was read the article
array:23 [ "pii" => "S1665642314716189" "issn" => "16656423" "doi" => "10.1016/S1665-6423(14)71618-9" "estado" => "S300" "fechaPublicacion" => "2014-06-01" "aid" => "71618" "copyright" => "Universidad Nacional Autónoma de México" "copyrightAnyo" => "2014" "documento" => "article" "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Journal of Applied Research and Technology. 2014;12:359-69" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 1519 "formatos" => array:3 [ "EPUB" => 29 "HTML" => 1124 "PDF" => 366 ] ] "itemSiguiente" => array:18 [ "pii" => "S1665642314716190" "issn" => "16656423" "doi" => "10.1016/S1665-6423(14)71619-0" "estado" => "S300" "fechaPublicacion" => "2014-06-01" "aid" => "71619" "copyright" => "Universidad Nacional Autónoma de México" "documento" => "article" "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Journal of Applied Research and Technology. 2014;12:370-83" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 1507 "formatos" => array:3 [ "EPUB" => 34 "HTML" => 1108 "PDF" => 365 ] ] "en" => array:11 [ "idiomaDefecto" => true "titulo" => "Mechatronic Design, Dynamic Modeling and Results of a Satellite Flight Simulator for Experimental Validation of Satellite Attitude Determination and Control Schemes in 3-Axis" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "370" "paginaFinal" => "383" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0035" "etiqueta" => "Figure 7" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr7.jpeg" "Alto" => 464 "Ancho" => 920 "Tamanyo" => 37097 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">Definition of elements in the SFS platform and in the inertial wheel.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "M.A. Mendoza-Bárcenas, E. Vicente-Vivas, H. Rodríguez-Cortés" "autores" => array:3 [ 0 => array:2 [ "nombre" => "M.A." "apellidos" => "Mendoza-Bárcenas" ] 1 => array:2 [ "nombre" => "E." "apellidos" => "Vicente-Vivas" ] 2 => array:2 [ "nombre" => "H." "apellidos" => "Rodríguez-Cortés" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1665642314716190?idApp=UINPBA00004N" "url" => "/16656423/0000001200000003/v2_201505081651/S1665642314716190/v2_201505081651/en/main.assets" ] "itemAnterior" => array:18 [ "pii" => "S1665642314716177" "issn" => "16656423" "doi" => "10.1016/S1665-6423(14)71617-7" "estado" => "S300" "fechaPublicacion" => "2014-06-01" "aid" => "71617" "copyright" => "Universidad Nacional Autónoma de México" "documento" => "article" "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Journal of Applied Research and Technology. 2014;12:343-58" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 793 "formatos" => array:3 [ "EPUB" => 31 "HTML" => 435 "PDF" => 327 ] ] "en" => array:11 [ "idiomaDefecto" => true "titulo" => "A Network QoS Framework for Real-time Event Systems in highly Mobile Ad-hoc Environments" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "343" "paginaFinal" => "358" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0025" "etiqueta" => "Figure 5" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr5.jpeg" "Alto" => 504 "Ancho" => 1941 "Tamanyo" => 56206 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0060" class="elsevierStyleSimplePara elsevierViewall">Delay (x in seconds) PDF (F(x)), Delay (x in seconds) CDF (F(x)), and Pareto Distribution (exp. 1 - FIFO).</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "H.A. Duran-Limon, M. Siller, M. Hernandez-Ochoa, C. Quevedo, V. Robles" "autores" => array:5 [ 0 => array:2 [ "nombre" => "H.A." "apellidos" => "Duran-Limon" ] 1 => array:2 [ "nombre" => "M." "apellidos" => "Siller" ] 2 => array:2 [ "nombre" => "M." "apellidos" => "Hernandez-Ochoa" ] 3 => array:2 [ "nombre" => "C." "apellidos" => "Quevedo" ] 4 => array:2 [ "nombre" => "V." "apellidos" => "Robles" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1665642314716177?idApp=UINPBA00004N" "url" => "/16656423/0000001200000003/v2_201505081651/S1665642314716177/v2_201505081651/en/main.assets" ] "en" => array:17 [ "idiomaDefecto" => true "titulo" => "Design, Commissioning and Testing of an Electrodynamometer Based on PM Synchronous Machines" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "359" "paginaFinal" => "369" ] ] "autores" => array:1 [ 0 => array:3 [ "autoresLista" => "J.J. Rodríguez-Rivas, E. Peralta-Sánchez" "autores" => array:2 [ 0 => array:4 [ "nombre" => "J.J." "apellidos" => "Rodríguez-Rivas" "email" => array:1 [ 0 => "jjrodriguezr@ipn.mx" ] "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">1</span>" "identificador" => "aff0005" ] ] ] 1 => array:3 [ "nombre" => "E." "apellidos" => "Peralta-Sánchez" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">2</span>" "identificador" => "aff0010" ] ] ] ] "afiliaciones" => array:2 [ 0 => array:3 [ "entidad" => "Departamento de Ingeniería Eléctrica, SEPI. ESIME ZACATENCO, Instituto Politécnico Nacional, México, D.F., México" "etiqueta" => "1" "identificador" => "aff0005" ] 1 => array:3 [ "entidad" => "Departamento de Ingenierías, Universidad Popular Autónoma del Estado de Puebla, Puebla, Pue., México" "etiqueta" => "2" "identificador" => "aff0010" ] ] ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0045" "etiqueta" => "Figure 9" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:2 [ 0 => array:1 [ "imagen" => "gr10.jpeg" ] 1 => array:1 [ "imagen" => "gr11.jpeg" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0055" class="elsevierStyleSimplePara elsevierViewall">Simulation results. (a) EV speed km/hr; (b) Electromagnetic torque N-m; (c) Power in the shaft W; (d) DC bus voltage in the motor traction inverter V.</p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">1</span><span class="elsevierStyleSectionTitle" id="sect0020">Introduction</span><p id="par0005" class="elsevierStylePara elsevierViewall">An electrodynamometer (ED) is aimed to emulate mechanical loads to test electrical machines. Most of the commercial EDs are comprised by a load machine which is operated by means of a torque control which is independent of the dynamics of the traction machine speed. This kind of ED is used to characterize motor drives working under steady state conditions. However, transport<a name="p360"></a> mechanical loads usually have a dynamic performance (regeneration, starting and stopping with high load torques) being the main cause of problems for the motor drives [<a class="elsevierStyleCrossRef" href="#bib0005">1</a>].</p><p id="par0010" class="elsevierStylePara elsevierViewall">Dynamic loads present the inertia phenomena producing regeneration in the system, being impossible for an ED based on a passive load machine to emulate this kind of loads. To emulate dynamic loads a torque control dependent of the motor speed is needed <a class="elsevierStyleCrossRefs" href="#bib0010">[2] – [7]</a>.</p><p id="par0015" class="elsevierStylePara elsevierViewall">There are some strategies reported in literature concerning ED control. In [<a class="elsevierStyleCrossRef" href="#bib0040">8</a>] a vector control is proposed and it is claimed an improvement of the dynamic response of the control. In [<a class="elsevierStyleCrossRef" href="#bib0045">9</a>] the torque control of the load machine is carried out using a Direct Torque Control strategy meanwhile in [<a class="elsevierStyleCrossRef" href="#bib0050">10</a>] the ED is controlled by means of genetic algorithms.</p><p id="par0020" class="elsevierStylePara elsevierViewall">This paper addresses the design, simulation, commissioning and experimental validation of an ED which is able to emulate dynamic loads. The ED is comprised by a 7.75 kW Permanent Magnet Synchronous Machine (PMSM) which is used as a load machine and a similar PMSM used as a drive machine both machines are coupled mechanically and enable us to emulate the dynamics of an EV.</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">2</span><span class="elsevierStyleSectionTitle" id="sect0025">Experimental setup</span><p id="par0025" class="elsevierStylePara elsevierViewall"><a class="elsevierStyleCrossRef" href="#fig0005">Figure 1</a> illustrates a block diagram of the experimental setup. This is comprised by two power converters (Unidrive SP3201) connected by the DC bus, these converters are used to manage the power flow between the load machine and the grid.</p><elsevierMultimedia ident="fig0005"></elsevierMultimedia><p id="par0030" class="elsevierStylePara elsevierViewall">The ED control was implemented on Labview, an NI USB6211 Data Acquisition Board was used as an interface between a PC and the Unidrive which drives the load machine. By means of an appropriate control of the ED different load profiles can be applied to the main machine (drive machine). When the load machine exerts an opposite mechanical torque to the drive machine emulating a dynamic load like that for an EV during its traction stage, the load machine works as a generator putting energy by means of the unidrives into the grid as illustrated in <a class="elsevierStyleCrossRef" href="#fig0005">figure 1</a>.</p><p id="par0035" class="elsevierStylePara elsevierViewall">On the other hand if the load machine works as a motor then the load machine exerts a mechanical torque to the drive machine in the same direction at which it is spinning, emulating an EV during its regenerative braking stage putting energy into the DC bus by means of the PP75T120 Powerex converter.</p><p id="par0040" class="elsevierStylePara elsevierViewall">The drive machine (traction machine if an EV is being emulated) was driven by a Powerex PP75T120 inverter which was fed by a TDK-Lambda GEN 300-17 power supply. The drive machine control and the PWM generation were implemented on a Freescale MC56F8357 Digital Signal Controller. Diodes connected in series with the power supply are used to block the energy regenerated by the traction machine and sent to the power supply.</p><p id="par0045" class="elsevierStylePara elsevierViewall">To emulate the regenerative braking stage of an EV braking resistors are needed to dissipate the regenerated energy. Data of the PMSMs are shown in <a class="elsevierStyleCrossRef" href="#sec0035">appendix A</a>. <a class="elsevierStyleCrossRef" href="#fig0010">Figure 2</a> illustrates the experimental setup as it was implemented in the laboratory.<a name="p361"></a></p><elsevierMultimedia ident="fig0010"></elsevierMultimedia></span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">3</span><span class="elsevierStyleSectionTitle" id="sect0030">Simulation of the traction motor -electrodynamometer system</span><p id="par0050" class="elsevierStylePara elsevierViewall">In order to speed up the simulations an average model of the inverter [<a class="elsevierStyleCrossRef" href="#bib0055">11</a>] was used as illustrated in <a class="elsevierStyleCrossRef" href="#fig0015">figure 3</a>. The average model is defined by the following set of equations<elsevierMultimedia ident="eq0005"></elsevierMultimedia><elsevierMultimedia ident="eq0010"></elsevierMultimedia></p><elsevierMultimedia ident="fig0015"></elsevierMultimedia><p id="par0055" class="elsevierStylePara elsevierViewall">where da, db and dc are the PWM duty cycles corresponding to each phase.</p><p id="par0060" class="elsevierStylePara elsevierViewall">The dq PMSM model is given by [<a class="elsevierStyleCrossRef" href="#bib0060">12</a>]:<elsevierMultimedia ident="eq0015"></elsevierMultimedia><elsevierMultimedia ident="eq0020"></elsevierMultimedia></p><p id="par0065" class="elsevierStylePara elsevierViewall">where, T<span class="elsevierStyleInf">e</span> is the electromagnetic torque (N-m); v<span class="elsevierStyleInf">d</span>, v<span class="elsevierStyleInf">q</span> and v<span class="elsevierStyleInf">0</span> are the dq0 stator voltages (V), i<span class="elsevierStyleInf">d</span>, i<span class="elsevierStyleInf">q</span> and i<span class="elsevierStyleInf">0</span> are the dq0 stator currents (A); ψ<span class="elsevierStyleSmallCaps"><span class="elsevierStyleInf">pm</span></span>is the permanent-magnet flux (Wb); L<span class="elsevierStyleInf">d</span>, L<span class="elsevierStyleInf">q</span> are the dq stator inductances (H); L<span class="elsevierStyleInf">ls</span> is the leakage inductance (H); R<span class="elsevierStyleInf">s</span> is the stator resistance (Ω); p is the number of pole pairs and, ω is the electric speed of the rotor (rad/s).</p><p id="par0070" class="elsevierStylePara elsevierViewall">As the machines used are PMSM with surface-mounted magnets then L<span class="elsevierStyleInf">d</span>=L<span class="elsevierStyleInf">q</span> and <a class="elsevierStyleCrossRef" href="#eq0020">equation (4)</a> becomes<a name="p362"></a><elsevierMultimedia ident="eq0025"></elsevierMultimedia></p><p id="par0075" class="elsevierStylePara elsevierViewall">this equation reveals that the electromagnetic torque is proportional to the stator-current component q (i<span class="elsevierStyleInf">qs</span>). The traction-machine control is based on a vector control strategy. <a class="elsevierStyleCrossRef" href="#fig0020">Figure 4</a> illustrates this strategy which was simulated in Simulink. Simulations to assess the performance of the traction-machine vector-control and also to tune their control gains were carried out as illustrated in <a class="elsevierStyleCrossRef" href="#fig0020">figure 4</a>. Speed and current PI controllers were limited to avoid voltage and current overshoots that may damage the power electronic components. An anti-windup block was used to compensate the effect of the integral component of the controller for high values of the error signal [<a class="elsevierStyleCrossRef" href="#bib0065">13</a>].</p><elsevierMultimedia ident="fig0020"></elsevierMultimedia><p id="par0080" class="elsevierStylePara elsevierViewall"><a class="elsevierStyleCrossRef" href="#fig0025">Figure 5</a> illustrates simulation results of the traction-machine vector-control. The reference-speed profile ωm* of the speed controller along with the actual speed of the traction machine are shown at the top plot of <a class="elsevierStyleCrossRef" href="#fig0025">figure 5</a>. The torque of the load machine and electromagnetic torque of the traction machine are illustrated just below the top plot. Different operation modes of the traction machine can be found in <a class="elsevierStyleCrossRef" href="#fig0025">figure 5</a>. From 0 to 1.7s the machine starts up and reaches its nominal speed which implies that the machine controller works satisfactorily even though the reference speed is a step waveform provoking a high initial error. The electromagnetic torque of the traction motor is constant resulting in a linear acceleration. The difference between the load torque and the electromagnetic torque is called the acceleration torque. At the end of the starting stage the acceleration torque becomes zero and the load and electromagnetic torques become the same.</p><elsevierMultimedia ident="fig0025"></elsevierMultimedia><p id="par0085" class="elsevierStylePara elsevierViewall">From 1.7 to 2.6s the traction machine is working as a motor. At 2.6s the load torque changes abruptly from positive to negative value and the traction machine works as a generator. At 3.5s the load torque changes from negative to positive value newly and the traction machine works as a motor again. For the remaining of the driving cycle the motor operation modes are changed carrying out starting up and braking stages. The current and voltage never overtake the motor nominal values which are listed in <a class="elsevierStyleCrossRef" href="#sec0035">appendix A</a>. The load-machine control is illustrated in <a class="elsevierStyleCrossRef" href="#fig0030">figure 6</a>. The speed control loop is not implemented as the ED speed is determined by the traction machine. As the machines are not operated at speeds higher than the base speed the weakening flux region operation is not needed and the reference value for the current<a name="p363"></a> component d is ids*=0 as illustrated in <a class="elsevierStyleCrossRef" href="#fig0020">figures 4</a> and <a class="elsevierStyleCrossRef" href="#fig0030">6</a>. According to <a class="elsevierStyleCrossRef" href="#eq0025">eqn. 5</a> the reference value iqs* in <a class="elsevierStyleCrossRef" href="#fig0030">figure 6</a> defines the value of torque produced by the load machine. Several load profiles can be emulated by modifying the reference values for the current component iqs*. The load applied to the traction machine by the dynamics of an EV can be easily emulated in the laboratory without needing to have an EV. This enable us to investigate on the performance of the traction machine in the same conditions as if it were fitted in the EV. For this work two 7.75 kW PMSMs were used which implies a small EV although the results can be extrapolated to a bigger vehicle. It is worth to point out that the EV load profile is not the only load that can be emulated but also any other load profile. The dynamic model of an EV [<a class="elsevierStyleCrossRef" href="#bib0070">14</a>] is described by <a class="elsevierStyleCrossRef" href="#eq0030">equation (6)</a>:<elsevierMultimedia ident="eq0030"></elsevierMultimedia></p><elsevierMultimedia ident="fig0030"></elsevierMultimedia><p id="par0090" class="elsevierStylePara elsevierViewall">where, Tm.- traction torque (N.m), rt- gearbox ratio, Jm.- motor inertia (Kg.m<span class="elsevierStyleSup">2</span>), rw.- wheel radius (m), Jw.- wheel inertia (Kg.m<span class="elsevierStyleSup">2</span>), ef.-efficiency of the mechanical transmission, df.-distribution factor, m.- mass of the vehicle (kg), V.- linear speed (m/s), Kr.- friction coefficient, á-road slope (rad), g.- gravitational acceleration (m/s<span class="elsevierStyleSup">2</span>), Cd.- aerodynamic drag coefficient, p.- air density (kg/m<span class="elsevierStyleSup">3</span>), Af.- frontal area of the vehicle (m<span class="elsevierStyleSup">2</span>). By analyzing <a class="elsevierStyleCrossRef" href="#eq0030">equation (6)</a> it can be seen that the torque depends on the linear speed of the vehicle.</p><p id="par0095" class="elsevierStylePara elsevierViewall">The relationship between the linear speed of the vehicle and the mechanical speed of the machine is given by:<elsevierMultimedia ident="eq0035"></elsevierMultimedia></p><p id="par0100" class="elsevierStylePara elsevierViewall">In this way the linear speed of the vehicle is not needed. Once the traction torque has been calculated from <a class="elsevierStyleCrossRef" href="#eq0030">(6)</a>, the current value iqs* for the load machine can be calculated by using <a class="elsevierStyleCrossRef" href="#eq0025">eqn. (5)</a>, which is the reference current for the torque control loop in <a class="elsevierStyleCrossRef" href="#fig0030">fig. 6</a>. Simulation of the traction machine along with the ED was carried out in Simulink.</p><p id="par0105" class="elsevierStylePara elsevierViewall">The general diagram of the simulated system is shown in <a class="elsevierStyleCrossRef" href="#fig0035">figure 7</a>.</p><elsevierMultimedia ident="fig0035"></elsevierMultimedia><p id="par0110" class="elsevierStylePara elsevierViewall">The mechanical coupling between the machines is carried out as follows: the output electromagnetic torque of the load machine (PMSM Model 1) is connected to the input load torque of the traction machine (PMSM model) and the output speed of the drive machine is inverted and connected to the input speed of the load machine.</p><p id="par0115" class="elsevierStylePara elsevierViewall">The reference speed is the only input to the traction-machine drive illustrated in <a class="elsevierStyleCrossRef" href="#fig0020">fig. 4</a> meanwhile the load torque profile which is being emulated is the only input to the load machine (<a class="elsevierStyleCrossRef" href="#fig0030">figure 6</a>). If an EV is being emulated <a class="elsevierStyleCrossRef" href="#eq0030">equation 6</a> is programmed in the block “torque” in <a class="elsevierStyleCrossRef" href="#fig0035">figure 7</a>.<a name="p364"></a></p><p id="par0120" class="elsevierStylePara elsevierViewall">Two tests were carried out to validate the ED. A fan load-profile (<a class="elsevierStyleCrossRef" href="#eq0040">equation. 8</a>) was emulated for the<elsevierMultimedia ident="eq0040"></elsevierMultimedia></p><p id="par0125" class="elsevierStylePara elsevierViewall">where,<elsevierMultimedia ident="eq0045"></elsevierMultimedia></p><p id="par0130" class="elsevierStylePara elsevierViewall"><a class="elsevierStyleCrossRef" href="#fig0040">Figure 8</a> illustrates the simulation results. <a class="elsevierStyleCrossRef" href="#fig0040">Figure 8a</a> shows the reference speed profile (block <span class="elsevierStyleItalic">ω<span class="elsevierStyleInf">m</span></span> in <a class="elsevierStyleCrossRef" href="#fig0035">figure 7</a>) and <a class="elsevierStyleCrossRef" href="#fig0040">figure 8b</a> shows the electromagnetic torque of the drive machine Tem (Te in the block PMSM Model of <a class="elsevierStyleCrossRef" href="#fig0035">fig. 7</a>), the reference torque of the ED Te_el* (block “Torque” in <a class="elsevierStyleCrossRef" href="#fig0035">figure 7</a>), and the torque produced by the load machine Te_el (Te in the block PMSM Model 1 in <a class="elsevierStyleCrossRef" href="#fig0035">figure 7</a>).</p><elsevierMultimedia ident="fig0040"></elsevierMultimedia><p id="par0135" class="elsevierStylePara elsevierViewall">In <a class="elsevierStyleCrossRef" href="#fig0040">figure 8c</a> negative power in the shaft means power regenerated by the ED and sent to the grid. For this particular load profile (fan), the load machine works always as a generator being the power flow unidirectional.</p><p id="par0140" class="elsevierStylePara elsevierViewall"><a class="elsevierStyleCrossRef" href="#fig0045">Figure 9</a> illustrates the simulink simulation results for the second test in which an EV load profile is used.</p><elsevierMultimedia ident="fig0045"></elsevierMultimedia><p id="par0145" class="elsevierStylePara elsevierViewall">The EV speed profile used is shown in <a class="elsevierStyleCrossRef" href="#fig0045">Fig. 9a</a>. The reference speed ωm* is the input to the loop control of the traction machine as shown in <a class="elsevierStyleCrossRef" href="#fig0020">Figure 4</a>, it was calculated from <a class="elsevierStyleCrossRef" href="#eq0035">equation 7</a>.<a name="p365"></a></p><p id="par0150" class="elsevierStylePara elsevierViewall">The traction torque values for the EV were calculated from <a class="elsevierStyleCrossRef" href="#eq0030">equation 6</a>. The iqs* value for the load machine was calculated by applying <a class="elsevierStyleCrossRef" href="#eq0025">equation 5</a>. Variations of the traction machine torque are illustrated in <a class="elsevierStyleCrossRef" href="#fig0045">figure 9b</a>. <a class="elsevierStyleCrossRef" href="#fig0045">Figure 9c</a> illustrates the power in the shaft of the traction machine, negative values corresponds to power regenerated by the electrodynamometer and sent to the grid (electric traction), the positive values are due to the regenerative braking of the traction machine. The increase of the voltage in the DC bus of the inverter (see <a class="elsevierStyleCrossRef" href="#fig0045">Figure. 9d</a>) is due to the regenerative braking of the EV. <a class="elsevierStyleCrossRef" href="#fig0045">Figure. 9a</a> shows a sudden change of the reference speed from 37 km/h to 17 km/h during the period of time from 13 to 17s, resulting in kinetic energy converted to electric energy by the traction machine, that energy is sent to the DC bus through the power inverter resulting in an increase of the DC bus voltage. The reference speed is set by means of the vector control of the traction machine (see <a class="elsevierStyleCrossRef" href="#fig0020">figure 4</a>).</p></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">4</span><span class="elsevierStyleSectionTitle" id="sect0035">Electrodynamometer Hardware implementation</span><p id="par0155" class="elsevierStylePara elsevierViewall"><a class="elsevierStyleCrossRef" href="#fig0005">Figure1</a> illustrates a block diagram of the experimental setup and <a class="elsevierStyleCrossRef" href="#fig0010">figure 2</a> shows a picture of the system as it was implemented in the laboratory. <a class="elsevierStyleCrossRef" href="#fig0050">Figure 10</a> shows the power converters (Unidrives SP 3201) connected by means of the DC bus of 300V, these converters can work as rectifiers or inverters depending on the power-flow direction (traction or breaking). The Unidrive driving the load PMSM works on the “servo” mode controlling speed and torque of the load motor. The other Unidrive connected to the grid works in “regen” mode.</p><elsevierMultimedia ident="fig0050"></elsevierMultimedia><p id="par0160" class="elsevierStylePara elsevierViewall">In the “servo” mode terminals 5 and 6 of the motor drive [<a class="elsevierStyleCrossRef" href="#bib0075">15</a>] are used to control the speed of the ED, these terminals are configured in differential voltage mode. The voltage in those terminals is related directly with the reference speed value. As the speed is determined by the traction machine the reference speed for the load machine was set to 0. In this way the electromagnetic torque developed by the load machine is independent of the speed which is set by the traction machine controller. Terminal 7 of the Unidrive working in “servo” mode is used as the input for the reference torque value for the ED. The reference torque signal to emulate an EV is generated by the PC where the model of the EV was programmed. That signal is fed to terminal 7 of the Unidrive by means of the National Instruments electronic board NI USB 6211. The value and direction of the load-machine torque is related to the magnitude and polarity of the voltage fed to that terminal.</p></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">5</span><span class="elsevierStyleSectionTitle" id="sect0040">Experimental results</span><p id="par0165" class="elsevierStylePara elsevierViewall"><a class="elsevierStyleCrossRef" href="#fig0055">Figure 11</a> illustrates the experimental results for a fan load-profile. <a class="elsevierStyleCrossRef" href="#eq0040">Equation 8</a> was programmed in Labview using the same data as in the simulation and by means of the NI USB 6211 board a reference torque value is set in the Unidrive working in the “servo” mode which forces the load machine of the ED to exert a fan torque (<a class="elsevierStyleCrossRef" href="#eq0040">equation 8</a>) on the drive machine.</p><elsevierMultimedia ident="fig0055"></elsevierMultimedia><p id="par0170" class="elsevierStylePara elsevierViewall">The speed profile illustrated in <a class="elsevierStyleCrossRef" href="#fig0055">figure 11a</a> is the reference speed for the vector control of the traction machine. <a class="elsevierStyleCrossRef" href="#fig0055">Figure 11b</a> shows the electromagnetic torque of the traction machine Tem, the reference torque of the ED Te_el*, and the torque produced by the load machine Te_el. The torque Tem fluctuations of the traction machine are due to the fact that this signal is taken from a PWM output of the DSC where the traction machine control was implemented. The signal was filtered and then was acquired by a NI USB 6211 board to be plotted finally by Labview along with the other torques. <a class="elsevierStyleCrossRef" href="#fig0055">Figure. 11c</a> shows the power in the shaft of the traction machine being always negative which indicates that the power flows to the load machine which in its turn sends it to the grid.<a name="p366"></a></p><p id="par0175" class="elsevierStylePara elsevierViewall">Experimental results illustrated in <a class="elsevierStyleCrossRef" href="#fig0055">fig. 11</a> correlates well with those gotten by simulation and illustrated in <a class="elsevierStyleCrossRef" href="#fig0040">figure 8</a>. <a class="elsevierStyleCrossRef" href="#fig0060">Figure 12</a> illustrates the experimental results for an EV load profile which also correlate well with the simulation results (<a class="elsevierStyleCrossRef" href="#fig0045">Figure 9</a>), validating the models developed for the motor control and ED. The EV parameters needed (see <a class="elsevierStyleCrossRef" href="#eq0030">equation 6</a>) are listed in the <a class="elsevierStyleCrossRef" href="#sec0040">appendix B</a>. <a class="elsevierStyleCrossRef" href="#fig0060">Figure 12a</a> shows the EV speed-profile which is typical for a driving cycle. <a class="elsevierStyleCrossRef" href="#fig0060">Figure 12b</a> shows the electromagnetic torque of the traction machine T<span class="elsevierStyleInf">em</span>, the reference torque of the ED T<span class="elsevierStyleInf">e_el</span>, and the torque produced by the load machine Te<span class="elsevierStyleInf">_el</span>, all of them correlate well suggesting that the system is working as it was expected. <a class="elsevierStyleCrossRef" href="#fig0060">Figure 12c</a> illustrates the shaft power, it can be seen that negative values corresponds to power delivered to the grid by the ED which indicates that the EV is operating in the traction mode meanwhile positive power values correspond to the regenerative braking mode and the traction machine works as a generator.</p><elsevierMultimedia ident="fig0060"></elsevierMultimedia><p id="par0180" class="elsevierStylePara elsevierViewall">The energy regenerated by the traction machine is delivered to the DC bus by the DC/AC converter (Powerex PP75T120) this energy is blocked by the diodes connected in series with the power supply (TDK-Lambda GEN 300-17) resulting in an increase in the DC bus voltage as shown in <a class="elsevierStyleCrossRef" href="#fig0060">fig. 12d</a>.<a name="p367"></a></p></span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">6</span><span class="elsevierStyleSectionTitle" id="sect0045">Conclusions</span><p id="par0185" class="elsevierStylePara elsevierViewall">This work addressed the design, commissioning and testing of an ED based on PMSMs to assess the dynamic performance of an EV. Simulation and experimental results correlated well for load profiles corresponding to a fan and an EV. It was possible to emulate the traction and regenerative braking stages for an EV validating the simulation results. As the load profile is programmed in a PC by means of Labview the system is very flexible and other kind of load profiles can be emulated by modifying the Labview program. The system is aimed to emulate EV load profiles however it can be applied to investigate on areas such as smart grids, renewable energies (wind power) making it a worthwhile investment.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:11 [ 0 => array:3 [ "identificador" => "xres498843" "titulo" => "Abstract" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0005" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec520347" "titulo" => "Keywords" ] 2 => array:3 [ "identificador" => "xres498842" "titulo" => "Resumen" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0010" ] ] ] 3 => array:2 [ "identificador" => "sec0005" "titulo" => "Introduction" ] 4 => array:2 [ "identificador" => "sec0010" "titulo" => "Experimental setup" ] 5 => array:2 [ "identificador" => "sec0015" "titulo" => "Simulation of the traction motor -electrodynamometer system" ] 6 => array:2 [ "identificador" => "sec0020" "titulo" => "Electrodynamometer Hardware implementation" ] 7 => array:2 [ "identificador" => "sec0025" "titulo" => "Experimental results" ] 8 => array:2 [ "identificador" => "sec0030" "titulo" => "Conclusions" ] 9 => array:2 [ "identificador" => "xack161152" "titulo" => "Acknowledgment" ] 10 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "PalabrasClave" => array:1 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec520347" "palabras" => array:3 [ 0 => "Electrodynamometer" 1 => "electric vehicle" 2 => "permanent magnet synchronous machine" ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "en" => array:2 [ "titulo" => "Abstract" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">This paper addresses the design, simulation, commissioning and testing of an electrodynamometer (ED) to assess the dynamic performance of Electric Vehicles (EV). The EV-ED system is comprised of two electric machines coupled mechanically. The traction machine is a 7.75 kW Permanent Magnet Synchronous Motor which is controlled by means of a vector control and it is coupled mechanically to a similar machine which is used as a mechanical load. The load machine was fed by two DC/AC converters connected by the DC bus allowing bidirectional power flow. The electrodynamometer was controlled by means of a National Instruments electronic board and Labview software. Several load profiles and inertias were programmed to emulate an Electric Vehicle (EV). The traction machine drive was implemented with a PP75T120 Powerex Inverter. PWM generation and control strategy were implemented on a MC56F8357 Freescale Digital Signal Controller (DSC). The speed control of the traction machine was validated for different driving cycles. Matlab/Simulink simulations of the machine control and electrodynamometer along with experimental results illustrating the response of the machine control under the characteristic load profile of an EV are presented and analyzed. Traction and regenerative breaking stages are analyzed and discussed broadly.</p></span>" ] "es" => array:2 [ "titulo" => "Resumen" "resumen" => "<span id="abst0010" class="elsevierStyleSection elsevierViewall"><p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">Este artículo aborda el diseño, simulación, implementación y comprobación experimental de un electrodinamómetro (ED) con el objetivo fundamental de evaluar el desempeño dinámico de un vehículo eléctrico (EV). El sistema ED-EV está compuesto de dos máquinas eléctricas acopladas mecánicamente. La máquina de tracción es una máquina síncrona de imanes permanentes (PMSM) de 7.75 kW y su sistema de control es de tipo vectorial. La máquina esta acoplada mecánicamente con otra similar la cual es utilizada como máquina de carga. El electrodinamómetro fue implementado con dos convertidores CD/CA conectados entre sí por el bus de CD permitiendo un flujo de potencia bidireccional. El electrodinamómetro es controlado por medio de una tarjeta electrónica de National Instruments y Labview instalado en una computadora. Para emular el EV se programaron diferentes perfiles de carga e inercias. El accionamiento de la máquina de tracción fue implementado con un inversor Powerex del tipo PP75T120. La generación de las señales PWM y la estrategia de control fueron implementadas en un controlador digital de señales (DSC) de Freescale del tipo MC56F8357. El control de velocidad de la máquina de carga fue validado usando diferentes ciclos de manejo. Se presentan y analizan simulaciones en Matlab/Simulink del control de la máquina y del electrodinamómetro, así como resultados experimentales que ilustran la respuesta del control de la máquina de tracción con una carga que corresponde a un EV. Las etapas de tracción y frenado regenerativo son analizadas y discutidas ampliamente.</p></span>" ] ] "apendice" => array:1 [ 0 => array:1 [ "seccion" => array:2 [ 0 => array:3 [ "apendice" => "<p id="par0190a" class="elsevierStylePara elsevierViewall"><elsevierMultimedia ident="tbl0005"></elsevierMultimedia></p>" "titulo" => "Appendix A" "identificador" => "sec0035" ] 1 => array:3 [ "apendice" => "<p id="par0195" class="elsevierStylePara elsevierViewall"><elsevierMultimedia ident="tbl0010"></elsevierMultimedia></p>" "titulo" => "Appendix B" "identificador" => "sec0040" ] ] ] ] "multimedia" => array:23 [ 0 => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 528 "Ancho" => 1624 "Tamanyo" => 72108 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Block diagram of the experimental setup.</p>" ] ] 1 => array:7 [ "identificador" => "fig0010" "etiqueta" => "Figure 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 688 "Ancho" => 1152 "Tamanyo" => 83298 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">Experimental setup.</p>" ] ] 2 => array:7 [ "identificador" => "fig0015" "etiqueta" => "Figure 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 560 "Ancho" => 856 "Tamanyo" => 42348 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">Inverter average model.</p>" ] ] 3 => array:7 [ "identificador" => "fig0020" "etiqueta" => "Figure 4" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr4.jpeg" "Alto" => 616 "Ancho" => 880 "Tamanyo" => 73790 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">Field oriented control for the traction PMSM.</p>" ] ] 4 => array:7 [ "identificador" => "fig0025" "etiqueta" => "Figure 5" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr5.jpeg" "Alto" => 1464 "Ancho" => 912 "Tamanyo" => 136298 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">Speed, torque, current and voltage for the vector control.</p>" ] ] 5 => array:7 [ "identificador" => "fig0030" "etiqueta" => "Figure 6" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr6.jpeg" "Alto" => 448 "Ancho" => 912 "Tamanyo" => 61236 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">Field oriented control for the load PMSM.</p>" ] ] 6 => array:7 [ "identificador" => "fig0035" "etiqueta" => "Figure 7" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr7.jpeg" "Alto" => 752 "Ancho" => 952 "Tamanyo" => 88820 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">Simulink diagram of the EV-ED system.</p>" ] ] 7 => array:7 [ "identificador" => "fig0040" "etiqueta" => "Figure 8" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:2 [ 0 => array:1 [ "imagen" => "gr8.jpeg" ] 1 => array:1 [ "imagen" => "gr9.jpeg" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">Simulation results for a fan load profile, (a) speed (r/min), (b) torque, (c) shaft power.</p>" ] ] 8 => array:7 [ "identificador" => "fig0045" "etiqueta" => "Figure 9" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:2 [ 0 => array:1 [ "imagen" => "gr10.jpeg" ] 1 => array:1 [ "imagen" => "gr11.jpeg" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0055" class="elsevierStyleSimplePara elsevierViewall">Simulation results. (a) EV speed km/hr; (b) Electromagnetic torque N-m; (c) Power in the shaft W; (d) DC bus voltage in the motor traction inverter V.</p>" ] ] 9 => array:7 [ "identificador" => "fig0050" "etiqueta" => "Figure 10" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr12.jpeg" "Alto" => 880 "Ancho" => 1848 "Tamanyo" => 128213 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0060" class="elsevierStyleSimplePara elsevierViewall">DC/AC converters (Unidrives) used to drive the load machine.</p>" ] ] 10 => array:7 [ "identificador" => "fig0055" "etiqueta" => "Figure 11" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr13.jpeg" "Alto" => 1288 "Ancho" => 928 "Tamanyo" => 77913 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0065" class="elsevierStyleSimplePara elsevierViewall">Experimental results for a fan-load model programmed in the ED.</p>" ] ] 11 => array:7 [ "identificador" => "fig0060" "etiqueta" => "Figure 12" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr14.jpeg" "Alto" => 1896 "Ancho" => 960 "Tamanyo" => 103312 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0070" class="elsevierStyleSimplePara elsevierViewall">Experimental results. (a) EV speed km/h, b] Electromagnetic torque N-m; (c) Power in the shaft W; (d) DC bus voltage in the traction-machine inverter V.</p>" ] ] 12 => array:6 [ "identificador" => "eq0005" "etiqueta" => "(1)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "VabVbcVca=Va−VbVb−VcVc−Va=da−dbdb−dcdc−da⋅VDC=dabdbcdcaVDC" "Fichero" => "si1.jpeg" "Tamanyo" => 6303 "Alto" => 68 "Ancho" => 400 ] ] 13 => array:6 [ "identificador" => "eq0010" "etiqueta" => "(2)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "IDC=dab0−dbciaibic" "Fichero" => "si2.jpeg" "Tamanyo" => 2086 "Alto" => 68 "Ancho" => 198 ] ] 14 => array:6 [ "identificador" => "eq0015" "etiqueta" => "(3)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "VdVqV0=Ld000Lq000LlSdid/dtdiq/dtdi0/dt+Rsidiqi0+0−Lq0Ld00000idiqi0+0ΨPM0ω" "Fichero" => "si3.jpeg" "Tamanyo" => 10261 "Alto" => 214 "Ancho" => 332 ] ] 15 => array:6 [ "identificador" => "eq0020" "etiqueta" => "(4)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "Te=32PidsiqsLd−Lq+IqsψPM" "Fichero" => "si4.jpeg" "Tamanyo" => 2266 "Alto" => 21 "Ancho" => 240 ] ] 16 => array:6 [ "identificador" => "eq0025" "etiqueta" => "(5)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "Te=32PiqsψPM" "Fichero" => "si5.jpeg" "Tamanyo" => 1100 "Alto" => 21 "Ancho" => 103 ] ] 17 => array:6 [ "identificador" => "eq0030" "etiqueta" => "(6)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "Tm=rt.Jmrw+jwrt.ef.rw+df.rw.mrt.efdVdt+df.rwrt.efKr.cosα+senα.mg+12ρCdAfV2" "Fichero" => "si10.jpeg" "Tamanyo" => 7882 "Alto" => 124 "Ancho" => 329 ] ] 18 => array:6 [ "identificador" => "eq0035" "etiqueta" => "(7)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "ωm=rtVrw" "Fichero" => "si11.jpeg" "Tamanyo" => 1003 "Alto" => 45 "Ancho" => 68 ] ] 19 => array:6 [ "identificador" => "eq0040" "etiqueta" => "(8)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "Te=k1.ωm2+k2" "Fichero" => "si13.jpeg" "Tamanyo" => 1103 "Alto" => 19 "Ancho" => 112 ] ] 20 => array:5 [ "identificador" => "eq0045" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "k1=0.00302, k2=3.69." "Fichero" => "si14.jpeg" "Tamanyo" => 1595 "Alto" => 14 "Ancho" => 178 ] ] 21 => array:6 [ "identificador" => "tbl0005" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => false "mostrarDisplay" => true "tabla" => array:1 [ "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="table-head " align="center" valign="middle" scope="col" style="border-bottom: 2px solid black">Parameters \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="center" valign="middle" scope="col" style="border-bottom: 2px solid black">Symbols \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="center" valign="middle" scope="col" style="border-bottom: 2px solid black">Values \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="center" valign="middle" scope="col" style="border-bottom: 2px solid black">Units \t\t\t\t\t\t\n \t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="table-entry " align="left" valign="middle">Number of pole pairs \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">ρ \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">4 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="middle">Stator resistance \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">R<span class="elsevierStyleInf">s</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">0.0750 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">Ω \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="middle">d-axis inductance \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">L<span class="elsevierStyleInf">d</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">1.25 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">mH \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="middle">q-axis inductance \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">L<span class="elsevierStyleInf">q</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">1.25 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">mH \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="middle">Permanent magnet flux \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">ψ<span class="elsevierStyleInf">PM</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">0.16666 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">Wb \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="middle">Current (blocked rotor) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">I<span class="elsevierStyleInf">p</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">29.35 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">A<span class="elsevierStyleInf">rms</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="middle">Rated current \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">I<span class="elsevierStyleInf">n</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">26.35 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">A<span class="elsevierStyleInf">rms</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="middle">Electromagnetic torque (blocked rotor) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">T<span class="elsevierStyleInf">ep</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">41.1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">N – m \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="middle">Rated electromagnetic torque \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">T<span class="elsevierStyleInf">en</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">36.9 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">N – m \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="middle">Rotor inertia \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">J \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">0.00864 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">Kg. m<span class="elsevierStyleSup">2</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="middle">Rated power \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">P<span class="elsevierStyleInf">n</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">7.75 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">kW \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="middle">Rated voltage \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">V<span class="elsevierStyleInf">n</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">220/240 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">V<span class="elsevierStyleInf">rms</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="middle">Rated speed \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">ω<span class="elsevierStyleInf">mec_n</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">2000 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">rpm \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="middle">Maximum speed \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">ω<span class="elsevierStyleInf">mec max</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">2800 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">rpm \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab796366.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0075" class="elsevierStyleSimplePara elsevierViewall">Motor Specifications.</p>" ] ] 22 => array:6 [ "identificador" => "tbl0010" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => false "mostrarDisplay" => true "tabla" => array:1 [ "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="table-head " align="center" valign="middle" scope="col" style="border-bottom: 2px solid black">Parameters \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="center" valign="middle" scope="col" style="border-bottom: 2px solid black">Symbols \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="center" valign="middle" scope="col" style="border-bottom: 2px solid black">Values \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="center" valign="middle" scope="col" style="border-bottom: 2px solid black">Units \t\t\t\t\t\t\n \t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="table-entry " align="left" valign="middle">Gearbox ratio \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle"><span class="elsevierStyleItalic">r<span class="elsevierStyleInf">t</span></span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">8.83 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">- \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="middle">Motor inertia \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">J<span class="elsevierStyleInf">m</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">0.00057 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle"><span class="elsevierStyleItalic">kg/m</span><span class="elsevierStyleSup">2</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="middle">Wheel inertia \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">J<span class="elsevierStyleInf">W</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">0.164 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle"><span class="elsevierStyleItalic">kg/m</span><span class="elsevierStyleSup">2</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="middle">Wheel radius \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">r<span class="elsevierStyleInf">W</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">0.274 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle"><span class="elsevierStyleItalic">m</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="middle">Efficiency of the mechanical transmisson \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">e<span class="elsevierStyleInf">f</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">- \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="middle">Distribution factor \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">d<span class="elsevierStyleInf">f</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">- \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="middle">Mass of the EV \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle"><span class="elsevierStyleItalic">m</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">100 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">kg \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="middle">Friction coefficient \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">K<span class="elsevierStyleInf">r</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">0.057 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">- \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="middle">Road slope \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">∝ \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">0 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle"><span class="elsevierStyleItalic">rad</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="middle">Gravitational acceleration \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle"><span class="elsevierStyleItalic">g</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">9.8 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle"><span class="elsevierStyleItalic">m/s</span><span class="elsevierStyleSup">2</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="middle">Aerodynamic drag coefficient \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle"><span class="elsevierStyleItalic">c<span class="elsevierStyleInf">d</span></span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">0.31 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">- \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="middle">Air density \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle"><span class="elsevierStyleItalic">ρ</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">1.23 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">kg/m<span class="elsevierStyleSup">3</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="middle">Frontal area of the EV \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">A<span class="elsevierStyleInf">f</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle">1.75 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="center" valign="middle"><span class="elsevierStyleItalic">m</span><span class="elsevierStyleSup">2</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab796365.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0080" class="elsevierStyleSimplePara elsevierViewall">EV parameters.</p>" ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0005" "bibliografiaReferencia" => array:15 [ 0 => array:3 [ "identificador" => "bib0005" "etiqueta" => "[1]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A Programmable Dynamometer for Testing Rotating Machinery Using a Three Phase Induction Machine" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "E.R. Collins" 1 => "Y. Huang" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "IEEE Trans. on Energy Conversion" "fecha" => "1994" "volumen" => "9" "numero" => "3" "paginaInicial" => "521" "paginaFinal" => "527" ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0010" "etiqueta" => "[2]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:1 [ 0 => "C.R. Hewson" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "LibroEditado" => array:5 [ "titulo" => "Dynamometer Control for Emulation of Mechanical Loads" "paginaInicial" => "1511" "paginaFinal" => "1518" "conferencia" => "Industry Applications Conference" "serieFecha" => "1998" ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0015" "etiqueta" => "[3]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "Betz R.E." 1 => "Penfold H.B." 2 => "Newton R.W." ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "LibroEditado" => array:5 [ "titulo" => "Local Vector Control of an AC Drive System Load Simulator" "paginaInicial" => "721" "paginaFinal" => "726" "conferencia" => "Proc. of The Third IEEE Conference on Control Applications" "serieFecha" => "1994" ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0020" "etiqueta" => "[4]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "Hewson C.R." 1 => "Asher G.M." 2 => "Sumner M." ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "LibroEditado" => array:3 [ "titulo" => "A Dynamic Mechanical Load Emulation Test Facility to Evaluate the Performance of AC Inverters" "conferencia" => "Seventh International Conference on Power Electronics and Variable Speed Drives" "serieFecha" => "1998" ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0025" "etiqueta" => "[5]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Dynamic Emulation of Mechanical Loads Using a Vector Controlled Induction Motor-Generator Set" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "Akpolat Z.H." 1 => "Asher G.M." 2 => "Clare J.C." ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "IEEE Trans. on Industrial Electronics" "fecha" => "1999" "volumen" => "46" "numero" => "2" "paginaInicial" => "370" "paginaFinal" => "379" ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0030" "etiqueta" => "[6]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "Rodic M." 1 => "Jezernick K." 2 => "Trlep M." ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "LibroEditado" => array:5 [ "titulo" => "Dynamic Emulation of Mechanical Loads: An Advanced Approach" "paginaInicial" => "159" "paginaFinal" => "166" "conferencia" => "IEE Proceedings Electric Power Applications" "serieFecha" => "2006" ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0035" "etiqueta" => "[7]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A Survey of Intelligent Car Parking System" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "Faheem Mahmud S.A." 1 => "Khan G.M." 2 => "Rahman M." ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Journal of Applied Research and Technology" "fecha" => "2013" "volumen" => "11" "numero" => "5" "paginaInicial" => "714" "paginaFinal" => "726" ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0040" "etiqueta" => "[8]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "Zhang N." 1 => "Zhang W." ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "LibroEditado" => array:5 [ "titulo" => "Research on an Energy Feedback Power Dynamometer Based on Improved Vector Control" "paginaInicial" => "1" "paginaFinal" => "4" "conferencia" => "The 15th International Conference on Electrical Machines and Systems, ICEMS´07" "serieFecha" => "2007" ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0045" "etiqueta" => "[9]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "Yang J." 1 => "Huang J." ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "LibroEditado" => array:5 [ "titulo" => "Research on an AC Variable-frequency Power Dynamometer Based on PWM Rectifier and Fuzzy Direct Torque Control" "paginaInicial" => "1" "paginaFinal" => "6" "conferencia" => "The IEEE 5th International Power Electronics and Motion Control Conference, IPMEC´06" "serieFecha" => "2006" ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0050" "etiqueta" => "[10]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Optimal Design of a Regenerative Dynamic Dynamometer Using Generic Algorithms" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "Weng L." 1 => "Dong Z.Y." ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "The 2003 Congress on Evolutionary Computation" "fecha" => "2003" "volumen" => "4" "paginaInicial" => "2665" "paginaFinal" => "2672" ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0055" "etiqueta" => "[11]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "Mihailovicl Z." 1 => "Prasad H.V." 2 => "Borojevic D." ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "LibroEditado" => array:5 [ "titulo" => "Computer Modeling and Analysis of VSI Fed Permanent Magnet Synchronous Motor Drive Systems with Adjustable Levels of Complexity" "paginaInicial" => "728" "paginaFinal" => "735" "conferencia" => "Applied Power Electronics Conference and Exposition, APEC´97" "serieFecha" => "1997" ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0060" "etiqueta" => "[12]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "Krishnan R." ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "titulo" => "Electric Motor Drives: Modeling, Analysis, and Control" "fecha" => "2001" "editorial" => "Prentice Hall, Inc." ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0065" "etiqueta" => "[13]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Speed Anti-Windup PI Strategies Review for Field Oriented Control of Permanent Magnet Synchronous Machines" "autores" => array:1 [ 0 => array:3 [ "colaboracion" => "PTR, 2002 and AC Drives" "etal" => false "autores" => array:3 [ 0 => "Espina J.I." 1 => "Arias A." 2 => "Ortega C." ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Compatibility and Power Electronics CPE’09" "fecha" => "2009" "volumen" => "20" "paginaInicial" => "279" "paginaFinal" => "285" ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0070" "etiqueta" => "[14]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "Mehrdad E." 1 => "Gao Y." 2 => "Sebastien E.G." 3 => "Emadi A." ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "titulo" => "Modern Electric, Hybrid Electric and Fuel Cell Vehicles Fundamentals, Theory and Design" "fecha" => "2005" "editorial" => "CRC Press LLC" ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0075" "etiqueta" => "[15]" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "User Guide Unidrive SP model 0 to 6 Universal Variable Speed AC Drive for induction and servo motors Part Number: 0471-0000-12 Issue: 12. <a href="http://www.emersonindustrial.com/en-EN/controltechniques/downloads/userguidesandsoftware/Pages/unidrivesppanelmount.aspx">http://www.emersonindustrial.com/en-EN/controltechniques/downloads/userguidesandsoftware/Pages/unidrivesppanelmount.aspx</a>" ] ] ] ] ] ] ] "agradecimientos" => array:1 [ 0 => array:4 [ "identificador" => "xack161152" "titulo" => "Acknowledgment" "texto" => "<p id="par0190" class="elsevierStylePara elsevierViewall">This work was supported by the Institute of Science and Technology for Federal District (ICyTDF), México, under the project grant PICS08-50.<a name="p368"></a></p>" "vista" => "all" ] ] ] "idiomaDefecto" => "en" "url" => "/16656423/0000001200000003/v2_201505081651/S1665642314716189/v2_201505081651/en/main.assets" "Apartado" => null "PDF" => "https://static.elsevier.es/multimedia/16656423/0000001200000003/v2_201505081651/S1665642314716189/v2_201505081651/en/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1665642314716189?idApp=UINPBA00004N" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 10 | 1 | 11 |
2024 October | 45 | 4 | 49 |
2024 September | 38 | 6 | 44 |
2024 August | 29 | 4 | 33 |
2024 July | 34 | 4 | 38 |
2024 June | 55 | 3 | 58 |
2024 May | 46 | 4 | 50 |
2024 April | 60 | 6 | 66 |
2024 March | 52 | 6 | 58 |
2024 February | 54 | 7 | 61 |
2024 January | 46 | 2 | 48 |
2023 December | 45 | 5 | 50 |
2023 November | 45 | 7 | 52 |
2023 October | 57 | 6 | 63 |
2023 September | 24 | 4 | 28 |
2023 August | 26 | 5 | 31 |
2023 July | 28 | 5 | 33 |
2023 June | 47 | 10 | 57 |
2023 May | 71 | 19 | 90 |
2023 April | 61 | 1 | 62 |
2023 March | 68 | 12 | 80 |
2023 February | 50 | 9 | 59 |
2023 January | 41 | 17 | 58 |
2022 December | 76 | 15 | 91 |
2022 November | 47 | 24 | 71 |
2022 October | 47 | 22 | 69 |
2022 September | 53 | 11 | 64 |
2022 August | 65 | 25 | 90 |
2022 July | 33 | 8 | 41 |
2022 June | 27 | 20 | 47 |
2022 May | 40 | 21 | 61 |
2022 April | 39 | 24 | 63 |
2022 March | 61 | 16 | 77 |
2022 February | 51 | 14 | 65 |
2022 January | 68 | 34 | 102 |
2021 December | 39 | 16 | 55 |
2021 November | 56 | 14 | 70 |
2021 October | 59 | 15 | 74 |
2021 September | 44 | 14 | 58 |
2021 August | 43 | 14 | 57 |
2021 July | 26 | 9 | 35 |
2021 June | 40 | 11 | 51 |
2021 May | 50 | 9 | 59 |
2021 April | 135 | 18 | 153 |
2021 March | 50 | 8 | 58 |
2021 February | 29 | 10 | 39 |
2021 January | 51 | 10 | 61 |
2020 December | 63 | 12 | 75 |
2020 November | 57 | 8 | 65 |
2020 October | 44 | 5 | 49 |
2020 September | 41 | 17 | 58 |
2020 August | 36 | 2 | 38 |
2020 July | 34 | 6 | 40 |
2020 June | 26 | 9 | 35 |
2020 May | 28 | 6 | 34 |
2020 April | 48 | 5 | 53 |
2020 March | 26 | 6 | 32 |
2020 February | 13 | 9 | 22 |
2020 January | 16 | 3 | 19 |
2019 December | 16 | 5 | 21 |
2019 November | 12 | 5 | 17 |
2019 October | 16 | 4 | 20 |
2019 September | 12 | 3 | 15 |
2019 August | 15 | 5 | 20 |
2019 July | 28 | 8 | 36 |
2019 June | 30 | 5 | 35 |
2019 May | 114 | 11 | 125 |
2019 April | 62 | 1 | 63 |
2019 March | 9 | 6 | 15 |
2019 February | 9 | 1 | 10 |
2019 January | 4 | 1 | 5 |
2018 December | 7 | 3 | 10 |
2018 November | 11 | 2 | 13 |
2018 October | 16 | 1 | 17 |
2018 September | 26 | 11 | 37 |
2018 August | 6 | 11 | 17 |
2018 July | 10 | 9 | 19 |
2018 June | 8 | 8 | 16 |
2018 May | 13 | 10 | 23 |
2018 April | 13 | 2 | 15 |
2018 March | 12 | 2 | 14 |
2018 February | 11 | 3 | 14 |
2018 January | 9 | 0 | 9 |
2017 December | 19 | 1 | 20 |
2017 November | 19 | 6 | 25 |
2017 October | 29 | 4 | 33 |
2017 September | 16 | 9 | 25 |
2017 August | 10 | 12 | 22 |
2017 July | 15 | 2 | 17 |
2017 June | 17 | 11 | 28 |
2017 May | 27 | 18 | 45 |
2017 April | 15 | 20 | 35 |
2017 March | 24 | 75 | 99 |
2017 February | 23 | 4 | 27 |
2017 January | 23 | 2 | 25 |
2016 December | 23 | 10 | 33 |
2016 November | 30 | 2 | 32 |
2016 October | 28 | 4 | 32 |
2016 September | 35 | 4 | 39 |
2016 August | 17 | 6 | 23 |
2016 July | 18 | 1 | 19 |
2016 June | 14 | 2 | 16 |
2016 May | 11 | 7 | 18 |
2016 April | 18 | 2 | 20 |
2016 March | 27 | 10 | 37 |
2016 February | 14 | 5 | 19 |
2016 January | 14 | 6 | 20 |
2015 December | 15 | 3 | 18 |
2015 November | 13 | 1 | 14 |
2015 October | 19 | 7 | 26 |
2015 September | 25 | 3 | 28 |
2015 August | 44 | 2 | 46 |
2015 July | 15 | 1 | 16 |
2015 June | 5 | 1 | 6 |
2015 May | 3 | 0 | 3 |
2015 April | 3 | 1 | 4 |