covid
Buscar en
Inmunología
Toda la web
Inicio Inmunología DMBT1 as an archetypal link between infection, inflammation, and cancer
Journal Information
Vol. 26. Issue 4.
Pages 193-209 (October - December 2007)
Share
Share
Download PDF
More article options
Vol. 26. Issue 4.
Pages 193-209 (October - December 2007)
Full text access
DMBT1 as an archetypal link between infection, inflammation, and cancer
DMBT1 Como nexo de unión arquetípico entre infección, inflamación y cáncer
Visits
4016
J. Mollenhauer1,2, C. End1, M. Renner1, S. Lyer1,2, A. Poustka1
1. Division of Molecular Genome Analysis, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, Heidelberg, Germany
2. Department of Molecular Oncology, Institute of Medical Biology, University of Southern Denmark, Odense-C, Denmark
This item has received
Article information
Abstract

Epidemiological and molecular studies have pointed to links between infection, inflammation and cancer, which appear to converge at the molecular level in mechanisms associated with innate immunity. Here, the present knowledge about the secreted scavenger receptor cysteine-rich (SRCR) protein Deleted in Malignant Brain Tumors 1 (DMBT1), also known as glycoprotein-340 or salivary agglutinin, is summarized. DMBT1 is differentially expressed in various cancer types with most of these displaying a downregulation. As a lumenally secreted protein, it exerts functions in innate pathogen defense and the regulation of inflammation. By contrast, it may trigger epithelial and stem cell differentiation as an extracellular matrix protein. Its broad responsiveness to pathophysiological stimuli points to a general role in cell and tissue protection, which possibly is best circumscribed by linking pathogen defense and regulation of the inflammatory response to regenerative processes. Compelling similarities to the functions of SRCR proteins in primitive metazoa such as sponges and sea urchins exist, which support that its various functions may rely on an ancient and simple principle, i.e. the differential mediation of adhesion and anti-adhesion. Similar to NF- κB signaling pathways, which are also indirectly regulated by DMBT1, the present state of the art indicates that DMBT1 not only could exert disease-preventing, but probably also disease-promoting functions. Taken together, DMBT1 may represent a paradigm for an archetypal link between infection, inflammation, and cancer. Understanding its complex mode of action promises novel insights into the origin and the molecular basis of major human diseases.

Key words:
Scavenger receptor
DMBT1
Inflammation
Infection
Cancer
Resumen

Los estudios epidemiológicos y moleculares indican vínculos entre infección, inflamación y cáncer, que parece que convergen a nivel molecular en mecanismos asociados con la inmunidad innata. Aquí, presentamos un resumen del conocimiento sobre la proteína secretada “scavenger receptor cysteine-rich (SRCR)” Deleted in Malignant Brain Tumors 1 (DMBT1), también conocida como glicoproteína-340 o aglutinina de la saliva. DMBT1 se expresa diferencialmente en varios tipos de cáncer, en muchos casos disminuyendo su regulación. Como proteína secretada al lumen, tiene funciones en la defensa innata contra los patógenos, y la regulación de la inflamación. En contraste, podría inducir la diferenciación epitelial y de células madre, como proteína de la matriz extracelular. Su amplia respuesta a estímulos patofisiológicos sugiere un papel general en la protección celular y tisular, probablemente uniendo la defensa contra patógenos y la regulación de la respuesta inflamatoria a procesos regenerativos. Existen similitudes muy interesantes con las funciones de otras proteínas SRCR presentes en metazoos primitivos, como las esponjas y los erizos de mar. Esto sugiere que sus diferentes funciones podrían basarse en un principio antiguo y simple, que sería la mediación diferencial de adhesión y anti-adhesión. De manera similar a las vías de señalización de NF-κB, que también están reguladas indirectamente por DMBT1, el conocimiento actual indica que DMBT1 no sólo podría tener funciones de prevención de enfermedad, sino probablemente también funciones generadoras de enfermedad. En resumen, DMBT1 podría representar un paradigma del vínculo arquetípico entre infección, inflamación, y cáncer. La comprensión de su complejo modo de acción promete nuevos puntos de vista sobre el origen y las bases moleculares de las grandes enfermedades humanas.

Palabras clave:
Receptor scavenger
DMBT1
Inflamación
Infección
Cáncer
Full text is only aviable in PDF
Bibliografía
[1.]
F. Balkwill, A. Mantovani.
Inflammation and cancer: back to Virchow?.
Lancet, 357 (2001), pp. 539-545
[2.]
M. Karin, T. Lawrence, V. Nizet.
Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer.
Cell, 124 (2006), pp. 823-835
[3.]
Y. Ogura, D.K. Bonen, N. Inohara, D.L. Nicolae, F.F. Chen, R. Ramos, et al.
A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease.
Nature, 411 (2001), pp. 603-606
[4.]
J.P. Hugot, M. Chamaillard, H. Zouali, S. Lesage, J.P. Cezard, J. Belaiche, et al.
Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease.
Nature, 411 (2001), pp. 599-603
[5.]
J. Hampe, A. Cuthbert, P.J. Croucher, M.M. Mirza, S. Mascheretti, S. Fisher, et al.
Association between insertion mutation in NOD2 gene and Crohn's disease in German and British populations.
Lancet, 357 (2001), pp. 1925-1928
[6.]
T. Watanabe, A. Kitani, P.J. Murray, W. Strober.
NOD2 is a negative regulator of Toll-like receptor 2-mediated T helper type 1 responses.
Nat Immunol, 5 (2004), pp. 800-808
[7.]
S. Maeda, L.C. Hsu, H. Liu, L.A. Bankston, M. Iimura, M.F. Kagnoff, et al.
Nod2 mutation in Crohn's disease potentiates NF-κB activity and IL-1, processing.
Science, 307 (2005), pp. 734-738
[8.]
K.S. Kobayashi, M. Chamaillard, Y. Ogura, O. Henegariu, N. Inohara, G. Nunez, et al.
Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract.
Science, 307 (2005), pp. 731-734
[9.]
Y.S. Kim, J.R. Gum Jr..
Diversity of mucin genes, structure, function, and expression.
Gastroenterology, 109 (1995), pp. 999-1001
[10.]
A.P. Corfield, D. Carroll, N. Myerscough, C.S. Probert.
Mucins in the gastrointestinal tract in health and disease.
Front Biosci, 6 (2001), pp. D1321-D1357
[11.]
A. Velcich, W. Yang, J. Heyer, A. Fragale, C. Nicholas, S. Viani, et al.
Colorectal cancer in mice genetically deficient in the mucin Muc2.
Science, 295 (2002), pp. 1726-1729
[12.]
M.J. Hudson, G.W. Stamp, K.S. Chaudhary, R. Hewitt, A.P. Stubbs, P.D. Abel, et al.
Human MUC1 mucin: A potent glandular morphogen.
[13.]
R.I. Lehrer.
Primate defensins.
Nat Rev Microbiol, 2 (2004), pp. 727-738
[14.]
N. Markeeva, I. Lysovskiy, E. Zhuravel, M. Soldatkina, V. Lyzogubov, V. Usenko, et al.
Involvement of human beta-defensin-2 in proliferation of transformed cells of human cervix.
Exp Oncol, 27 (2005), pp. 308-313
[15.]
C.Q. Sun, R. Arnold, C. Fernandez-Golarz, A.B. Parrish, T. Almekinder, J. He, et al.
Human beta-defensin-1, a potential chromosome 8p tumor suppressor: Control of transcription and induction of apoptosis in renal cell carcinoma.
Cancer Res, 66 (2006), pp. 8542-8549
[16.]
R.S. Bullard, W. Gibson, S.K. Bose, J.K. Belgrave, A.C. Eaddy, C.J. Wright, et al.
Functional analysis of the host defense peptide Human Beta Defensin-1: New insight into its potential role in cancer.
Mol Immunol, 45 (2008), pp. 839-848
[17.]
J. Mollenhauer, S. Wiemann, W. Scheurlen, B. Korn, Y. Hayashi, K.K. Wilgenbus, et al.
DMBT1, a new member of the SRCR superfamily, on chromosome 10q25.3–26.1 is deleted in malignant brain tumours.
Nat Genet, 17 (1997), pp. 32-39
[18.]
J. Mollenhauer, U. Holmskov, S. Wiemann, I. Krebs, S. Herbertz, J. Madsen, et al.
The genomic structure of the DMBT1 gene: Evidence for a region with susceptibility to genomic instability.
Oncogene, 18 (1999), pp. 6233-6240
[19.]
U. Holmskov, J. Mollenhauer, J. Madsen, L. Vitved, J. Gronlund, I. Tornoe, et al.
Cloning of gp-340, a putative opsonin receptor for lung surfactant protein D.
Proc Natl Acad Sci USA, 96 (1999), pp. 10794-10799
[20.]
J. Mollenhauer, S. Herbertz, B. Helmke, G. Kollender, I. Krebs, J. Madsen, et al.
Deleted in Malignant Brain Tumors 1 is a versatile mucin-like molecule likely to play a differential role in digestive tract cancer.
Cancer Res, 61 (2001), pp. 8880-8886
[21.]
H. Cheng, M. Bjerknes, H. Chen.
CRP-ductin: A gene expressed in intestinal crypts and in pancreatic and hepatic ducts.
[22.]
X.J. Li, S.H. Snyder.
Molecular cloning of Ebnerin, a von Ebner's gland protein associated with taste buds.
J Biol Chem, 270 (1995), pp. 17674-17679
[23.]
F. Matsushita, A. Miyawaki, K. Mikoshiba.
Vomeroglandin/CRP-Ductin is strongly expressed in the glands associated with the mouse vomeronasal organ: Identification and characterization of mouse vomeroglandin.
Biochem Biophys Res Commun, 268 (2000), pp. 275-281
[24.]
R.C. De Lisle, D. Ziemer.
Processing of pro-Muclin and divergent trafficking of its products to zymogen granules and the apical plasma membrane of pancreatic acinar cells.
Eur J Cell Biol, 79 (2000), pp. 892-904
[25.]
C. Tandon, R.C. De Lisle.
Apactin is involved in remodeling of the actin cytoskeleton during regulated exocytosis.
Eur J Cell Biol, 83 (2004), pp. 79-89
[26.]
J. Madsen, I. Tornoe, O. Nielsen, M. Lausen, I. Krebs, J. Mollenhauer, et al.
CRP-ductin, the mouse homologue of gp-340/deleted in malignant brain tumors 1 (DMBT1), binds gram-positive and gram-negative bacteria and interacts with lung surfactant protein D.
Eur J Immunol, 33 (2003), pp. 2327-2336
[27.]
J. Mollenhauer, B. Helmke, H. Muller, G. Kollender, S. Lyer, L. Diedrichs, et al.
Sequential changes of the DMBT1 expression and location in normal lung tissue and lung carcinomas.
Genes Chromosomes Cancer, 35 (2002), pp. 164-169
[28.]
O. Padilla, M.A. Pujana, A. Lopez-de la Iglesia, I. Gimferrer, M. Arman, J.M. Vila, et al.
Cloning of S4D-SRCRB, a new soluble member of the group B scavenger receptor cysteine-rich family (SRCR-SF) mapping to human chromosome 7q11.23.
Immunogenetics, 54 (2002), pp. 621-634
[29.]
J. Mollenhauer, S. Herbertz, U. Holmskov, M. Tolnay, I. Krebs, A. Merlo, et al.
DMBT1 encodes a protein involved in the immune defense and in epithelial differentiation and is highly unstable in cancer.
Cancer Res, 60 (2000), pp. 1704-1710
[30.]
J. Mollenhauer, H. Muller, G. Kollender, S. Lyer, L. Diedrichs, B. Helmke, et al.
The SRCR/SID region of DMBT1 defines a complex multi-allele system representing the major basis for its variability in cancer.
Genes Chromosomes Cancer, 35 (2002), pp. 242-255
[31.]
H. Sasaki, R.A. Betensky, J.G. Cairncross, D.N. Louis.
DMBT1 polymorphisms: relationship to malignant glioma tumorigenesis.
Cancer Res, 62 (2002), pp. 1790-1796
[32.]
J.C. Pang, Z. Dong, R. Zhang, Y. Liu, L.F. Zhou, B.W. Chan, et al.
Mutation analysis of DMBT1 in glioblastoma, medulloblastoma and oligodendroglial tumors.
Int J Cancer, 105 (2003), pp. 76-81
[33.]
J. Mollenhauer, B. Helmke, D. Medina, G. Bergmann, N. Gassler, H. Muller, et al.
Carcinogen inducibility in vivo and down-regulation of DMBT1 during breast carcinogenesis.
Genes Chromosomes Cancer, 39 (2004), pp. 185-194
[34.]
W. Wu, B.L. Kemp, M.L. Proctor, A.F. Gazdar, J.D. Minna, W.K. Hong, et al.
Expression of DMBT1, a candidate tumor suppressor gene, is frequently lost in lung cancer.
Cancer Res, 59 (1999), pp. 1846-1851
[35.]
H. Takeshita, M. Sato, H.O. Shiwaku, S. Semba, A. Sakurada, M. Hoshi, et al.
Expression of the DMBT1 gene is frequently suppressed in human lung cancer.
Jpn J Cancer Res, 90 (1999), pp. 903-908
[36.]
S. Petersen, J. Rudolf, U. Bockmuhl, N. Deutschmann, M. Dietel, I. Petersen.
Analysis of the DMBT1 gene in carcinomas of the respiratory tract.
Int J Cancer, 88 (2000), pp. 71-76
[37.]
W. Mueller, J. Mollenhauer, F. Stockhammer, A. Poustka, A. von Deimling.
Rare mutations of the DMBT1 gene in human astrocytic gliomas.
Oncogene, 21 (2002), pp. 5956-5959
[38.]
J. Mollenhauer, M. Deichmann, B. Helmke, H. Muller, G. Kollender, U. Holmskov, et al.
Frequent downregulation of DMBT1 and galectin-3 in epithelial skin cancer.
Int J Cancer, 105 (2003), pp. 149-157
[39.]
M. Mori, T. Shiraishi, S. Tanaka, M. Yamagata, K. Mafune, Y. Tanaka, et al.
Lack of DMBT1 expression in oesophageal, gastric and colon cancers.
Br J Cancer, 79 (1999), pp. 211-213
[40.]
M. Sasaki, S.F. Huang, M.F. Chen, Y.Y. Jan, T.S. Yeh, A. Ishikawa, et al.
Decrease of deleted in malignant brain tumour-1 (DMBT-1) expression is a crucial late event in intrahepatic cholangiocarcinoma.
Histopathology, 43 (2003), pp. 340-346
[41.]
P. Braidotti, P.G. Nuciforo, J. Mollenhauer, A. Poustka, C. Pellegrini, A. Moro, et al.
DMBT1 expression is down-regulated in breast cancer.
BMC Cancer, 4 (2004), pp. 46
[42.]
M.M. Inda, J. Mercapide, J. Munoz, P. Coullin, G. Danglot, T. Tunon, et al.
PTEN and DMBT1 homozygous deletion and expression in medulloblastomas and supratentorial primitive neuroectodermal tumors.
Oncol Rep, 12 (2004), pp. 1341-1347
[43.]
M.A. Imai, T. Moriya, F.L. Imai, M. Shiiba, H. Bukawa, H. Yokoe, et al.
Down-regulation of DMBT1 gene expression in human oral squamous cell carcinoma.
Int J Mol Med, 15 (2005), pp. 585-589
[44.]
W. Kang, O. Nielsen, C. Fenger, G. Leslie, U. Holmskov, K.B. Reid.
Induction of DMBT1 expression by reduced ERK activity during a gastric mucosa differentiation-like process and its association with human gastric cancer.
Carcinogenesis, 26 (2005), pp. 1129-1137
[45.]
A.R. Conde, A.P. Martins, M. Brito, A. Manuel, S. Ramos, J. Malta-Vacas, et al.
DMBT1 is frequently downregulated in well-differentiated gastric carcinoma but more frequently upregulated across various gastric cancer types.
Int J Oncol, 30 (2007), pp. 1441-1446
[46.]
K. Sasaki, K. Sato, Y. Akiyama, K. Yanagihara, M. Oka, K. Yamaguchi.
Peptidomics-based approach reveals the secretion of the 29-residue COOH-terminal fragment of the putative tumor suppressor protein DMBT1 from pancreatic adenocarcinoma cell lines.
Cancer Res, 62 (2002), pp. 4894-4898
[47.]
F.J. Bikker, J.E. van der Wal, A.J. Ligtenberg, J. Mollenhauer, J.M. de Blieck-Hogervorst, I. van der Waal, et al.
Salivary agglutinin/DMBT1SAG expression is up-regulated in the presence of salivary gland tumors.
J Dent Res, 83 (2004), pp. 567-571
[48.]
S.R. Hustinx, D. Cao, A. Maitra, N. Sato, S.T. Martin, D. Sudhir, et al.
Differentially expressed genes in pancreatic ductal adenocarcinomas identified through serial analysis of gene expression.
Cancer Biol Ther, 3 (2004), pp. 1254-1261
[49.]
Z. Li, M. Szabolcs, J.D. Terwilliger, A. Efstratiadis.
Prostatic intraepithelial neoplasia and adenocarcinoma in mice expressing a probasin-Neu oncogenic transgene.
Carcinogenesis, 27 (2006), pp. 1054-1067
[50.]
J. Mollenhauer, B. Helmke, H. Muller, G. Kollender, I. Krebs, S. Wiemann, et al.
An integrative model on the role of DMBT1 in epithelial cancer.
Cancer Detect Prev, 26 (2002), pp. 266-274
[51.]
H. Marxfeld, O. Grenet, J. Bringel, F. Staedtler, J.H. Harleman.
Differentiation of spontaneous and induced mammary adenocarcinomas of the rat by gene expression profiling.
Exp Toxicol Pathol, 58 (2006), pp. 151-161
[52.]
M.B. Genter, D.M. Burman, S. Vijayakumar, C.L. Ebert, B.J. Aronow.
Genomic analysis of alachlor-induced oncogenesis in rat olfactory mucosa.
Physiol Genomics, 12 (2002), pp. 35-45
[53.]
H.C. Bisgaard, U. Holmskov, E. Santoni-Rugiu, P. Nagy, O. Nielsen, P. Ott, et al.
Heterogeneity of ductular reactions in adult rat and human liver revealed by novel expression of deleted in malignant brain tumor 1.
Am J Pathol, 161 (2002), pp. 1187-1198
[54.]
G.J. Schwartz, J. Barasch, Q. Al-Awqati.
Plasticity of functional epithelial polarity.
Nature, 318 (1985), pp. 368-371
[55.]
J. van Adelsberg, J.C. Edwards, J. Takito, B. Kiss, Q. al-Awqati.
An induced extracellular matrix protein reverses the polarity of band 3 in intercalated epithelial cells.
Cell, 76 (1994), pp. 1053-1061
[56.]
J. Takito, C. Hikita, Q. Al-Awqati, Hensin.
A new collecting duct protein involved in the in vitro plasticity of intercalated cell polarity.
J Clin Invest, 98 (1996), pp. 2324-2331
[57.]
J. Takito, L. Yan, J. Ma, C. Hikita, S. Vijayakumar, D. Warburton, et al.
Hensin, the polarity reversal protein, is encoded by DMBT1, a gene frequently deleted in malignant gliomas.
Am J Physiol, 277 (1999), pp. F277-F289
[58.]
S. Vijayakumar, J. Takito, C. Hikita, Q. Al-Awqati.
Hensin remodels the apical cytoskeleton and induces columnarization of intercalated epithelial cells: processes that resemble terminal differentiation.
J Cell Biol, 144 (1999), pp. 1057-1067
[59.]
C. Hikita, J. Takito, S. Vijayakumar, Q. Al-Awqati.
Only multimeric hensin located in the extracellular matrix can induce apical endocytosis and reverse the polarity of intercalated cells.
J Biol Chem, 274 (1999), pp. 17671-17676
[60.]
C. Hikita, S. Vijayakumar, J. Takito, H. Erdjument-Bromage, P. Tempst, Q. Al-Awqati.
Induction of terminal differentiation in epithelial cells requires polymerization of hensin by galectin 3.
J Cell Biol, 151 (2000), pp. 1235-1246
[61.]
S. Watanabe, S. Tsuruoka, S. Vijayakumar, G. Fischer, Y. Zhang, A. Fujimura, et al.
Cyclosporin A produces distal renal tubular acidosis by blocking peptidyl prolyl cis-trans isomerase activity of cyclophilin.
Am J Physiol Renal Physiol, 288 (2005), pp. F40-F47
[62.]
J. Takito, Q. Al-Awqati.
Conversion of ES cells to columnar epithelia by hensin and to squamous epithelia by laminin.
J Cell Biol, 166 (2004), pp. 1093-1102
[63.]
N. Gassler, D. Newrzella, C. Bohm, S. Lyer, L. Li, O. Sorgenfrei, et al.
Molecular characterisation of non-absorptive and absorptive enterocytes in human small intestine.
Gut, 55 (2006), pp. 1084-1089
[64.]
J.M. Ward, D.E. Devor-Henneman.
Mouse models of human familial cancer syndromes.
Toxicol Pathol, 32 (2004), pp. 90-98
[65.]
M. Renner, G. Bergmann, I. Krebs, C. End, S. Lyer, F. Hilberg, et al.
DMBT1 confers mucosal protection in vivo and a deletion variant is associated with Crohn's Disease.
Gastroenterology, 133 (2007), pp. 1499-1509
[66.]
A.C. Blackburn, L.Z. Hill, A.L. Roberts, J. Wang, D. Aud, J. Jung, et al.
Genetic Mapping in Mice Identifies DMBT1 as a Candidate Modifier of Mammary Tumors and Breast Cancer Risk.
Am J Pathol, 170 (2007), pp. 2030-2041
[67.]
U. Holmskov, P. Lawson, B. Teisner, I. Tornoe, A.C. Willis, C. Morgan, et al.
Isolation and characterization of a new member of the scavenger receptor superfamily, glycoprotein-340 (gp-340), as a lung surfactant protein-D binding molecule.
J Biol Chem, 272 (1997), pp. 13743-13749
[68.]
A. Prakobphol, F. Xu, V.M. Hoang, T. Larsson, J. Bergstrom, I. Johansson, et al.
Salivary agglutinin, which binds Streptococcus mutans and Helicobacter pylori, is the lung scavenger receptor cysteine-rich protein gp-340.
J Biol Chem, 275 (2000), pp. 39860-39866
[69.]
T.J. Ligtenberg, F.J. Bikker, J. Groenink, I. Tornoe, R. Leth-Larsen, E.C. Veerman, et al.
Human salivary agglutinin binds to lung surfactant protein-D and is identical with scavenger receptor protein gp-340.
Biochem J, 359 (2001), pp. 243-248
[70.]
T. Ericson, J. Rundegren.
Characterization of a salivary agglutinin reacting with a serotype c strain of Streptococcus mutans.
Eur J Biochem, 133 (1983), pp. 255-261
[71.]
A. Carlen, J. Olsson.
Monoclonal antibodies against a high-molecular-weight agglutinin block adherence to experimental pellicles on hydroxyapatite and aggregation of Streptococcus mutans.
J Dent Res, 74 (1995), pp. 1040-1047
[72.]
A. Carlen, J. Olsson, A.C. Borjesson.
Saliva-mediated binding in vitro and prevalence in vivo of Streptococcus mutans.
Arch Oral Biol, 41 (1996), pp. 35-39
[73.]
A. Carlen, P. Bratt, C. Stenudd, J. Olsson, N. Stromberg.
Agglutinin and acidic proline-rich protein receptor patterns may modulate bacterial adherence and colonization on tooth surfaces.
J Dent Res, 77 (1998), pp. 81-90
[74.]
F.J. Bikker, A.J. Ligtenberg, K. Nazmi, E.C. Veerman, W. van’t Hof, J.G. Bolscher, et al.
Identification of the bacteria-binding peptide domain on salivary agglutinin (gp-340/DMBT1), a member of the scavenger receptor cysteine-rich superfamily.
J Biol Chem, 277 (2002), pp. 32109-32115
[75.]
P. Rosenstiel, C. Sina, C. End, M. Renner, S. Lyer, A. Till, et al.
Regulation of DMBT1 via NOD2 and TLR4 in intestinal epithelial cells modulates bacterial recognition and invasion.
J Immunol, 178 (2007), pp. 8203-8211
[76.]
T. Nagashunmugam, D. Malamud, C. Davis, W.R. Abrams, H.M. Friedman.
Human submandibular saliva inhibits human immunodeficiency virus type 1 infection by displacing envelope glycoprotein gp120 from the virus.
J Infect Dis, 178 (1998), pp. 1635-1641
[77.]
K.L. Hartshorn, M.R. White, T. Mogues, T. Ligtenberg, E. Crouch, U. Holmskov.
Lung and salivary scavenger receptor glycoprotein-340 contribute to the host defense against influenza A viruses.
Am J Physiol Lung Cell Mol Physiol, 285 (2003), pp. L1066-L1076
[78.]
M.J. Tino, J.R. Wright.
Glycoprotein-340 binds surfactant protein-A (SPA) and stimulates alveolar macrophage migration in an SP-A-independent manner.
Am J Respir Cell Mol Biol, 20 (1999), pp. 759-768
[79.]
D.J. Thornton, J.R. Davies, S. Kirkham, A. Gautrey, N. Khan, P.S. Richardson, et al.
Identification of a nonmucin glycoprotein (gp-340) from a purified respiratory mucin preparation: evidence for an association involving the MUC5B mucin.
Glycobiology, 11 (2001), pp. 969-977
[80.]
R.J. Boackle, M.H. Connor, J. Vesely.
High molecular weight non-immunoglobulin salivary agglutinins (NIA) bind C1Q globular heads and have the potential to activate the first complement component.
Mol Immunol, 30 (1993), pp. 309-319
[81.]
M. Mitoma, T. Oho, Y. Shimazaki, T. Koga.
Inhibitory effect of bovine milk lactoferrin on the interaction between a streptococcal surface protein antigen and human salivary agglutinin.
J Biol Chem, 276 (2001), pp. 18060-18065
[82.]
T. Oho, H. Yu, Y. Yamashita, T. Koga.
Binding of salivary glycoprotein-secretory immunoglobulin A complex to the surface protein antigen of Streptococcus mutans.
Infect Immun, 66 (1998), pp. 115-121
[83.]
L. Thim, E. Mortz.
Isolation and characterization of putative trefoil peptide receptors.
Regul Pept, 90 (2000), pp. 61-68
[84.]
M. Sasaki, K. Tsuneyama, T. Saito, H. Kataoka, J. Mollenhauer, A. Poustka, et al.
Site-characteristic expression and induction of trefoil factor family 1, 2 and 3 and malignant brain tumor-1 in normal and diseased intrahepatic bile ducts relates to biliary pathophysiology.
[85.]
A. Mueller, J. O’Rourke, J. Grimm, K. Guillemin, M.F. Dixon, A. Lee, et al.
Distinct gene expression profiles characterize the histopathological stages of disease in Helicobacter-induced mucosa-associated lymphoid tissue lymphoma.
Proc Natl Acad Sci USA, 100 (2003), pp. 1292-1297
[86.]
L.V. Hooper, M.H. Wong, A. Thelin, L. Hansson, P.G. Falk, J.I. Gordon.
Molecular analysis of commensal host-microbial relationships in the intestine.
Science, 291 (2001), pp. 881-884
[87.]
J.F. Rawls, B.S. Samuel, J.I. Gordon.
Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota.
Proc Natl Acad Sci USA, 101 (2004), pp. 4596-4601
[88.]
W. Kang, O. Nielsen, C. Fenger, J. Madsen, S. Hansen, I. Tornoe, et al.
The scavenger receptor, cysteine-rich domain-containing molecule gp-340 is differentially regulated in epithelial cell lines by phorbol ester.
Clin Exp Immunol, 130 (2002), pp. 449-458
[89.]
S. Gebel, B. Gerstmayer, P. Kuhl, J. Borlak, K. Meurrens, T. Muller.
The kinetics of transcriptomic changes induced by cigarette smoke in rat lungs reveals a specific program of defense, inflammation, and circadian clock gene expression.
Toxicol Sci, 93 (2006), pp. 422-431
[90.]
M.R. White, E. Crouch, J. Vesona, P.J. Tacken, J.J. Batenburg, R. Leth-Larsen, et al.
Respiratory innate immune proteins differentially modulate the neutrophil respiratory burst response to influenza A virus.
Am J Physiol Lung Cell Mol Physiol, 289 (2005), pp. L606-L616
[91.]
Z. Liu, J. Kim, J.P. Sypek, I.M. Wang, H. Horton, F.G. Oppenheim, et al.
Gene expression profiles in human nasal polyp tissues studied by means of DNA microarray.
J Allergy Clin Immunol, 114 (2004), pp. 783-790
[92.]
R.C. De Lisle.
Increased expression of sulfated gp300 and acinar tissue pathology in pancreas of CFTR-/- mice.
Am J Physiol, 268 (1995), pp. 717-723
[93.]
R.C. De Lisle, M. Petitt, J. Huff, K.S. Isom, A. Agbas.
MUCLIN expression in the cystic fibrosis transmembrane conductance regulator knockout mouse.
Gastroenterology, 113 (1997), pp. 521-532
[94.]
N.H. Afdhal, N. Niu, D. Gantz, D.M. Small, B.F. Smith.
Bovine gallbladder mucin accelerates cholesterol monohydrate crystal growth in model bile.
Gastroenterology, 104 (1993), pp. 1515-1523
[95.]
D.P. Nunes, A.C. Keates, N.H. Afdhal, G.D. Offner.
Bovine gall-bladder mucin contains two distinct tandem repeating sequences: evidence for scavenger receptor cysteine-rich repeats.
Biochem J, 310 (1995), pp. 41-48
[96.]
D.P. Nunes, N.H. Afdhal, G.D. Offner.
A recombinant bovine gallbladder mucin polypeptide binds biliary lipids and accelerates cholesterol crystal appearance time.
Gastroenterology, 116 (1999), pp. 936-942
[97.]
M. Sasaki, S.F. Huang, M.F. Chen, Y.Y. Jan, T.S. Yeh, A. Ishikawa, et al.
Expression of deleted in malignant brain tumor-1 (DMBT1) molecule in biliary epithelium is augmented in hepatolithiasis: possible participation in lithogenesis.
Dig Dis Sci, 48 (2003), pp. 1234-1240
[98.]
S. Schreiber, P. Rosenstiel, M. Albrecht, J. Hampe, M. Krawczak.
Genetics of Crohn disease, an archetypal inflammatory barrier disease.
Nat Rev Genet, 6 (2005), pp. 376-388
[99.]
K. Fellermann, D.E. Stange, E. Schaeffeler, H. Schmalzl, J. Wehkamp, C.L. Bevins, et al.
A chromosome 8 gene-cluster polymorphism with low human beta-defensin 2 gene copy number predisposes to Crohn disease of the colon.
Am J Hum Genet, 79 (2006), pp. 439-448
[100.]
E.C. Crouch.
Surfactant protein-D and pulmonary host defense.
Respir Res, 1 (2000), pp. 93-108
[101.]
L. Jovine, H. Qi, Z. Williams, E. Litscher, P.M. Wassarman.
The ZP domain is a conserved module for polymerization of extracellular proteins.
Nat Cell Biol, 4 (2002), pp. 457-461
[102.]
F.J. Bikker, A.J. Ligtenberg, C. End, M. Renner, S. Blaich, S. Lyer, et al.
acteria binding by DMBT1/SAG/gp-340 is confined to the VEVLXXXXW motif in its scavenger receptor cysteine-rich domains.
J Biol Chem, 279 (2004), pp. 47699-47703
[103.]
Z. Wu, S. Lee, W. Abrams, D. Weissman, D. Malamud.
The N-terminal SRCR-SID domain of gp-340 interacts with HIV type 1 gp120 sequences and inhibits viral infection.
AIDS Res Hum Retroviruses, 22 (2006), pp. 508-515
[104.]
A.J. Ligtenberg, F.J. Bikker, J.M. De Blieck-Hogervorst, E.C. Veerman, A.V. Nieuw Amerongen.
Binding of salivary agglutinin to IgA.
Biochem J, 383 (2004), pp. 159-164
[105.]
T. Oho, F.J. Bikker, A.V. Nieuw Amerongen, J. Groenink.
A peptide domain of bovine milk lactoferrin inhibits the interaction between streptococcal surface protein antigen and a salivary agglutinin peptide domain.
Infect Immun, 72 (2004), pp. 6181-6184
[106.]
A. Prakobphol, T. Boren, W. Ma, P. Zhixiang, S.J. Fisher.
Highly glycosylated human salivary molecules present oligosaccharides that mediate adhesion of leukocytes and Helicobacter pylori.
Biochemistry, 44 (2005), pp. 2216-2224
[107.]
A.J. Ligtenberg, E.C. Veerman, A.V. Nieuw Amerongen.
A role for Lewis a antigens on salivary agglutinin in binding to Streptococcus mutans.
Antonie Van Leeuwenhoek, 77 (2000), pp. 21-30
[108.]
H.F. Jenkinson, D.R. Demuth.
Structure, function and immunogenicity of streptococcal antigen I/II polypeptides.
Mol Microbiol, 23 (1997), pp. 183-190
[109.]
D.R. Demuth, C.A. Davis, A.M. Corner, R.J. Lamont, P.S. Leboy, D. Malamud.
Cloning and expression of a Streptococcus sanguis surface antigen that interacts with a human salivary agglutinin.
Infect Immun, 56 (1988), pp. 2484-2490
[110.]
L.J. Brady, D.A. Piacentini, P.J. Crowley, P.C. Oyston, A.S. Bleiweis.
Differentiation of salivary agglutinin-mediated adherence and aggregation of mutans streptococci by use of monoclonal antibodies against the major surface adhesin P1.
Infect Immun, 60 (1992), pp. 1008-1017
[111.]
P.J. Crowley, L.J. Brady, D.A. Piacentini, A.S. Bleiweis.
Identification of a salivary agglutinin-binding domain within cell surface adhesin P1 of Streptococcus mutans.
Infect Immun, 61 (1993), pp. 1547-1552
[112.]
H. Senpuku, T. Miyauchi, N. Hanada, T. Nisizawa.
An antigenic peptide inducing cross-reacting antibodies inhibiting the interaction of Streptococcus mutans PAc with human salivary components.
Infect Immun, 63 (1995), pp. 4695-4703
[113.]
N.S. Jakubovics, N. Stromberg, C.J. van Dolleweerd, C.G. Kelly, H.F. Jenkinson.
Differential binding specificities of oral streptococcal antigen I/II family adhesins for human or bacterial ligands.
Mol Microbiol, 55 (2005), pp. 1591-1605
[114.]
V. Loimaranta, N.S. Jakubovics, J. Hytonen, J. Finne, H.F. Jenkinson, N. Stromberg.
Fluid- or surface-phase human salivary scavenger protein gp340 exposes different bacterial recognition properties.
Infect Immun, 73 (2005), pp. 2245-2252
[115.]
N.S. Jakubovics, S.W. Kerrigan, A.H. Nobbs, N. Stromberg, C.J. van Dolleweerd, D.M. Cox, et al.
Functions of cell surface-anchored antigen I/II family and Hsa polypeptides in interactions of Streptococcus gordonii with host receptors.
Infect Immun, 73 (2005), pp. 6629-6638
[116.]
D. Takamatsu, B.A. Bensing, A. Prakobphol, S.J. Fisher, P.M. Sullam.
Binding of the streptococcal surface glycoproteins GspB and Hsa to human salivary proteins.
Infect Immun, 74 (2006), pp. 1933-1940
[117.]
M.W. Oli, W.P. McArthur, L.J. Brady.
A whole cell BIAcore assay to evaluate P1-mediated adherence of Streptococcus mutans to human salivary agglutinin and inhibition by specific antibodies.
J Microbiol Methods, 65 (2006), pp. 503-511
[118.]
J. Hakkarainen, M. Toivanen, A. Leinonen, L. Frangsmyr, N. Stromberg, S. Lapinjoki, et al.
Human and bovine milk oligosaccharides inhibit Neisseria meningitidis pili attachment in vitro.
J Nutr, 135 (2005), pp. 2445-2448
[119.]
Y. Zhang, Y. Lei, A. Nobbs, A. Khammanivong, M.C. Herzberg.
Inactivation of Streptococcus gordonii SspAB alters expression of multiple adhesin genes.
Infect Immun, 73 (2005), pp. 3351-3357
[120.]
T. Hamada, M. Kawashima, H. Watanabe, J. Tagami, H. Senpuku.
Molecular interactions of surface protein peptides of Streptococcus gordonii with human salivary components.
Infect Immun, 72 (2004), pp. 4819-4826
[121.]
Z. Wu, D. Van Ryk, C. Davis, W.R. Abrams, I. Chaiken, J. Magnani, et al.
Salivary agglutinin inhibits HIV type 1 infectivity through interaction with viral glycoprotein 120.
AIDS Res Hum Retroviruses, 19 (2003), pp. 201-209
[122.]
Z. Wu, E. Golub, W.R. Abrams, D. Malamud.
gp340 (SAG) binds to the V3 sequence of gp120 important for chemokine receptor interaction.
AIDS Res Hum Retroviruses, 20 (2004), pp. 600-607
[123.]
K.L. Hartshorn, A. Ligtenberg, M.R. White, M. Van Eijk, M. Hartshorn, L. Pemberton, et al.
Salivary agglutinin and lung scavenger receptor cysteine-rich glycoprotein 340 have broad anti-influenza activities and interactions with surfactant protein D that vary according to donor source and sialylation.
Biochem J, 393 (2006), pp. 545-553
[124.]
C. Eriksson, L. Frangsmyr, L. Danielsson Niemi, V. Loimaranta, U. Holmskov, T. Bergman, et al.
Variant size- and glycoforms of the scavenger receptor cysteine-rich protein gp-340 with differential bacterial aggregation.
Glycoconj J, 24 (2007), pp. 131-142
[125.]
A. Jonasson, C. Eriksson, H.F. Jenkinson, C. Kallestal, I. Johansson, N. Stromberg.
Innate immunity glycoprotein gp-340 variants may modulate human susceptibility to dental caries.
BMC Infect Dis, 7 (2007), pp. 57
[126.]
C. End, S. Lyer, M. Renner, C. Stahl, J. Ditzer, A. Holloschi, et al.
Generation of a vector system facilitating cloning of DMBT1 variants and recombinant expression of functional full-length DMBT1.
Protein Expr Purif, 41 (2005), pp. 275-286
[127.]
P.R. Hardwidge, I. Rodriguez-Escudero, D. Goode, S. Donohoe, J. Eng, D.R. Goodlett, et al.
Proteomic analysis of the intestinal epithelial cell response to enteropathogenic Escherichia coli.
J Biol Chem, 279 (2004), pp. 20127-20136
[128.]
T.E. Grys, M.B. Siegel, W.W. Lathem, R.A. Welch.
The StcE protease contributes to intimate adherence of enterohemorrhagic Escherichia coli O157:H7 to host cells.
Infect Immun, 73 (2005), pp. 1295-1303
[129.]
E. Stoddard, G. Cannon, H. Ni, K. Kariko, J. Capodici, D. Malamud, et al.
gp340 expressed on human genital epithelia binds HIV-1 envelope protein and facilitates viral transmission.
J Immunol, 179 (2007), pp. 3126-3132
[130.]
P. Kellam, R.A. Weiss.
Infectogenomics: Insights from the host genome into infectious diseases.
[131.]
E. Pikarsky, R.M. Porat, I. Stein, R. Abramovitch, S. Amit, S. Kasem, et al.
NF-κB functions as a tumour promoter in inflammation-associated cancer.
Nature, 431 (2004), pp. 461-466
[132.]
S. Maeda, H. Kamata, J.L. Luo, H. Leffert, M. Karin.
IKK‚ couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis.
[133.]
W.E. Muller.
Review: How was metazoan threshold crossed? The hypothetical Urmetazoa.
Comp Biochem Physiol A Mol Integr Physiol, 129 (2001), pp. 433-460
[134.]
W.E. Muller, C. Koziol, I.M. Muller, M. Wiens.
Towards an understanding of the molecular basis of immune responses in sponges: The marine demosponge Geodia cydonium as a model.
[135.]
Z. Pancer, J. Munkner, I. Muller, W.E. Muller.
A novel member of an ancient superfamily: Sponge (Geodia cydonium Porifera) putative protein that features scavenger receptor cysteine-rich repeats.
Gene, 193 (1997), pp. 211-218
[136.]
B. Blumbach, Z. Pancer, B. Diehl-Seifert, R. Steffen, J. Munkner, I. Muller, et al.
The putative sponge aggregation receptor. Isolation and characterization of a molecule composed of scavenger receptor cysteine-rich domains and short consensus repeats.
J Cell Sci, 111 (1998), pp. 2635-2644
[137.]
S. Pahler, B. Blumbach, I. Muller, W.E. Muller.
Putative multiadhesive protein from the marine sponge Geodia cydonium: Cloning of the cDNA encoding a fibronectin-, an SRCR-, and a complement control protein module.
J Exp Zool, 282 (1998), pp. 332-343
[138.]
J.M. Vila, O. Padilla, M. Arman, I. Gimferrer, F. Lozano.
The scavenger receptor cysteine-rich superfamily (SRCR-SF). Structure and Function of group B members.
Inmunología, 19 (2000), pp. 105-121
[139.]
L. Steindler, S. Schuster, M. Ilan, A. Avni, C. Cerrano, S. Beer.
Differential gene expression in a marine sponge in relation to its symbiotic state.
Mar Biotechnol (NY), 9 (2007), pp. 543-549
[140.]
Z. Pancer.
Dynamic expression of multiple scavenger receptor cysteine-rich genes in coelomocytes of the purple sea urchin.
Proc Natl Acad Sci USA, 97 (2000), pp. 13156-13161
[141.]
W. Kang, K.B. Reid.
DMBT1, a regulator of mucosal homeostasis through the linking of mucosal defense and regeneration?.
FEBS Lett, 540 (2003), pp. 21-25
Copyright © 2007. Sociedad Española de Inmunología
Download PDF
Article options