covid
Buscar en
Inmunología
Toda la web
Inicio Inmunología OCTN genes: Susceptibility genes for autoimmune diseases?
Journal Information
Vol. 26. Issue 2.
Pages 87-96 (April - June 2007)
Share
Share
Download PDF
More article options
Vol. 26. Issue 2.
Pages 87-96 (April - June 2007)
Full text access
OCTN genes: Susceptibility genes for autoimmune diseases?
Los genes octn: ¿Genes de susceptibilidad a enfermedades autoinmunes?
Visits
2817
E. Urcelay, E.G. de la Concha, A. Martínez
Corresponding author
alfmdoncel@terra.es

Correspondence to: Departamento de Inmunología, Hospital Clínico San Carlos, Madrid, C/ Martín Lagos, s/n., 28040 Madrid, Spain. Phone number: 34-91 330 33 47. Fax: 34-91 330 33 44
Departamento de Inmunología, Hospital Clínico San Carlos, Madrid
This item has received
Article information
Resumen

El estudio genético de las enfermedades autoinmunes de base poligénica (artritis reumatoide, enfermedad inflamatoria intestinal, etc) ha evolucionado desde la identificación, mediante estudios de ligamiento, de regiones del genoma implicadas en la susceptibilidad, a la identificación dentro de esas zonas, mediante estudios de asociación, de las variantes concretas en genes específicos que están molecularmente relacionadas con la predisposición incrementada a la enfermedad. Una de las regiones que ha atraído más interés es 5q31, ligada a enfermedad inflamatoria intestinal y enfermedades alérgicas, puesto que en dicha región se encuentran los genes de importantes citocinas como IL4, IL5 e IL13. Un resultado sorprendente de los estudios de asociación que se hicieron a continuación, es que tanto en la enfermedad de Crohn como en la artritis reumatoide, los genes responsables presentes en la región resultaron ser, no esos genes de citocinas, sino dos transportadores de cationes orgánicos, OCTN1 y OCTN2, codificados por los genes SLC22A4 y SLC22A5, respectivamente, y para los que nadie había anticipado una función relevante en el sistema inmune. En los últimos dos años ha existido un animado debate en la literatura inmunogenética acerca de si realmente esos genes son los auténticamente responsables de la enfermedad, o si simplemente son arrastrados pasivamente en el cromosoma 5, por desequilibrio de ligamiento, con la variante etiológica, que aún permanecería por identificar. En la presente revisión, pretendemos dar un breve panorama del estado de la cuestión.

Palabras clave:
OCTN1
SLC22A4
OCTN2
SLC22A5
Susceptibilidad genética
Polimorfismo de Nucleótido Único
Artritis Reumatoide
Enfermedad de Crohn
Abstract

Genetic studies in polygenic autoimmune diseases (Rheumatoid arthritis, inflammatory bowel disease, etc) have moved from identifying by linkage studies those genomic regions involved in susceptibility, to the precise ascertainment of specific variants molecularly related to the disease by association studies. One of the regions which attracted more attention is 5q31, linked to inflammatory bowel and allergic diseases because it harbours the cytokine-cluster comprising IL4, IL5 and IL13, among others. A surprising result of subsequent association studies, both in Crohn's disease and in rheumatoid arthritis, was that the susceptibility genes in that region turned out to be, not any of the cytokine genes, but two organic cation transporters, OCTN1 and OCTN2 coded by the SLC22A4 and SLC22A5 genes respectively, not previously anticipated as relevant for the immune response. During the last two years there has been a lively debate in the immunogenetic literature on whether these genes are truly responsible of the increased susceptibility to the disease, or they are simply passively carried on chromosome 5q31 by linkage disequilibrium with an as-yet-unknown etiologic variant. In the present review, we aim at offering a brief glance of the current status in this field.

Key words:
OCTN1
SLC22A4
OCTN2
SLC22A5
Genetic susceptibility
Single Nucleotide Polymorphism
Rheumatoid Arthritis
Crohn's disease
Full text is only aviable in PDF
References
[1.]
P.K. Gregersen, T.W. Behrens.
Genetics of autoimmune diseasesdisorders of immune homeostasis.
Nat Rev Genet, 7 (2006), pp. 917-928
[2.]
L.M. Sollid, G. Markussen, J. Ek, H. Gjerde, F. Vartdal, E. Thorsby.
Evidence for a primary association of celiac disease to a particular HLA-DQ alpha/beta heterodimer.
J Exp Med, 169 (1989), pp. 345-350
[3.]
P.K. Gregersen, J. Silver, R.J. Winchester.
The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis.
Arthritis Rheum, 30 (1987), pp. 1205-1213
[4.]
R.H. Duerr, M.M. Barmada, L. Zhang, R. Pfutzer, D.E. Weeks.
Highdensity genome scan in Crohn disease shows confirmed linkage to chromosome 14q11-12.
Am J Hum Genet, 66 (2000), pp. 1857-1862
[5.]
J. Hampe, S. Schreiber, S.H. Shaw, K.F. Lau, S. Bridger, A.J. Macpherson, et al.
A genomewide analysis provides evidence for novel linkages in inflammatory bowel disease in a large European cohort.
Am J Hum Genet, 64 (1999), pp. 808-816
[6.]
J.P. Hugot, P. Laurent-Puig, C. Gower-Rousseau, J.M. Olson, J.C. Lee, L. Beaugerie, et al.
Mapping of a susceptibility locus for Crohn's disease on chromosome 16.
Nature, 379 (1996), pp. 821-823
[7.]
Y. Ma, J.D. Ohmen, Z. Li, L.G. Bentley, C. McElree, S. Pressman, et al.
A genome-wide search identifies potential new susceptibility loci for Crohn's disease.
Inflamm Bowel Dis, 5 (1999), pp. 271-278
[8.]
J. Satsangi, M. Parkes, E. Louis, L. Hashimoto, N. Kato, K. Welsh, et al.
Two stage genome-wide search in inflammatory bowel disease provides evidence for susceptibility loci on chromosomes 3, 7 and 12.
Nat Genet, 14 (1996), pp. 199-202
[9.]
C.A. Mein, L. Esposito, M.G. Dunn, G.C. Johnson, A.E. Timms, J.V. Goy, et al.
A search for type 1 diabetes susceptibility genes in families from the United Kingdom.
Nat Genet, 19 (1998), pp. 297-300
[10.]
S. Kuokkanen, M. Gschwend, J.D. Rioux, M.J. Daly, J.D. Terwilliger, P.J. Tienari, et al.
Genome wide scan of multiple sclerosis in Finnish multiplex families.
Am J Hum Genet, 61 (1997), pp. 1379-1387
[11.]
G.C. Ebers, K. Kukay, D.E. Bulman, A.D. Sadovnick, G. Rice, C. Anderson, et al.
A full genome search in multiple sclerosis.
Nat Genet, 13 (1996), pp. 472-476
[12.]
J.L. Haines, M. Ter-Minassian, A. Bazyk, J.F. Gusella, D.J. Kim, H. Terwedow, et al.
A complete genomic screen for multiple sclerosis underscores a role for the major histocompatability complex. The Multiple Sclerosis Genetics Group.
Nat Genet, 13 (1996), pp. 469-471
[13.]
S. Sawcer, H.B. Jones, R. Feakes, J. Gray, N. Smaldon, J. Chataway, et al.
A genome screen in multiple sclerosis reveals susceptibility loci on chromosome 6p21 and 17q22.
Nat Genet, 13 (1996), pp. 464-468
[14.]
S. Sawcer, M. Ban, M. Maranian, T.W. Yeo, A. Compston, A. Kirby, et al.
A high-density screen for linkage in multiple sclerosis.
Am J Hum Genet, 77 (2005), pp. 454-467
[15.]
G.L. Lucotte.
Confirmation of a gene for multiple sclerosis (MS) to chromosome region 19q13.3.
Genet Couns, 13 (2002), pp. 133-138
[16.]
D. Jawaheer, M.F. Seldin, C.I. Amos, W.V. Chen, R. Shigeta, C. Etzel, et al.
Screening the genome for rheumatoid arthritis susceptibility genes: a replication study and combined analysis of 512 multicase families.
Arthritis Rheum, 48 (2003), pp. 906-916
[17.]
D. Jawaheer, M.F. Seldin, C.I. Amos, W.V. Chen, R. Shigeta, J. Monteiro, et al.
A genomewide screen in multiplex rheumatoid arthritis families suggests genetic overlap with other autoimmune diseases.
Am J Hum Genet, 68 (2001), pp. 927-936
[18.]
J.D. Rioux, M.S. Silverberg, M.J. Daly, A.H. Steinhart, R.S. McLeod, A.M. Griffiths, et al.
Genomewide search in Canadian families with inflammatory bowel disease reveals two novel susceptibility loci.
Am J Hum Genet, 66 (2000), pp. 1863-1870
[19.]
P. Kauppi, K. Lindblad-Toh, P. Sevon, H.T. Toivonen, J.D. Rioux, A. Villapakkam, et al.
A second-generation association study of the 5q31 cytokine gene cluster and the interleukin-4 receptor in asthma.
Genomics, 77 (2001), pp. 35-42
[20.]
J.D. Rioux, M.J. Daly, M.S. Silverberg, K. Lindblad, H. Steinhart, Z. Cohen, et al.
Genetic variation in the 5q31 cytokine gene cluster confers susceptibility to Crohn disease.
Nat Genet, 29 (2001), pp. 223-228
[21.]
M.J. Daly, J.D. Rioux, S.F. Schaffner, T.J. Hudson, E.S. Lander.
Highresolution haplotype structure in the human genome.
Nat Genet, 29 (2001), pp. 229-232
[22.]
S. Tokuhiro, R. Yamada, X. Chang, A. Suzuki, Y. Kochi, T. Sawada, et al.
An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis.
Nat Genet, 35 (2003), pp. 341-348
[23.]
K.L. Durst, S.W. Hiebert.
Role of RUNX family members in transcriptional repression and gene silencing.
Oncogene, 23 (2004), pp. 4220-4224
[24.]
C. Helms, L. Cao, J.G. Krueger, E.M. Wijsman, F. Chamian, D. Gordon, et al.
A putative RUNX1 binding site variant between SLC9A3R1 and NAT9 is associated with susceptibility to psoriasis.
Nat Genet, 35 (2003), pp. 349-356
[25.]
L. Prokunina, C. Castillejo-Lopez, F. Oberg, I. Gunnarsson, L. Berg, V. Magnusson, et al.
A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans.
Nat Genet, 32 (2002), pp. 666-669
[26.]
V.D. Peltekova, R.F. Wintle, L.A. Rubin, C.I. Amos, Q. Huang, X. Gu, et al.
Functional variants of OCTN cation transporter genes are associated with Crohn disease.
Nat Genet, 36 (2004), pp. 471-475
[27.]
K. Yamazaki, M. Takazoe, T. Tanaka, T. Ichimori, S. Saito, A. Iida, et al.
Association analysis of SLC22A4 SLC22A5 and DLG5 in Japanese patients with Crohn disease.
J Hum Genet, 49 (2004), pp. 664-668
[28.]
A. Martinez, A. Valdivia, D. Pascual-Salcedo, A. Balsa, B. Fernandez-Gutierrez, E. De la Concha, et al.
Role of SLC22A4, SLC22A5, and RUNX1 genes in rheumatoid arthritis.
J Rheumatol, 33 (2006), pp. 842-846
[29.]
M. Tosa, K. Negoro, Y. Kinouchi, H. Abe, E. Nomura, S. Takagi, et al.
Lack of association between IBD5 and Crohn's disease in Japanese patients demonstrates population-specific differences in inflammatory bowel disease.
Scand J Gastroenterol, 41 (2006), pp. 48-53
[30.]
K. Negoro, D.P. McGovern, Y. Kinouchi, S. Takahashi, N.J. Lench, T. Shimosegawa, et al.
Analysis of the IBD5 locus and potential gene-gene interactions in Crohn's disease.
Gut, 52 (2003), pp. 541-546
[31.]
T. Watanabe, A. Kitani, W. Strober.
NOD2 regulation of Toll-like receptor responses and the pathogenesis of Crohn's disease.
Gut, 54 (2005), pp. 1515-1518
[32.]
Y. Ogura, D.K. Bonen, N. Inohara, D.L. Nicolae, F.F. Chen, R. Ramos, et al.
A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease.
Nature, 411 (2001), pp. 603-606
[33.]
J.P. Hugot, M. Chamaillard, H. Zouali, S. Lesage, J.P. Cezard, J. Belaiche, et al.
Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease.
Nature, 411 (2001), pp. 599-603
[34.]
A.M. Lamhonwah, C. Ackerley, R. Onizuka, A. Tilups, D. Lamhonwah, C. Chung, et al.
Epitope shared by functional variant of organic cation/carnitine transporter, OCTN1 Campylobacter jejuni and Mycobacterium paratuberculosis may underlie susceptibility to Crohn's disease at 5q31.
Biochem Biophys Res Commun, 337 (2005), pp. 1165-1175
[35.]
D. Grundemann, S. Harlfinger, S. Golz, A. Geerts, A. Lazar, R. Berkels, et al.
Discovery of the ergothioneine transporter.
Proc Natl Acad Sci U S A, 102 (2005), pp. 5256-5261
[36.]
D. Taubert, A. Lazar, G. Grimberg, N. Jung, A. Rubbert, K.S. Delank, et al.
Association of rheumatoid arthritis with ergothioneine levels in red blood cells: a case control study.
J Rheumatol, 33 (2006), pp. 2139-2145
[37.]
D. Taubert, G. Grimberg, N. Jung, A. Rubbert, E. Schomig.
Functional role of the 503F variant of the organic cation transporter OCTN1 in Crohn's disease.
Gut, 54 (2005), pp. 1505-1506
[38.]
B. Newman, R.F. Wintle, M. van Oene, M. Yazdanpanah, J. Owen, B. Johnson, et al.
SLC22A4 polymorphisms implicated in rheumatoid arthritis and Crohn's disease are not associated with rheumatoid arthritis in a Canadian Caucasian population.
Arthritis Rheum, 52 (2005), pp. 425-429
[39.]
A. Barton, S. Eyre, J. Bowes, P. Ho, S. John, J. Worthington.
Investigation of the SLC22A4 gene (associated with rheumatoid arthritis in a Japanese population) in a United Kingdom population of rheumatoid arthritis patients.
Arthritis Rheum, 52 (2005), pp. 752-758
[40.]
G. Orozco, E. Sanchez, M.A. Gonzalez-Gay, M.A. Lopez-Nevot, B. Torres, D. Pascual-Salcedo, et al.
SLC22A4 RUNX1, and SUMO4 polymorphisms are not associated with rheumatoid arthritis: a case-control study in a Spanish population.
J Rheumatol, 33 (2006), pp. 1235-1239
[41.]
B. Newman, X. Gu, R. Wintle, D. Cescon, M. Yazdanpanah, X. Liu, et al.
A risk haplotype in the Solute Carrier Family 22A4/22A5 gene cluster influences phenotypic expression of Crohn's disease.
Gastroenterology, 128 (2005), pp. 260-269
[42.]
F. Zhong, C.C. McCombs, J.M. Olson, R.C. Elston, F.M. Stevens, C.F. McCarthy, et al.
An autosomal screen for genes that predispose to celiac disease in the western counties of Ireland.
Nat Genet, 14 (1996), pp. 329-333
[43.]
L. Greco, G. Corazza, M.C. Babron, F. Clot, M.C. Fulchignoni-Lataud, S. Percopo, et al.
Genome search in celiac disease.
Am J Hum Genet, 62 (1998), pp. 669-675
[44.]
P. Holopainen, K. Mustalahti, P. Uimari, P. Collin, M. Maki, J. Partanen.
Candidate gene regions and genetic heterogeneity in gluten sensitivity.
Gut, 48 (2001), pp. 696-701
[45.]
M.C. Babron, S. Nilsson, S. Adamovic, A.T. Naluai, J. Wahlstrom, H. Ascher, et al.
Meta and pooled analysis of European coeliac disease data.
Eur J Hum Genet, 11 (2003), pp. 828-834
[46.]
L. Greco, M.C. Babron, G.R. Corazza, S. Percopo, R. Sica, F. Clot, et al.
Existence of a genetic risk factor on chromosome 5q in Italian coeliac disease families.
Ann Hum Genet, 65 (2001), pp. 35-41
[47.]
S. Percopo, M.C. Babron, M. Whalen, S. De Virgiliis, I. Coto, F. Clerget- Darpoux, et al.
Saturation of the 5q31-q33 candidate region for coeliac disease.
Ann Hum Genet, 67 (2003), pp. 265-268
[48.]
P.K. Gregersen, T.W. Behrens.
Genetics of autoimmune diseasesdisorders of immune homeostasis.
Nat Rev Genet, 7 (2006), pp. 917-928
[49.]
L.M. Sollid, G. Markussen, J. Ek, H. Gjerde, F. Vartdal, E. Thorsby.
Evidence for a primary association of celiac disease to a particular HLA-DQ alpha/beta heterodimer.
J Exp Med, 169 (1989), pp. 345-350
[50.]
P.K. Gregersen, J. Silver, R.J. Winchester.
The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis.
Arthritis Rheum, 30 (1987), pp. 1205-1213
[51.]
R.H. Duerr, M.M. Barmada, L. Zhang, R. Pfutzer, D.E. Weeks.
Highdensity genome scan in Crohn disease shows confirmed linkage to chromosome 14q11-12.
Am J Hum Genet, 66 (2000), pp. 1857-1862
[52.]
J. Hampe, S. Schreiber, S.H. Shaw, K.F. Lau, S. Bridger, A.J. Macpherson, et al.
A genomewide analysis provides evidence for novel linkages in inflammatory bowel disease in a large European cohort.
Am J Hum Genet, 64 (1999), pp. 808-816
[53.]
J.P. Hugot, P. Laurent-Puig, C. Gower-Rousseau, J.M. Olson, J.C. Lee, L. Beaugerie, et al.
Mapping of a susceptibility locus for Crohn's disease on chromosome 16.
Nature, 379 (1996), pp. 821-823
[54.]
Y. Ma, J.D. Ohmen, Z. Li, L.G. Bentley, C. McElree, S. Pressman, et al.
A genome-wide search identifies potential new susceptibility loci for Crohn's disease.
Inflamm Bowel Dis, 5 (1999), pp. 271-278
[55.]
J. Satsangi, M. Parkes, E. Louis, L. Hashimoto, N. Kato, K. Welsh, et al.
Two stage genome-wide search in inflammatory bowel disease provides evidence for susceptibility loci on chromosomes 3, 7 and 12.
Nat Genet, 14 (1996), pp. 199-202
[55.]
C.A. Mein, L. Esposito, M.G. Dunn, G.C. Johnson, A.E. Timms, J.V. Goy, et al.
A search for type 1 diabetes susceptibility genes in families from the United Kingdom.
Nat Genet, 19 (1998), pp. 297-300
[54.]
S. Kuokkanen, M. Gschwend, J.D. Rioux, M.J. Daly, J.D. Terwilliger, P.J. Tienari, et al.
Genome wide scan of multiple sclerosis in Finnish multiplex families.
Am J Hum Genet, 61 (1997), pp. 1379-1387
[56.]
G.C. Ebers, K. Kukay, D.E. Bulman, A.D. Sadovnick, G. Rice, C. Anderson, et al.
A full genome search in multiple sclerosis.
Nat Genet, 13 (1996), pp. 472-476
[57.]
J.L. Haines, M. Ter-Minassian, A. Bazyk, J.F. Gusella, D.J. Kim, H. Terwedow, et al.
A complete genomic screen for multiple sclerosis underscores a role for the major histocompatability complex. The Multiple Sclerosis Genetics Group.
Nat Genet, 13 (1996), pp. 469-471
[58.]
S. Sawcer, H.B. Jones, R. Feakes, J. Gray, N. Smaldon, J. Chataway, et al.
A genome screen in multiple sclerosis reveals susceptibility loci on chromosome 6p21 and 17q22.
Nat Genet, 13 (1996), pp. 464-468
[59.]
S. Sawcer, M. Ban, M. Maranian, T.W. Yeo, A. Compston, A. Kirby, et al.
A high-density screen for linkage in multiple sclerosis.
Am J Hum Genet, 77 (2005), pp. 454-467
[60.]
G.L. Lucotte.
Confirmation of a gene for multiple sclerosis (MS) to chromosome region 19q13.3.
Genet Couns, 13 (2002), pp. 133-138
[61.]
D. Jawaheer, M.F. Seldin, C.I. Amos, W.V. Chen, R. Shigeta, C. Etzel, et al.
Screening the genome for rheumatoid arthritis susceptibility genes: a replication study and combined analysis of 512 multicase families.
Arthritis Rheum, 48 (2003), pp. 906-916
[62.]
D. Jawaheer, M.F. Seldin, C.I. Amos, W.V. Chen, R. Shigeta, J. Monteiro, et al.
A genomewide screen in multiplex rheumatoid arthritis families suggests genetic overlap with other autoimmune diseases.
Am J Hum Genet, 68 (2001), pp. 927-936
[63.]
J.D. Rioux, M.S. Silverberg, M.J. Daly, A.H. Steinhart, R.S. McLeod, A.M. Griffiths, et al.
Genomewide search in Canadian families with inflammatory bowel disease reveals two novel susceptibility loci.
Am J Hum Genet, 66 (2000), pp. 1863-1870
[64.]
P. Kauppi, K. Lindblad-Toh, P. Sevon, H.T. Toivonen, J.D. Rioux, A. Villapakkam, et al.
A second-generation association study of the 5q31 cytokine gene cluster and the interleukin-4 receptor in asthma.
Genomics, 77 (2001), pp. 35-42
[65.]
J.D. Rioux, M.J. Daly, M.S. Silverberg, K. Lindblad, H. Steinhart, Z. Cohen, et al.
Genetic variation in the 5q31 cytokine gene cluster confers susceptibility to Crohn disease.
Nat Genet, 29 (2001), pp. 223-228
[66.]
M.J. Daly, J.D. Rioux, S.F. Schaffner, T.J. Hudson, E.S. Lander.
Highresolution haplotype structure in the human genome.
Nat Genet, 29 (2001), pp. 229-232
[67.]
S. Tokuhiro, R. Yamada, X. Chang, A. Suzuki, Y. Kochi, T. Sawada, et al.
An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis.
Nat Genet, 35 (2003), pp. 341-348
[68.]
K.L. Durst, S.W. Hiebert.
Role of RUNX family members in transcriptional repression and gene silencing.
Oncogene, 23 (2004), pp. 4220-4224
[69.]
C. Helms, L. Cao, J.G. Krueger, E.M. Wijsman, F. Chamian, D. Gordon, et al.
A putative RUNX1 binding site variant between SLC9A3R1 and NAT9 is associated with susceptibility to psoriasis.
Nat Genet, 35 (2003), pp. 349-356
[70.]
L. Prokunina, C. Castillejo-Lopez, F. Oberg, I. Gunnarsson, L. Berg, V. Magnusson, et al.
A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans.
Nat Genet, 32 (2002), pp. 666-669
[71.]
V.D. Peltekova, R.F. Wintle, L.A. Rubin, C.I. Amos, Q. Huang, X. Gu, et al.
Functional variants of OCTN cation transporter genes are associated with Crohn disease.
Nat Genet, 36 (2004), pp. 471-475
[72.]
K. Yamazaki, M. Takazoe, T. Tanaka, T. Ichimori, S. Saito, A. Iida, et al.
Association analysis of SLC22A4 SLC22A5 and DLG5 in Japanese patients with Crohn disease.
J Hum Genet, 49 (2004), pp. 664-668
[73.]
A. Martinez, A. Valdivia, D. Pascual-Salcedo, A. Balsa, B. Fernandez- Gutierrez, E. De la Concha, et al.
Role of SLC22A4, SLC22A5, and RUNX1 genes in rheumatoid arthritis.
J Rheumatol, 33 (2006), pp. 842-846
[74.]
M. Tosa, K. Negoro, Y. Kinouchi, H. Abe, E. Nomura, S. Takagi, et al.
Lack of association between IBD5 and Crohn's disease in Japanese patients demonstrates population-specific differences in inflammatory bowel disease.
Scand J Gastroenterol, 41 (2006), pp. 48-53
[75.]
K. Negoro, D.P. McGovern, Y. Kinouchi, S. Takahashi, N.J. Lench, T. Shimosegawa, et al.
Analysis of the IBD5 locus and potential gene-gene interactions in Crohn's disease.
Gut, 52 (2003), pp. 541-546
[76.]
T. Watanabe, A. Kitani, W. Strober.
NOD2 regulation of Toll-like receptor responses and the pathogenesis of Crohn's disease.
Gut, 54 (2005), pp. 1515-1518
[77.]
Y. Ogura, D.K. Bonen, N. Inohara, D.L. Nicolae, F.F. Chen, R. Ramos, et al.
A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease.
Nature, 411 (2001), pp. 603-606
[78.]
J.P. Hugot, M. Chamaillard, H. Zouali, S. Lesage, J.P. Cezard, J. Belaiche, et al.
Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease.
Nature, 411 (2001), pp. 599-603
[79.]
A.M. Lamhonwah, C. Ackerley, R. Onizuka, A. Tilups, D. Lamhonwah, C. Chung, et al.
Epitope shared by functional variant of organic cation/carnitine transporter, OCTN1 Campylobacter jejuni and Mycobacterium paratuberculosis may underlie susceptibility to Crohn's disease at 5q31.
Biochem Biophys Res Commun, 337 (2005), pp. 1165-1175
[80.]
D. Grundemann, S. Harlfinger, S. Golz, A. Geerts, A. Lazar, R. Berkels, et al.
Discovery of the ergothioneine transporter.
Proc Natl Acad Sci U S A, 102 (2005), pp. 5256-5261
[81.]
D. Taubert, A. Lazar, G. Grimberg, N. Jung, A. Rubbert, K.S. Delank, et al.
Association of rheumatoid arthritis with ergothioneine levels in red blood cells: a case control study.
J Rheumatol, 33 (2006), pp. 2139-2145
[82.]
D. Taubert, G. Grimberg, N. Jung, A. Rubbert, E. Schomig.
Functional role of the 503F variant of the organic cation transporter OCTN1 in Crohn's disease.
Gut, 54 (2005), pp. 1505-1506
[83.]
B. Newman, R.F. Wintle, M. van Oene, M. Yazdanpanah, J. Owen, B. Johnson, et al.
SLC22A4 polymorphisms implicated in rheumatoid arthritis and Crohn's disease are not associated with rheumatoid arthritis in a Canadian Caucasian population.
Arthritis Rheum, 52 (2005), pp. 425-429
[84.]
A. Barton, S. Eyre, J. Bowes, P. Ho, S. John, J. Worthington.
Investigation of the SLC22A4 gene (associated with rheumatoid arthritis in a Japanese population) in a United Kingdom population of rheumatoid arthritis patients.
Arthritis Rheum, 52 (2005), pp. 752-758
[85.]
G. Orozco, E. Sanchez, M.A. Gonzalez-Gay, M.A. Lopez-Nevot, B. Torres, D. Pascual-Salcedo, et al.
SLC22A4 RUNX1, and SUMO4 polymorphisms are not associated with rheumatoid arthritis: a case-control study in a Spanish population.
J Rheumatol, 33 (2006), pp. 1235-1239
[86.]
B. Newman, X. Gu, R. Wintle, D. Cescon, M. Yazdanpanah, X. Liu, et al.
A risk haplotype in the Solute Carrier Family 22A4/22A5 gene cluster influences phenotypic expression of Crohn's disease.
Gastroenterology, 128 (2005), pp. 260-269
[87.]
F. Zhong, C.C. McCombs, J.M. Olson, R.C. Elston, F.M. Stevens, C.F. McCarthy, et al.
An autosomal screen for genes that predispose to celiac disease in the western counties of Ireland.
Nat Genet, 14 (1996), pp. 329-333
[88.]
L. Greco, G. Corazza, M.C. Babron, F. Clot, M.C. Fulchignoni-Lataud, S. Percopo, et al.
Genome search in celiac disease.
Am J Hum Genet, 62 (1998), pp. 669-675
[89.]
P. Holopainen, K. Mustalahti, P. Uimari, P. Collin, M. Maki, J. Partanen.
Candidate gene regions and genetic heterogeneity in gluten sensitivity.
Gut, 48 (2001), pp. 696-701
[90.]
M.C. Babron, S. Nilsson, S. Adamovic, A.T. Naluai, J. Wahlstrom, H. Ascher, et al.
Meta and pooled analysis of European coeliac disease data.
Eur J Hum Genet, 11 (2003), pp. 828-834
[91.]
L. Greco, M.C. Babron, G.R. Corazza, S. Percopo, R. Sica, F. Clot, et al.
Existence of a genetic risk factor on chromosome 5q in Italian coeliac disease families.
Ann Hum Genet, 65 (2001), pp. 35-41
[92.]
S. Percopo, M.C. Babron, M. Whalen, S. De Virgiliis, I. Coto, F. Clerget- Darpoux, et al.
Saturation of the 5q31-q33 candidate region for coeliac disease.
Ann Hum Genet, 67 (2003), pp. 265-268
[93.]
A.W. Ryan, J.M. Thornton, K. Brophy, J.S. Daly, C. O’Morain, R.M. McLoughlin, et al.
Haplotype variation at the IBD5/SLC22A4 locus (5q31) in coeliac disease in the Irish population.
Tissue Antigens, 64 (2004), pp. 195-198
[94.]
G. Orozco, E. Sanchez, L.M. Gomez, M.A. Gonzalez-Gay, M.A. Lopez- Nevot, B. Torres, et al.
Study of the role of functional variants of SLC22A4 RUNX1 and SUMO4 in systemic lupus erythematosus.
Ann Rheum Dis, 65 (2006), pp. 791-795
[95.]
P. Ho, I.N. Bruce, A. Silman, D. Symmons, B. Newman, H. Young, et al.
Evidence for common genetic control in pathways of inflammation for Crohn's disease and psoriatic arthritis.
Arthritis Rheum, 52 (2005), pp. 3596-3602
[96.]
P. Rahman, S. Bartlett, F. Siannis, F.J. Pellett, V.T. Farewell, L. Peddle, et al.
CARD15: a pleiotropic autoimmune gene that confers susceptibility to psoriatic arthritis.
Am J Hum Genet, 73 (2003), pp. 677-681
[97.]
C. Friberg, K. Bjorck, S. Nilsson, A. Inerot, J. Wahlstrom, L. Samuelsson.
Analysis of chromosome 5q31-32 and psoriasis: confirmation of a susceptibility locus but no association with SNPs within SLC22A4 and SLC22A5.
J Invest Dermatol, 126 (2006), pp. 998-1002
[98.]
J.L. Santiago, A. Martinez, H. de la Calle, M. Fernandez-Arquero, M.A. Figueredo, E.G. de la Concha, et al.
Evidence for the association of the SLC22A4 and SLC22A5 genes with type 1 diabetes: a case control study.
BMC Med Genet, 7 (2006), pp. 54
[99.]
T.W. Yeo, P.L. De Jager, S.G. Gregory, L.F. Barcellos, A. Walton, A. Goris, et al.
A second major histocompatibility complex susceptibility locus for multiple sclerosis.
Ann Neurol, 61 (2007), pp. 228-236
[99.]
E.G. De la Concha, M. Fernandez-Arquero, L. Gual, P. Vigil, A. Martinez, E. Urcelay.
MHC susceptibility genes to IgA deficiency are located in different regions on different HLA haplotypes.
J Immunol, 169 (2002), pp. 4637-4643
[100.]
M. Gazouli, G. Mantzaris, A.J. Archimandritis, G. Nasioulas, N.P. Anagnou.
Single nucleotide polymorphisms of OCTN1, OCTN2, and DLG5 genes in Greek patients with Crohn's disease.
World J Gastroenterol, 11 (2005), pp. 7525-7530
[101.]
M.S. Silverberg, R.H. Duerr, S.R. Brant, G. Bromfield, L.W. Datta, N. Jani, et al.
Refined genomic localization and ethnic differences observed for the IBD5 association with Crohn's disease.
Eur J Hum Genet, 15 (2007), pp. 328-335
[102.]
S.A. Fisher, J. Hampe, C.M. Onnie, M.J. Daly, C. Curley, S. Purcell, et al.
Direct or indirect association in a complex disease: the role of SLC22A4 and SLC22A5 functional variants in Crohn disease.
Hum Mutat, 27 (2006), pp. 778-785
[103.]
C.L. Noble, E.R. Nimmo, H. Drummond, G.T. Ho, A. Tenesa, L. Smith, et al.
The contribution of OCTN1/2 variants within the IBD5 locus to disease susceptibility and severity in Crohn's disease.
Gastroenterology, 129 (2005), pp. 1854-1864
[104.]
R.K. Russell, H.E. Drummond, E.R. Nimmo, N.H. Anderson, C.L. Noble, D.C. Wilson, et al.
Analysis of the influence of OCTN1/2 variants within the IBD5 locus on disease susceptibility and growth indices in early onset inflammatory bowel disease.
Gut, 55 (2006), pp. 1114-1123
[105.]
S. Cucchiara, A. Latiano, O. Palmieri, A.M. Staiano, R. D’Inca, G. Guariso, et al.
Role of CARD15 DLG5 and OCTN genes polymorphisms in children with inflammatory bowel diseases.
World J Gastroenterol, 13 (2007), pp. 1221-1229
[106.]
C. Onnie, S.A. Fisher, K. King, M. Mirza, R. Roberts, A. Forbes, et al.
Sequence variation, linkage disequilibrium and association with Crohn's disease on chromosome 5q31.
Genes Immun, 7 (2006), pp. 359-365
[107.]
S. Waller, M. Tremelling, F. Bredin, L. Godfrey, J. Howson, M. Parkes.
Evidence for association of OCTN genes and IBD5 with ulcerative colitis.
[108.]
C. Giallourakis, M. Stoll, K. Miller, J. Hampe, E.S. Lander, M.J. Daly, et al.
IBD5 is a general risk factor for inflammatory bowel disease: replication of association with Crohn disease and identification of a novel association with ulcerative colitis.
Am J Hum Genet, 73 (2003), pp. 205-211
Copyright © 2007. Sociedad Española de Inmunología
Download PDF
Article options