N Engl J Med, 349 (2003), pp. 2326-2333
[7.]
R.B. Colvin.
Chronic allograft nephropathy.
N Engl J Med, 349 (2003), pp. 2288-2290
[8.]
S.A. Joosten, W.J. Sijpkens, C. Van Kooten, L.C. Paul.
Chronic renal allograft rejection: pathophysiologic considerations.
[9.]
J.R. Chapman, P.J. O’Connell, B.J. Nankivell.
Chronic renal allograft dysfunction.
J Am Soc Nephrol, 16 (2005), pp. 3015-3026
[10.]
K. Solez, R.B. Colvin, L.C. Racusen, B. Sis, P.F. Halloran, P.E. Birk, et al.
Banff’05 meeting report: differential diagnosis of chronic allograft injury and elimination of chronic allograft nephropathy (‘CAN’).
Am J Transplant, 7 (2007), pp. 518-526
[11.]
W. Wong, J.-P. Venetz, N. Tolfokk-Rubin, M. Pascual.
2005 immunosuppressive strategies in kidney transplantation: which role for the calcineurin inhibitors?.
Transplantation, 80 (2005), pp. 289-296
[12.]
N.J. Rogers, R.I. Lechler.
Allorecognition.
Am J Transplant, 1 (2001), pp. 97-102
[13.]
C.C. Magee, M. Pascual.
Update in renal transplantation.
Arch Intern Med, 164 (2004), pp. 1373-1388
[14.]
K.A. Newell, C.P. Larsen.
Tolerance assays: measuring the unknown.
Transplantation, 81 (2006), pp. 1503-1509
[15.]
N. Najafian, M.J. Albin, K.A. Newell.
How can we measure immunologic tolerance in humans?.
J Am Soc Nephrol, 17 (2006), pp. 2652-2663
[16.]
L. van Parijs, A.K. Abbas.
Homeostasis and self-tolerance in the immune system: shutting lymphocytes off.
Science, 280 (1998), pp. 243-248
[17.]
J.I. Healy, C.C. Goodnow.
Positive versus negative signaling by lymphocyte antigen receptors.
Annu Rev Immunol, 16 (1998), pp. 645-670
[18.]
P. Kilshaw, L. Brent, M. Pinto.
Suppressor T cells in mice made unresponsive to skin allografts.
Nature, 255 (1975), pp. 489-491
[19.]
M. Dorf, V.K. Kuchroo, M. Collins.
Suppressor T cells: some answers but more questions.
Immunol Today, 13 (1992), pp. 241-243
[20.]
S. Sakaguchi, N. Sakaguchi, M. Asano, M. Itoh, M. Toda.
Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor a-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases.
J Immunol, 155 (1995), pp. 1151-1164
[21.]
P.A. Taylor, R.J. Noelle, B.R. Blazar.
CD4+CD25+ immune regulatory cells are required for induction of tolerance to alloantigen via costimulatory blockade.
J Exp Med, 193 (2001), pp. 1311-1317
[22.]
S. Gregori, M. Casorati, S. Amuchastegui, S. Smiroldo, A.M. Davalli, L. Adorini.
Regulatory T cells induced by 1α,25-dihydroxivitamin D3 and mycophenolate mofetil tratment mediate transplantation tolerance.
J Immunol, 167 (2001), pp. 1945-1953
[23.]
H. Jonuleit, E. Scmitt.
The regulatory T cell family: distinct subsets and their interrelations.
J Immunol, 171 (2003), pp. 6323-6327
[24.]
H. Jiang, L. Chess.
An integrated view of suppressor T cell subsets in immunoregulation.
J Clin Invest, 114 (2004), pp. 1198-1208
[25.]
E.M. Shevach.
From vanilla to 28 flavors: múltiple varieties of T regulatory cells.
Immunity, 25 (2006), pp. 195-201
[26.]
Z. Liu, S. Tugulea, R. Cortesini, N. Suciu-Foca.
Specific suppression of T helper alloreactivity by allo-MHC class I-restricted CD8+CD28-T cells.
Int Immunol, 10 (1998), pp. 775-783
[27.]
C.C. Chang, R. Ciubotariu, J.S. Manavalan, J. Yuan, A.I. Colovai, F. Piazza, et al.
Tolerization of dendritic cells by T(S) cells: the crucial role of inhibitory receptors ILT3 and ILT4.
Nat Immunol, 3 (2002), pp. 237-243
[28.]
J.S. Manavalan, S. Kim-Schulze, L. Scotto, A.J. Naiyer, G. Vlad, P.C. Colombo, et al.
Alloantigen specific CD8+CD28–FOXP3+ T suppressor cells induce ILT3+ ILT4+ tolerogenic endothelial cells, inhibiting alloreactivity.
Int Immunol, 16 (2004), pp. 1055-1068
[29.]
K.H. Sonoda, J. Stein-Streilein.
CD1d on antigen-transporting APC and splenic marginal zone B cells promotes NKT cell-dependent tolerance.
[30.]
M. Falcone, F. Facciotti, N. Ghidoli, P. Monti, S. Olivieri, L. Zaccagnino, et al.
Up-regulation of CD1d expression restores the immunoregulatory function of NKT cells and prevents autoimmune diabetes in nonobese diabetic mice.
J Immunol, 172 (2004), pp. 5908-5916
[31.]
M. Kronenberg.
Toward an understanding of NKT cell biology: progress and paradoxes.
Annu Rev Immunol, 23 (2005), pp. 877-900
[32.]
X. Jiang, S. Kojo, M. Harada, N. Ohkohchi, M. Taniguchi, K.-I. Seino.
Mechanism of NKT cell-mediated transplant tolerance.
Am J Transplant, 7 (2007), pp. 1482-1490
[33.]
Z. Fehervari, S. Sakaguchi.
CD4+ Tregs and immune control.
J Clin Invest, 114 (2004), pp. 1209-1217
[34.]
S. Sakaguchi.
Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self.
Nat Immunol, 6 (2005), pp. 345-352
[35.]
J. Huehn, K. Siegmund, J.C. Lehmann, C. Siewert, U. Haubold, M. Feuerer, et al.
Developmental stage, phenotype, and migration distinguís naive- and effector/memory-like CD4+ regulatory T cells.
J Exp Med, 199 (2004), pp. 303-313
[36.]
J.D. Fontenot, A.Y. Rudensky.
A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3.
Nat Immunol, 6 (2005), pp. 331-337
[37.]
R.S. Wildin, F. Ramsdell, J. Peake, F. Faravelli, J.L. Casanova, N. Buist, et al.
X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy.
Nat Genet, 27 (2001), pp. 18-20
[38.]
C.L. Bennett, J. Christie, F. Ramsdell, M.E. Brunkow, P.J. Ferguson, L. Whitesell, et al.
The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3.
Nat Genet, 27 (2001), pp. 20-21
[39.]
M.E. Brunkow, E.W. Jeffery, K.A. Hjerrild, B. Paeper, L.B. Clark, S.A. Yasayko, et al.
Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse.
Nat Genet, 27 (2001), pp. 68-73
[40.]
M.S. Jordan, A. Boesteanu, A.J. Reed, et al.
Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide.
Nat Immunol, 3 (2002), pp. 756-763
[41.]
R. Khattri, T. Cox, S.A. Yasayko, F. Ramsdell.
An essential role for Scurfin in CD4+CD25+ T regulatory cells.
Nat Immunol, 4 (2003), pp. 337-342
[42.]
S. Hori, T. Nomura, S. Sakaguchi.
Control of regulatory T cell development by the transcription factor Foxp3.
Science, 299 (2003), pp. 1057-1061
[43.]
Y.Y. Wang, R.A. Flavell.
Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression.
Nature, 445 (2007), pp. 766-770
[44.]
E. Long, K.J. Wood.
Understanding FOXP3: progress toward achieving transplantation tolerance.
Transplantation, 84 (2007), pp. 459-461
[45.]
M.A. Gavin, J.P. Rasmussen, J.D. Fontenot, V. Vasta, V.C. Manganiello, J.A. Beavo, et al.
Foxp3-dependent programme of regulatory T-cell differentiation.
Nature, 445 (2007), pp. 771-775
[46.]
M.A. Gavin, T.R. Torgerson, E. Houston, P. DeRoos, W.Y. Ho, A. Stray-Pedersen, et al.
Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development.
Proc Natl Acad Sci USA, 103 (2006), pp. 6659-6664
[47.]
M. Vukmanovic-Stejic, Y. Zhang, J.E. Cook, J.M. Fletcher, A. McQuaid, J.E. Masters, et al.
Human CD4+CD25hiFoxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo.
J Clin Invest, 116 (2006), pp. 2829-2830
[48.]
Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S, et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med 2066; 203: 1701-1711.
[49.]
M.G. Roncarolo, S. Gregori, M. Battaglia, R. Bacchetta, K. Fleischhauer, M.K. Levings.
Interleukin-10-secreting type 1 regulatory T cells in rodents and humans.
Immunol Rev, 212 (2006), pp. 28-50
[50.]
M.G. Roncarolo, M. Battaglia.
Regulatory T-cell immunotherapy for tolerance to self-antigens and alloantigens in humans.
Nat Rev Immunol, 7 (2007), pp. 585-598
[51.]
T.T. MacDonald.
T cell immunity to oral allergens.
Curr Opin Immunol, 10 (1998), pp. 620-627
[52.]
V.C. Liu, L.Y. Wong, T. Jang, A.H. Shah, I. Park, X. Yang, et al.
Tumor evasion of the immune system by converting CD4+CD25 T cells into CD4+CD25+ T regulatory cells: role of tumor-derived TGFbeta.
J Immunol, 178 (2007), pp. 2883-2892
[53.]
Y. Carrier, J. Yuan, V.K. Kuchroo, H.L. Weiner.
Th3 cells in peripheral tolerance I. Induction of Foxp3-positive regulatory T cells by Th3 cells derived from TGF-beta T cell-transgenic mice.
J Immunol, 178 (2007), pp. 179-185
[54.]
R.I. Lechler, A.O. Garden, L.A. Turka.
The complementary roles of deletion and regulation in transplantation tolerance.
Nat Rev Immunol, 3 (2003), pp. 147-158
[55.]
S. Jiang, J. Tsang, D.S. Game, S. Stevenson, G. Lombardi, R.I. Lechler.
Generation and expansion of human CD4+CD25+ regulatory T cells with indirect allospecificity: potential reagents to promote donor-specific transplantation tolerance.
Transplantation, 82 (2006), pp. 1738-1743
[56.]
A. Sanchez-Fueyo, C.M. Domenig, C. Mariat, S.L. Alexopoulos, X.X. Zheng, T.B. Strom.
Influence of direct and indirect allorecognition pathways on CD4+CD25+ regulatory T-cell function in transplantation.
Transplant Int, 20 (2007), pp. 534-541
[57.]
M. Niimi, N. Shirasugi, Y. Ikeda, K.J. Wood.
Oral antigen induces allograft survival by linked suppression via the indirect pathway.
Transplant Proc, 33 (2001), pp. 81
[58.]
E.L. Lagaaij, I.P. Hennemann, M. Ruigrok, M.W. de Haan, G.G. Persijn, A. Termijtelen, et al.
Effect of one-HLA-DR antigen-matched and completely HLA-DR-mismatched blood transfusions on survival of heart and kidney allografts.
N Engl J Med, 321 (1989), pp. 701-705
[59.]
T. Muthukumar, D. Dadhania, R. Ding, C. Snopkowski, R. Naqvi, J.B. Lee, et al.
Messenger RNA for FOXP3 in the urine of renalallograft recipients.
N Eng J Med, 353 (2005), pp. 2342-2351
[60.]
F. Veronese, S. Rotman, R.N. Smith, T.D. Pelle, M.L. Farrell, T. Kawai, et al.
Pathological and clinical correlates of FOXP3+ cells in renal allografts during acute rejection.
Am J Transplant, 7 (2007), pp. 914-922
[61.]
San Segundo D, Fernández-Fresnedo G, Rodrigo E, Ruiz JC, Lopez-Hoyos M, Arias M. Monitoring of regulatory T cell subpopulations in renal transplant patients during the first year posttransplantation: influence of immunosuppression. Transplant Proc (en prensa).
[62.]
C.Y. Lin, L. Graca, S.P. Cobbold, H. Waldmann.
Dominant transplantation tolerance impairs CD8+ T cell function but not expansion.
Nat Immunol, 3 (2002), pp. 1208-1213
[63.]
K.J. Wood, S. Sakaguchi, Regulatory T.
cells in transplantation tolerance.
Nat Rev Immunol, 3 (2003), pp. 199-210
[64.]
D. Golshayan, L. Buhler, R.I. Lechler, M. Pascual.
From current immunosuppressive strategies to clinical tolerance of allografts.
Transplant Int, 20 (2007), pp. 12-24
[65.]
A. Demirkiran, A. Kok, J. Kwekkeboom, J.G. Kusters, H.J. Metselaar, H.W. Tilanus, et al.
Low circulating regulatory T-cell levels after acute rejection in liver transplantation.
Liver Transplant, 12 (2006), pp. 277-284
[66.]
F. Meloni, P. Vitulo, A.M. Bianco, E. Paschetto, M. Morosini, A. Cascina, et al.
Regulatory CD4+CD25+ T cells in the peripheral blood of lung transplant recipients: correlation with transplant outcome.
Transplantation, 77 (2004), pp. 762-766
[67.]
Y. Miura, C.J. Thoburn, E.C. Bright, M.L. Phelps, T. Shin, E.C. Matsui, et al.
Association of Foxp3 regulatory gene expression with graftversus-host disease.
Blood, 104 (2004), pp. 2187-2193
[68.]
K. Rezvani, S. Mielke, M. Ahmadzadeh, Y. Kilical, B.N. Savani, J. Zeilah, et al.
High donor FOXP3-positive regulatory T-cell (Treg) content is associated with a low risk of GVHD following HLA-matched allogeneic SCT.
Blood, 108 (2006), pp. 1291-1297
[69.]
F.J. Clark, R. Gregg, K. Piper, D. Dunnion, L. Freeman, M. Griffiths, et al.
Chronic graft-versus-host disease is associated with increased numbers of peripheral blood CD4+CD25high regulatory T cells.
Blood, 103 (2004), pp. 2410-2416
[70.]
M.G. Roncarolo, M. Battaglia.
Regulatory T-cell immunotherapy for tolerance to self antigens and alloantigens in humans.
Nat Rev Immunol, 7 (2007), pp. 585-598
[71.]
K.A. Newell, C.P. Larsen, A.D. Kirk.
Transplant tolerance: converging on a moving target.
Transplantation, 81 (2006), pp. 1-6
[72.]
M. Battaglia, A. Stabilini, M.G. Roncarolo.
Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells.
Blood, 105 (2005), pp. 4743-4748
[73.]
D. San Segundo, J.C. Ruiz, M. Izquierdo, G. Fernández-Fresnedo, Gomez-Alamillo, R. Merino, et al.
Calcineurin inhibitors, but not rapamycin, reduce percentages of CD4+CD25+FOXP3+ regulatory T cells in renal transplant recipients.
Transplantation, 82 (2006), pp. 550-557
[74.]
X.X. Zheng, A. Sanchez-Fueyo, M. Sho, C. Domenig, M.H. Sayegh, T.B. Strom.
Favorably tipping the balance between cytopathic and regulatory T cells to create transplantation tolerance.
Immunity, 19 (2003), pp. 503-514
[75.]
G.C. Furtado, M.A. Curotto de Lafaille, N. Kutchukhidze, J.J. Lafaille.
Interleukin 2 signaling is required for CD4+ regulatory T cell function.
J Exp Med, 196 (2002), pp. 851-857
[76.]
Y. Wu, M. Borde, V. Heissmeyer, M. Feuerer, A.D. Lapan, J.C. Stroud, et al.
FOXP3 controls regulatory T cell function through cooperation with NFAT.
[77.]
C.C. Baan, B.J. van der Mast, M. Klepper, W.M. Mol, A.M. Peeters, S.S. Korevaar, et al.
Differential effect of calcineurin inhibitors, anti-CD25 antibodies and rapamycin on the induction of FOXP3 in human T cells.
Transplantation, 80 (2005), pp. 110-117
[78.]
J.A. Coenen, H.J.P.M. Koenen, E. Van Rijssen, L.B. Hilbrands, I. Joosten.
Rapamycin, and not cyclosporin A, preserves the highly suppressive CD27+ subset of human CD4+CD25+ regulatory T cells.
Blood, 107 (2006), pp. 1018-1023
[79.]
D. Valmori, V. Tosello, N.E. Souleimanian, E. Godefroy, L. Scotto, Y. Wang, et al.
Rapamycin-mediated enrichment of T cells with regulatory activity in stimulated CD4+ T cell cultures is not due to the selective expansion of naturally occurring regulatory T cells but to the induction of regulatory functions in conventional CD4+ T cells.
J Immunol, 177 (2006), pp. 944-949
[80.]
M.R. Walker, D.J. Kasprowicz, V.H. Gersuk, A. Benard, M. Van Landeghen, J.H. Buckner, et al.
Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25– T cells.
J Clin Invest, 112 (2003), pp. 1437-1443
[81.]
W. Gao, Y. Lu, B. El Essawy, M. Oukka, V.K. Kuchroo, T.B. Strom.
Contrasting effects of cyclosporine and rapamycin in de novo generation of alloantigen-specific regulatory T cells.
Am J Transplant, 7 (2007), pp. 1722-1732
[82.]
A.D. Wells, X.C. Li, Y. Li, M.C. Walsh, X.X. Zheng, Z. Wu, et al.
Requirement for T-cell apoptosis in the induction of peripheral transplantation tolerance.
Nat Med, 5 (1999), pp. 1303-1307
[83.]
Y. Li, X.X. Zheng, X.C. Li, M.S. Zand, T.B. Strom.
Combined costimulation blockade plus rapamycin but not cyclosporine produces permanent engraftment.
Transplantation, 66 (1998), pp. 1387-1388
[84.]
Y. Li, X.C. Li, X.X. Zheng, A.D. Wells, L.A. Turka, T.B. Strom.
Blocking both signal 1 and signal 2 of T-cell activation prevents apoptosis of alloreactive T cells and induction of peripheral allograft tolerance.
Nat Med, 5 (1999), pp. 1298-1302
[85.]
H.R. Turnquist, G. Raimondi, A.F. Zahorchak, R.T. Fischer, Z. Wang, A.W. Thomson.
Rapamycin-conditioned dendritic cells are poor stimulators of allogeneic CD4+ T cells, but enrich for antigenspecific Foxp3+ T regulatory cells and promote organ transplant tolerance.
J Immunol, 178 (2007), pp. 7018-7031
[86.]
H. Hackstein, T. Taner, A.F. Zahorchak, A.E. Morelli, A.J. Logar, A. Gessner, et al.
Rapamycin inhibits IL-4-induced dendritic cell maturation in vitro and dendritic cell mobilization and function in vivo.
Blood, 101 (2003), pp. 4457-4463
[87.]
T. Taner, H. Hackstein, Z. Wang, A.E. Morelli, A.W. Thomson.
Rapamycin-treated, alloantigen-pulsed host dendritic cells induce ag-specific T cell regulation and prolong graft survival.
Am J Transplant, 5 (2005), pp. 228-236
[88.]
P. Trzonkowski, M. Zilvetti, P. Friend, K.J. Wood.
CD4+CD25+ T regulatory cells inhibit cytotoxic activity of CTL and NK cells in humans-impact of immunosenescence.
Clin Immunol, 119 (2006), pp. 307-316
[89.]
L. Quemeneur, L. Beloeil, M.C. Michallet, G. Angelov, M. Tomkowiak, J.P. Revillard, et al.
Restriction of de novo nucleotide biosynthesis interferes with clonal expansion and differentiation into effector and memory CD8 T cells.
J Immunol, 173 (2004), pp. 4945-4952
[90.]
S. Gregori, M. Casorati, S. Amuchastegui, S. Smiroldo, A.M. Davalli, L. Adorini.
Regulatory T cells induced by 1 α,25-dihydroxyvitamin D3 and mycophenolate mofetil treatment mediate transplantation tolerance.
J Immunol, 167 (2001), pp. 1945-1953
[91.]
L. Adorini, G. Penna, N. Giarratana, M. Uskokovic.
Tolerogenic dendritic cells induced by vitamin D receptor ligands enhance regulatory T cells inhibiting allograft rejection and autoimmune diseases.
J Cell Biochem, 88 (2003), pp. 227-233
[92.]
M. Noris, F. Casiraghi, M. Todeschini, P. Cravedi, D. Cugini, G. Monteferrante, et al.
Regulatory T cells and T cell depletion: role of immunosuppressive drugs.
J Am Soc Nephrol, 18 (2007), pp. 1007-1018
[93.]
H. Zhang, K.S. Chua, M. Guimond, V. Kapoor, M.V. Brown, T.A. Fleisher.
Lymphopenia and interleukin-2 therapy alter homeostasis of CD4+CD25+ regulatory T cells.
Nat Med, 11 (2005), pp. 1238-1243
[94.]
M. Lopez, M.R. Clarkson, M. Albin, M.H. Sayegh, N. Najafian.
A novel mechanism of action for anti-thymocyte globulin: induction of CD4+CD25+Foxp3+ regulatory T cells.
J Am Soc Nephrol, 17 (2006), pp. 2844-2853
Copyright © 2007. Sociedad Española de Inmunología
Download PDF
Article options