covid
Buscar en
Inmunología
Toda la web
Inicio Inmunología Implication of the tetraspanin CD9 in the immune system and cancer
Journal Information
Vol. 26. Issue 2.
Pages 65-72 (April - June 2007)
Share
Share
Download PDF
More article options
Vol. 26. Issue 2.
Pages 65-72 (April - June 2007)
Full text access
Implication of the tetraspanin CD9 in the immune system and cancer
Implicación de la tetraspanina cd9 en el sistema inmune y en el cáncer
Visits
5334
S. Ovalle, M.D. Gutiérrez-López, A. Monjas, C. Cabañas
Corresponding author
cacabagu@med.ucm.es

Correspondence to: Instituto de Farmacología y Toxicología (CSIC-UCM), Facultad de Medicina UCM, Avda Complutense, s/n, 28040 Madrid, Spain. Phone number: 34-91 394 1444. Fax: 34-91 394 1469
Instituto de Farmacología y Toxicología (CSIC-UCM), Madrid
This item has received
Article information
Resumen

Las tetraspaninas son moléculas de la superficie celular de amplia distribución en los organismos eucarióticos. Poseen como característica estructural peculiar cuatro dominios transmembranales, regiones N- y C-terminales intracitoplásmicas, y dos lazos extracelulares de distinto tamaño. También poseen un motivo de secuencia CCG en el lazo extracelular mayor, así como residuos polares conservados en los dominios transmembranales. Las células sanguíneas de los mamíferos expresan combinaciones peculiares de distintas tetraspaninas, incluyendo los antígenos de diferenciación CD9, CD37, CD53, CD81/TAPA-1, CD82, CD151/PETA-3 y CD231/TALLA1.

En este trabajo se resumen la estructura y las interacciones de sus regiones citoplásmicas con proteínas del citoesqueleto y señalizadoras, como la proteína cinasa C (PKC) o la Fosfatidil-Inositol 4-cinasa (PI4-K). Sus interacciones específicas con otras tetraspaninas, con integrinas, antígenos de histocompatibilidad, y miembros de la superfamilia de las inmunoglobulinas son también revisadas.

Las tetraspaninas son proteínas “adaptadoras” o “facilitadoras”. Al formar parte de complejos moleculares, modulan funciones celulares clave que incluyen la fusión celular, la adhesión, la migración, la diferenciación y la transducción de señales. Las tetraspaninas se organizan en una red con distintos niveles de asociación, determinados por su resistencia a la solubilización por detergentes. En concreto, se analizan las tetraspaninas como reguladoras del Sistema Inmunitario gracias a sus interacciones con los receptores de antígeno de los linfocitos T y B, las moléculas de histocompatibilidad de clase I y clase II, y los co-receptores CD2, CD4, CD5, CD8 y CD19. Por último, se revisa detalladamente el papel de la tetraspanina CD9 en la función de las células linfoides y mieloides, su relevancia en infecciones como el HIV, y la importancia de su asociación con integrinas en la progresión cancerosa.

Palabras clave:
Tetraspaninas
Integrinas
HIV
Cáncer
CD9
CD37
CD53
CD81
TAPA-1
CD82
CD151
PETA-3
CD231
TALLA1
Abstract

Tetraspanins are cell surface proteins widely distributed in eukaryotic organisms. They characteristically span four times the plasma membrane, have intracellular N and C terminal regions, and two extracellular loops of unequal size. Tetraspanins also possess a CCG motif in the large extracellular loop, and conserved polar residues in the transmembrane domains. Mammalian blood cells express different sets of tetraspanins including the differentiation antigens CD9, CD37, CD53, CD81/TAPA-1, CD82, CD151/PETA-3 and CD231/TALLA1.

Here, tetraspanin structure and their cytoplasmic tail interactions with cytoskeletal and signalling proteins like Protein kinase C (PKC) or Phosphatidyl Inositol 4-kinase (PI4-K) are briefly summarized. The specific interactions with other cell surface proteins, forming complexes with other tetraspanins and members of the integrin family, MHC histocompatibility antigens, or members of the immunoglobulin superfamily are also reviewed.

Tetraspanins are considered as “adapter” or “facilitating” proteins and, through their participation in complexes, they modulate key cellular functions like cell fusion, adhesion, migration, differentiation and signal transduction. The organization of the tetraspanin web, based on different association levels determined by their resistance to detergent solubilization, is described. In particular, tetraspanins participating in the regulation of the Immune System through interactions with the B- and T-cell receptors, the class I and class II MHC antigens, and co-receptors such as CD2, CD4, CD5, CD8, or CD19 are analyzed. At last, the role of CD9 in myeloid and lymphoid cell function, its relevance to HIV infection, and the importance of tetraspanin association with integrins to cancer progression are described in detail.

Key words:
Tetraspanins
Integrin
HIV
Cancer
CD9
CD37
CD53
CD81
TAPA-1
CD82
CD151
PETA-3
CD231
TALLA1
Full text is only aviable in PDF
References
[1.]
M.E. Hemler.
Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain.
Annu Rev Cell Dev Biol, 19 (2003), pp. 397-422
[2.]
M.E. Hemler.
Specific tetraspanin functions.
J Cell Biol, 155 (2001), pp. 1103-1107
[3.]
J.M. Tarrant, L. Robb, A.B. van Spriel, M.D. Wright.
Tetraspanins: molecular organisers of the leukocyte surface.
Trends Immunol, 24 (2003), pp. 610-617
[4.]
M. Yanez-Mo, M. Mittelbrunn, F. Sanchez-Madrid.
Tetraspanins and intercellular interactions.
Microcirculation, 8 (2001), pp. 153-168
[5.]
K. Kitadokoro, D. Bordo, G. Galli, R. Petracca, F. Falugi, S. Abrignani, et al.
CD81 extracellular domain 3D structure: Insight into the tetraspanin superfamily structural motifs.
EMBO J, 20 (2001), pp. 12-18
[6.]
M. Seigneuret, A. Delaguillaumie, C. Lagaudriere-Gesbert, H. Conjeaud.
Structure of the tetraspanin main extracellular domain. A partially conserved fold with a structurally variable domain insertion.
J Biol Chem, 276 (2001), pp. 40055-40064
[7.]
X. Yang, C. Claas, S.K. Kraeft, L.B. Chen, Z. Wang, J.A. Kreidberg, M.E. Hemler.
Palmitoylation of tetraspanin proteins: Modulation of CD151 lateral interactions, subcellular distribution, and integrindependent cell morphology.
Mol Biol Cell, 13 (2002), pp. 767-781
[8.]
S. Charrin, S. Manie, M. Oualid, M. Billard, C. Boucheix, E. Rubinstein.
Differential stability of tetraspanin/tetraspanin interactions:Role of palmitoylation.
FEBS Lett, 516 (2002), pp. 139-144
[9.]
X.A. Zhang, A.L. Bontrager, M.E. Hemler.
Transmembrane-4 superfamily proteins associate with activated protein kinase C (PKC) and link PKC to specific ‚1 integrins.
J Biol Chem, 276 (2001), pp. 25005-25013
[10.]
F. Berditchevski, K.F. Tolias, K. Wong, C.L. Carpenter, M.E. Hemler.
A novel link between integrins, transmembrane-4 superfamily proteins (CD63 and CD81), and phosphatidylinositol 4-kinase.
J Biol Chem, 272 (1997), pp. 2595-2598
[11.]
R.L. Yauch, F. Berditchevski, M.B. Harler, J. Reichner, M.E. Hemler.
Highly stoichiometric, stable, and specific association of integrin α3‚1 with CD151 provides a major link to phosphatidylinositol 4- kinase, and may regulate cell migration.
Mol Biol Cell, 9 (1998), pp. 2751-2765
[12.]
R.L. Yauch, M.E. Hemler.
Specific interactions among transmembrane 4 superfamily (TM4SF) proteins and phosphoinositide 4-kinase.
Biochem J, 351 (2000), pp. 629-637
[13.]
C. Boucheix, G.H.T. Duc, C. Jasmin, E. Rubinstein.
Tetraspanins and malignancy.
Expert Rev Molecular Med, 31 (2001), pp. 1-17
[14.]
C. Boucheix, E. Rubinstein.
Tetraspanins.
Cell Mol Life Sci, 58 (2001), pp. 1189-1205
[15.]
S. Levy, T. Shoham.
The tetraspanin web modulates immune-signalling complexes.
Nat Rev Immunol, 5 (2005), pp. 136-148
[16.]
C. Claas, C.S. Stipp, M.E. Hemler.
Evaluation of prototype transmembrane 4 superfamily protein complexes and their relation to lipid rafts.
J Biol Chem, 276 (2001), pp. 7974-7984
[17.]
H.T. Maecker, M.S. Do, S. Levy.
CD81 on B cells promotes interleukin 4 secretion and antibody production during T helper type 2 immune responses.
Proc Natl Acad Sci USA, 95 (1998), pp. 2458-2462
[18.]
T. Miyazaki, U. Muller, K.S. Campbell.
Normal development but differentially altered proliferative responses of lymphocytes in mice lacking CD81.
EMBO J, 16 (1997), pp. 4217-4225
[19.]
E.N. Tsitsikov, J.C. Gutierrez-Ramos, R.S. Geha.
Impaired CD19 expression and signaling, enhanced antibody response to type II T independent antigen and reduction of B-1 cells in CD81-deficient mice.
Proc Natl Acad Sci USA, 94 (1997), pp. 10844-10849
[20.]
K.P. Knobeloch, M.D. Wright, A.F. Ochsenbein, O. Liesenfeld, J. Lohler, R.M. Zinkernagel, et al.
Targeted inactivation of the tetraspanin CD37 impairs T-cell-dependent B-cell response under suboptimal costimulatory conditions.
Mol Cell Biol, 20 (2000), pp. 5363-5369
[21.]
L.M. Lau, J.L. Wee, M.D. Wright, G.W. Moseley, P.M. Hogarth, L.K. Ashman, D.E. Jackson.
The tetraspanin superfamily member CD151 regulates outside-in integrin αIIb‚3 signaling and platelet function.
Blood, 104 (2004), pp. 2368-2375
[22.]
S. Charrin, F. Le Naour, M. Oualid, M. Billard, G. Faure, S.M. Hanash, et al.
The major CD9 and CD81 molecular partner. Identification and characterization of the complexes.
J Biol Chem, 276 (2001), pp. 14329-14337
[23.]
P.M. Sincock, G. Mayrhofer, L.K. Ashman.
Localization of the transmembrane 4 superfamily (TM4SF) member PETA-3 (CD151) in normal human tissues: comparison with CD9 CD63, and α5‚1 integrin.
J Histochem Cytochem, 45 (1997), pp. 515-525
[24.]
C. Boucheix.
Clinical applications of monoclonal antibodies.
Rev Med Interne, 6 (1985), pp. 403-410
[25.]
M. Miyake, M. Koyama, M. Seno, S. Ikeyama.
Identification of the motility-related protein (MRP-1), recognized by monoclonal antibody M31-15, which inhibits cell motility.
J Exp Med, 174 (1991), pp. 1347-1354
[26.]
I. Tachibana, M.E. Hemler.
Role of transmembrane 4 superfamily (TM4SF) proteins CD9 and CD81 in muscle cell fusion and myotube maintenance.
J Cell Biol, 146 (1999), pp. 893-904
[27.]
C. Schmidt, V. Kunemund, E.S. Wintergerst, B. Schmitz, M. Schachner.
CD9 of mouse brain is implicated in neurite outgrowth and cell migration in vitro and is associated with the alpha 6/beta 1 integrin and the neural adhesion molecule L1.
J Neurosci Res, 43 (1996), pp. 12-31
[28.]
M.S. Chen, K.S. Tung, S.A. Coonrod, Y. Takahashi, D. Bigler, A. Chang, et al.
Role of the integrin-associated protein CD9 in binding between sperm ADAM 2 and the egg integrin α6‚1: Implications for murine fertilization.
Proc Natl Acad Sci USA, 96 (1999), pp. 11830-11835
[29.]
F. Berditchevski.
Complexes of tetraspanins with integrins: More than meets the eye.
J Cell Sci, 114 (2001), pp. 4143-4151
[30.]
O. Barreiro, M. Yanez-Mo, M. Sala-Valdes, M.D. Gutierrez-Lopez, S. Ovalle, A. Higginbottom, et al.
Endothelial tetraspanin microdomains regulate leukocyte firm adhesion during extravasation.
Blood, 105 (2005), pp. 2852-2861
[31.]
A.R. Shaw, A. Domanska, A. Mak, A. Gilchrist, K. Dobler, L. Visser, et al.
Ectopic expression of human and feline CD9 in a human B cell line confers beta 1 integrin-dependent motility on fibronectin and laminin substrates and enhanced tyrosine phosphorylation.
J Biol Chem, 270 (1995), pp. 24092-24099
[32.]
T.C. Nichols, J.M. Guthridge, D.R. Karp, H. Molina, D.R. Fletcher, V.M. Holers.
Gamma-glutamyl transpeptidase, an ecto-enzyme regulator of intracellular redox potential, is a component of TM4 signal transduction complexes.
Eur J Immunol, 28 (1998), pp. 4123-4129
[33.]
T. Shoham, R. Rajapaksa, C. Boucheix, E. Rubinstein, J.C. Poe, T.F. Tedder, S. Levy.
The tetraspanin CD81 regulates the expression of CD19 during B cell development in a postendoplasmic reticulum compartment.
J Immunol, 171 (2003), pp. 4062-4072
[34.]
Y. Yashiro-Ohtani, X.Y. Zhou, K. Toyo-Oka, X.G. Tai, C.S. Park, T. Hamaoka, et al.
Non-CD28 costimulatory molecules present in T cell rafts induce T cell costimulation by enhancing the association of TCR with rafts.
J Immunol, 164 (2000), pp. 1251-1259
[35.]
K. Toyo-oka, Y. Yashiro-Ohtani, C.S. Park, X.G. Tai, K. Miyake, T. Hamaoka, H. Fujiwara.
Association of a tetraspanin CD9 with CD5 on the T cell surface: Role of particular transmembrane domains in the association.
Int Immunol, 11 (1999), pp. 2043-2052
[36.]
X.G. Tai, K. Toyooka, Y. Yashiro, R. Abe, C.S. Park, T. Hamaoka, et al.
CD9-mediated costimulation of TCR-triggered naive T cells leads to activation followed by apoptosis.
J Immunol, 159 (1997), pp. 3799-3807
[37.]
X.G. Tai, Y. Yashiro, R. Abe, K. Toyooka, C.R. Wood, J. Morris, et al.
A role for CD9 molecules in T cell activation.
J Exp Med, 184 (1996), pp. 753-758
[38.]
K. Toyo-oka, X.G. Tai, Y. Yashiro, H.J. Ahn, R. Abe, T. Hamaoka, et al.
Synergy between CD28 and CD9 costimulation for naive T-cell activation.
Immunol Lett, 58 (1997), pp. 19-23
[39.]
T. Imai, K. Fukudome, S. Takagi, M. Nagira, M. Furuse, N. Fukuhara, et al.
C33 antigen recognized by monoclonal antibodies inhibitory to human T cell leukemia virus type 1-induced syncytium formation is a member of a new family of transmembrane proteins including CD9, CD37, CD53, and CD63.
J Immunol, 149 (1992), pp. 2879-2886
[40.]
C. Lagaudriere-Gesbert, S. Lebel-Binay, C. Hubeau, D. Fradelizi, H. Conjeaud.
Signaling through the tetraspanin CD82 triggers its association with the cytoskeleton leading to sustained morphological changes and T cell activation.
[41.]
A.B. van Spriel, K.L. Puls, M. Sofi, D. Pouniotis, H. Hochrein, Z. Orinska, et al.
A regulatory role for CD37 in T cell proliferation.
J Immunol, 172 (2004), pp. 2953-2961
[42.]
K. Kaji, S. Takeshita, K. Miyake, T. Takai, A. Kudo.
Functional association of CD9 with the Fc gamma receptors in macrophages.
J Immunol, 166 (2001), pp. 3256-3265
[43.]
A. Higginbottom, I. Wilkinson, B. McCullough, F. Lanza, D.O. Azorsa, L.J. Partridge, P.N. Monk.
Antibody cross-linking of human CD9 and the high-affinity immunoglobulin E receptor stimulates secretion from transfected rat basophilic leukaemia cells.
Immunology, 99 (2000), pp. 546-552
[44.]
F. Le Naour, C. Francastel, M. Prenant, O. Lantz, C. Boucheix, E. Rubinstein.
Upregulation of CD9 expression during TPA treatment of K562 cells.
Leukemia, 11 (1997), pp. 1290-1297
[45.]
N. Ouchi, S. Kihara, S. Yamashita, S. Higashiyama, T. Nakagawa, I. Shimomura, et al.
Role of membrane-anchored heparin-binding epidermal growth factor-like growth factor and CD9 on macrophages.
Biochem J, 328 (1997), pp. 923-928
[46.]
A. Engering, J. Pieters.
Association of distinct tetraspanins with MHC class II molecules at different subcellular locations in human immature dendritic cells.
Int Immunol, 13 (2001), pp. 127-134
[47.]
J.M. Escola, M.J. Kleijmeer, W. Stoorvogel, J.M. Griffith, O. Yoshie, H.J. Geuze.
Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes.
J Biol Chem, 273 (1998), pp. 20121-20127
[48.]
H. Kropshofer, S. Spindeldreher, T.A. Rohn, N. Platania, C. Grygar, N. Daniel, et al.
Tetraspan microdomains distinct from lipid rafts enrich select peptide-MHC class II complexes.
Nat Immunol, 3 (2002), pp. 61-68
[49.]
B. Willett, M. Hosie, A. Shaw, J. Neil.
Inhibition of feline immunodeficiency virus infection by CD9 antibody operates after virus entry and is independent of virus tropism.
J Gen Virol, 78 (1997), pp. 611-618
[50.]
S. Loffler, F. Lottspeich, F. Lanza, D.O. Azorsa, V. ter Meulen, J. Schneider-Schaulies.
CD9, a tetraspan transmembrane protein, renders cells susceptible to canine distemper virus.
J Virol, 71 (1997), pp. 42-49
[51.]
E. Schmid, A. Zurbriggen, U. Gassen, B. Rima, V. ter Meulen, J. Schneider-Schaulies.
Antibodies to CD9, a tetraspan transmembrane protein, inhibit canine distemper virus-induced cell-cell fusion but not virus-cell fusion.
J Virol, 74 (2000), pp. 7554-7561
[52.]
R. Iwamoto, S. Higashiyama, T. Mitamura, N. Taniguchi, M. Klagsbrun, E. Mekada.
Heparin-binding EGF-like growth factor, which acts as the diphtheria toxin receptor, forms a complex with membrane protein DRAP27/CD9, which up-regulates functional receptors and diphtheria toxin sensitivity.
EMBO J, 13 (1994), pp. 2322-2330
[53.]
M. Gordon-Alonso, M. Yanez-Mo, O. Barreiro, S. Alvarez, M.A. Munoz-Fernandez, et al.
Tetraspanins CD9 and CD81 modulate HIV-1-induced membrane fusion.
J Immunol, 177 (2006), pp. 5129-5137
[54.]
M. Hemler.
Integrin associated proteins.
Curr Opin Cell Biol, 10 (1998), pp. 578-585
[55.]
J.F. Cajot, I. Sordat, T. Silvestre, B. Sordat.
Differential display cloning identifies motility-related protein (MRP1/CD9) as highly expressed in primary compared to metastatic human colon carcinoma cells.
Cancer Res, 57 (1997), pp. 2593-2597
[56.]
M. Miyake, K. Nakano, S.I. Itoi, T. Koh, T. Taki.
Motility-related protein-1 (MRP-1/CD9) reduction as a factor of poor prognosis in breast cancer.
Cancer Res, 56 (1996), pp. 1244-1249
[57.]
M. Miyake, K. Nakano, Y. Ieki, M. Adachi, C.L. Huang, S. Itoi, et al.
Motility related protein 1 (MRP-1/CD9) expression: Inverse correlation with metastases in breast cancer.
Cancer Res, 55 (1995), pp. 4127-4131
[58.]
Z. Si, P. Hersey.
Expression of the neuroglandular antigen and analogues in melanoma. CD9 expression appears inversely related to metastatic potential of melanoma.
Int J Cancer, 54 (1993), pp. 37-43
[59.]
M.D. Gutierrez-Lopez, S. Ovalle, M. Yanez-Mo, N. Sanchez-Sanchez, E. Rubinstein, N. Olmo, et al.
A functionally relevant conformational epitope on the CD9 tetraspanin depends on the association with activated ‚1 integrin.
J Biol Chem, 278 (2003), pp. 208-218
[60.]
Ovalle S, Gutiérrez-López MD, Olmo N, Turnay J, Lizarbe MA, Majano P, et al. CD9-specific antibodies inhibit the proliferation and tumorigenicity of human colon carcinoma cells through a mechanism involving TNF-α. Int. J Cancer 2007 (In press).
[61.]
Y. Murayama, J. Miyagawa, K. Oritani, H. Yoshida, K. Yamamoto, O. Kishida, et al.
CD9-mediated activation of the p46 Shc isoform leads to apoptosis in cancer cells.
J Cell Sci, 117 (2004), pp. 3379-3388
[62.]
S. Inui, S. Higashiyama, K. Hashimoto, M. Higashiyama, K. Yoshikawa, N. Taniguchi.
Possible role of coexpression of CD9 with membraneanchored heparin-binding EGF-like growth factor and amphiregulin in cultured human keratinocyte growth.
[63.]
R. Oren, S. Takahashi, C. Doss, R. Levy, S. Levy.
TAPA-1, the target of an antiproliferative antibody, defines a new family of transmembrane proteins.
Mol Cell Biol, 10 (1990), pp. 4007-4015
Copyright © 2007. Sociedad Española de Inmunología
Article options