covid
Buscar en
Journal of Applied Research and Technology. JART
Toda la web
Inicio Journal of Applied Research and Technology. JART Generalized SSPRT for Fault Identification and Estimation of Linear Dynamic Syst...
Journal Information

Statistics

Follow this link to access the full text of the article

Generalized SSPRT for Fault Identification and Estimation of Linear Dynamic Systems Based on Multiple Model Algorithm
Ji Zhang1, Yu Liu2, Xuguang Li3
1 Department of Computer, North China Electric Power University, Baoding, Hebei 071003, China
2 Department of Electrical Engineering, University of New Orleans, New Orleans, LA 70148, USA
3 Clinical Laboratory, 323 Hospital Xi’an, Shaanxi 710054, China
Read
1758
Times
was read the article
749
Total PDF
1009
Total HTML
Share statistics
 array:23 [
  "pii" => "S1665642314716220"
  "issn" => "16656423"
  "doi" => "10.1016/S1665-6423(14)71622-0"
  "estado" => "S300"
  "fechaPublicacion" => "2014-06-01"
  "aid" => "71622"
  "copyright" => "Universidad Nacional Autónoma de México"
  "copyrightAnyo" => "2014"
  "documento" => "article"
  "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/"
  "subdocumento" => "fla"
  "cita" => "Journal of Applied Research and Technology. 2014;12:409-21"
  "abierto" => array:3 [
    "ES" => true
    "ES2" => true
    "LATM" => true
  ]
  "gratuito" => true
  "lecturas" => array:2 [
    "total" => 774
    "formatos" => array:3 [
      "EPUB" => 30
      "HTML" => 366
      "PDF" => 378
    ]
  ]
  "itemSiguiente" => array:18 [
    "pii" => "S1665642314716232"
    "issn" => "16656423"
    "doi" => "10.1016/S1665-6423(14)71623-2"
    "estado" => "S300"
    "fechaPublicacion" => "2014-06-01"
    "aid" => "71623"
    "copyright" => "Universidad Nacional Autónoma de México"
    "documento" => "article"
    "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/"
    "subdocumento" => "fla"
    "cita" => "Journal of Applied Research and Technology. 2014;12:422-34"
    "abierto" => array:3 [
      "ES" => true
      "ES2" => true
      "LATM" => true
    ]
    "gratuito" => true
    "lecturas" => array:2 [
      "total" => 742
      "formatos" => array:3 [
        "EPUB" => 30
        "HTML" => 311
        "PDF" => 401
      ]
    ]
    "en" => array:11 [
      "idiomaDefecto" => true
      "titulo" => "Estimation of the State and the Unknown Inputs of a Multimodel with non Measurable Decision Variables"
      "tienePdf" => "en"
      "tieneTextoCompleto" => "en"
      "tieneResumen" => array:2 [
        0 => "en"
        1 => "es"
      ]
      "paginas" => array:1 [
        0 => array:2 [
          "paginaInicial" => "422"
          "paginaFinal" => "434"
        ]
      ]
      "contieneResumen" => array:2 [
        "en" => true
        "es" => true
      ]
      "contieneTextoCompleto" => array:1 [
        "en" => true
      ]
      "contienePdf" => array:1 [
        "en" => true
      ]
      "resumenGrafico" => array:2 [
        "original" => 0
        "multimedia" => array:7 [
          "identificador" => "fig0025"
          "etiqueta" => "Figure 5"
          "tipo" => "MULTIMEDIAFIGURA"
          "mostrarFloat" => true
          "mostrarDisplay" => false
          "figura" => array:1 [
            0 => array:4 [
              "imagen" => "gr5.jpeg"
              "Alto" => 624
              "Ancho" => 800
              "Tamanyo" => 41683
            ]
          ]
          "descripcion" => array:1 [
            "en" => "<p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">Evolution of <span class="elsevierStyleItalic">U and</span>U&#175;&#46;</p>"
          ]
        ]
      ]
      "autores" => array:1 [
        0 => array:2 [
          "autoresLista" => "E&#46; Maherzi, M&#46; Besbes, S&#46; Zemmel, A&#46; Mami"
          "autores" => array:4 [
            0 => array:2 [
              "nombre" => "E&#46;"
              "apellidos" => "Maherzi"
            ]
            1 => array:2 [
              "nombre" => "M&#46;"
              "apellidos" => "Besbes"
            ]
            2 => array:2 [
              "nombre" => "S&#46;"
              "apellidos" => "Zemmel"
            ]
            3 => array:2 [
              "nombre" => "A&#46;"
              "apellidos" => "Mami"
            ]
          ]
        ]
      ]
    ]
    "idiomaDefecto" => "en"
    "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1665642314716232?idApp=UINPBA00004N"
    "url" => "/16656423/0000001200000003/v2_201505081651/S1665642314716232/v2_201505081651/en/main.assets"
  ]
  "itemAnterior" => array:18 [
    "pii" => "S1665642314716219"
    "issn" => "16656423"
    "doi" => "10.1016/S1665-6423(14)71621-9"
    "estado" => "S300"
    "fechaPublicacion" => "2014-06-01"
    "aid" => "71621"
    "copyright" => "Universidad Nacional Aut&#243;noma de M&#233;xico"
    "documento" => "article"
    "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/"
    "subdocumento" => "fla"
    "cita" => "Journal of Applied Research and Technology. 2014;12:396-408"
    "abierto" => array:3 [
      "ES" => true
      "ES2" => true
      "LATM" => true
    ]
    "gratuito" => true
    "lecturas" => array:2 [
      "total" => 784
      "formatos" => array:3 [
        "EPUB" => 36
        "HTML" => 435
        "PDF" => 313
      ]
    ]
    "en" => array:11 [
      "idiomaDefecto" => true
      "titulo" => "Extensions to K-Medoids with Balance Restrictions over the Cardinality of the Partitions"
      "tienePdf" => "en"
      "tieneTextoCompleto" => "en"
      "tieneResumen" => array:2 [
        0 => "en"
        1 => "es"
      ]
      "paginas" => array:1 [
        0 => array:2 [
          "paginaInicial" => "396"
          "paginaFinal" => "408"
        ]
      ]
      "contieneResumen" => array:2 [
        "en" => true
        "es" => true
      ]
      "contieneTextoCompleto" => array:1 [
        "en" => true
      ]
      "contienePdf" => array:1 [
        "en" => true
      ]
      "resumenGrafico" => array:2 [
        "original" => 0
        "multimedia" => array:7 [
          "identificador" => "fig0035"
          "etiqueta" => "Figure 2"
          "tipo" => "MULTIMEDIAFIGURA"
          "mostrarFloat" => true
          "mostrarDisplay" => false
          "figura" => array:1 [
            0 => array:4 [
              "imagen" => "gr2.jpeg"
              "Alto" => 544
              "Ancho" => 880
              "Tamanyo" => 54668
            ]
          ]
          "descripcion" => array:1 [
            "en" => "<p id="spar0090" class="elsevierStyleSimplePara elsevierViewall">Map for 40 groups &#40;<a class="elsevierStyleCrossRef" href="#sec9585">Algorithm 2</a>&#41;&#46;</p>"
          ]
        ]
      ]
      "autores" => array:1 [
        0 => array:2 [
          "autoresLista" => "B&#46; Bern&#225;be-Loranca, R&#46; Gonzalez-Vel&#225;zquez, E&#46; Olivares-Ben&#237;tez, J&#46; Ruiz-Vanoye, J&#46; Mart&#237;nez-Flores"
          "autores" => array:5 [
            0 => array:2 [
              "nombre" => "B&#46;"
              "apellidos" => "Bern&#225;be-Loranca"
            ]
            1 => array:2 [
              "nombre" => "R&#46;"
              "apellidos" => "Gonzalez-Vel&#225;zquez"
            ]
            2 => array:2 [
              "nombre" => "E&#46;"
              "apellidos" => "Olivares-Ben&#237;tez"
            ]
            3 => array:2 [
              "nombre" => "J&#46;"
              "apellidos" => "Ruiz-Vanoye"
            ]
            4 => array:2 [
              "nombre" => "J&#46;"
              "apellidos" => "Mart&#237;nez-Flores"
            ]
          ]
        ]
      ]
    ]
    "idiomaDefecto" => "en"
    "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1665642314716219?idApp=UINPBA00004N"
    "url" => "/16656423/0000001200000003/v2_201505081651/S1665642314716219/v2_201505081651/en/main.assets"
  ]
  "en" => array:15 [
    "idiomaDefecto" => true
    "titulo" => "Generalized SSPRT for Fault Identification and Estimation of Linear Dynamic Systems Based on Multiple Model Algorithm"
    "tieneTextoCompleto" => true
    "paginas" => array:1 [
      0 => array:2 [
        "paginaInicial" => "409"
        "paginaFinal" => "421"
      ]
    ]
    "autores" => array:1 [
      0 => array:3 [
        "autoresLista" => "Ji Zhang, Yu Liu, Xuguang Li"
        "autores" => array:3 [
          0 => array:3 [
            "nombre" => "Ji"
            "apellidos" => "Zhang"
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">1</span>"
                "identificador" => "aff0005"
              ]
            ]
          ]
          1 => array:4 [
            "nombre" => "Yu"
            "apellidos" => "Liu"
            "email" => array:1 [
              0 => "lyu2&#64;uno&#46;edu"
            ]
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">2</span>"
                "identificador" => "aff0010"
              ]
            ]
          ]
          2 => array:3 [
            "nombre" => "Xuguang"
            "apellidos" => "Li"
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">3</span>"
                "identificador" => "aff0015"
              ]
            ]
          ]
        ]
        "afiliaciones" => array:3 [
          0 => array:3 [
            "entidad" => "Department of Computer&#44; North China Electric Power University&#44; Baoding&#44; Hebei 071003&#44; China"
            "etiqueta" => "1"
            "identificador" => "aff0005"
          ]
          1 => array:3 [
            "entidad" => "Department of Electrical Engineering&#44; University of New Orleans&#44; New Orleans&#44; LA 70148&#44; USA"
            "etiqueta" => "2"
            "identificador" => "aff0010"
          ]
          2 => array:3 [
            "entidad" => "Clinical Laboratory&#44; 323 Hospital Xi&#8217;an&#44; Shaanxi 710054&#44; China"
            "etiqueta" => "3"
            "identificador" => "aff0015"
          ]
        ]
      ]
    ]
    "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">1</span><span class="elsevierStyleSectionTitle" id="sect0015">Introduction</span><p id="par0005" class="elsevierStylePara elsevierViewall">Fault diagnosis has been extensively studied &#91;<a class="elsevierStyleCrossRefs" href="#bib0005">1-10</a>&#93;&#46; It can be addressed by hardware redundancy or analytical redundancy &#91;<a class="elsevierStyleCrossRef" href="#bib0020">4</a>&#93;&#46; With the increasing computational power and decreasing cost of the digital signal processors and software&#44; the method of analytical redundancy&#44; which diagnoses the possible fault by comparing the signals from a real system with a mathematical model&#44; is prevailing due to its low cost and high flexibility&#46;</p><p id="par0010" class="elsevierStylePara elsevierViewall">In this work&#44; we study the fault diagnosis problem of a linear stochastic system subject to a single sensor&#47;actuator fault&#46; As pointed out in &#91;<a class="elsevierStyleCrossRef" href="#bib0015">3</a>&#93;&#44; the fault diagnosis problem consists of the following three sub-problems&#58;</p><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0020">Fault detection</span><p id="par0015" class="elsevierStylePara elsevierViewall">Is there a fault in the system&#63; The answer is &#8220;yes&#8221;&#44; &#8220;no&#8221; or &#8220;unknown&#8221;&#46; It is actually a change detection problem with binary hypotheses&#46; We want to detect the fault after its occurrence as quick as possible&#46; For simple hypotheses with independent and identically distributed &#40;i&#46;i&#46;d&#46;&#41; observations&#44; optimal algorithms exist&#44; e&#46;g&#46;&#44; cumulative sum &#40;CUSUM&#41; test &#91;<a class="elsevierStyleCrossRef" href="#bib0055">11</a>&#93;&#44; which &#40;asymptotically&#41; minimizes the worst-case expected detection delay under some false alarm restrictions &#91;<a class="elsevierStyleCrossRef" href="#bib0060">12</a>&#44; <a class="elsevierStyleCrossRef" href="#bib0065">13</a>&#93;&#46; If the change time is assumed random and prior information is available&#44; the Shiryayev sequential probability ratio test &#40;SSPRT&#41; &#91;<a class="elsevierStyleCrossRef" href="#bib0070">14</a>&#93; in Bayesian framework is optimal in terms of a Bayesian risk&#46; Note that the fault source needs not to be identified &#40;or isolated&#41; in fault detection&#46;</p></span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0025">Fault isolation &#40;or identification&#41;</span><p id="par0020" class="elsevierStylePara elsevierViewall">Usually there are many components in modern systems and merely knowing there is a fault &#40;by fault detection&#41; in a system is far from enough for a quick and effective remedy&#46; Hence&#44; the goal of fault isolation is to identify the source of a fault as soon as possible&#46; So&#44; the answer to this problem is a fault type&#44; e&#46;g&#46;&#44; which component in a system is faulty&#46; This is a change detection problem with multiple alternative<a name="p410"></a> hypotheses&#46; Each alternative hypothesis corresponds to a fault model &#40;unlike fault detection&#44; all the fault models are included in a single alterative hypothesis&#41; and we need to isolate which hypothesis happens after a change&#46; The fault isolation can be carried out subsequently after the fault detection &#40;i&#46;e&#46;&#44; identifying the source after declaration of a fault&#41; or individually &#40;i&#46;e&#46;&#44; operates in a stand-along mode without the fault detection&#41;&#46; Sequential algorithms for this problem were proposed in &#91;<a class="elsevierStyleCrossRef" href="#bib0030">6</a>&#44; <a class="elsevierStyleCrossRef" href="#bib0045">9</a>&#93; and it minimizes the worst-case expected isolation delay under the restriction of mean time before a false alarm&#47;isolation&#46; The generalized SSPRT &#40;GSSPRT&#41; in Bayesian framework was proposed &#91;<a class="elsevierStyleCrossRef" href="#bib0040">8</a>&#93; and it is optimal in terms of a Bayesian risk for fault isolation&#46; To the authors&#8217; best knowledge&#44; joint optimal solution for fault detection and isolation is not known&#46;</p></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0030">Fault estimation</span><p id="par0025" class="elsevierStylePara elsevierViewall">Estimate the severeness of a fault&#46; For example&#44; a sensor&#47;actuator may fail completely &#40;it does not work at all&#41; or partially &#40;has degenerated performance&#41;&#46; This piece of information is useful for future decision and action&#46; If a sensor&#47;actuator fails completely&#44; the system may have to be stopped until the faulty component is replaced or fixed&#46; In another hand&#44; if only minor partial fault occurs&#44; the sensor&#47;actuator may be kept in use&#44; with some online compensation &#91;<a class="elsevierStyleCrossRef" href="#bib0015">3</a>&#93;&#46;</p><p id="par0030" class="elsevierStylePara elsevierViewall">In this work&#44; system state estimation&#44; fault isolation and estimation are tackled simultaneously&#46; We start from applying the GSSPRT to a linear dynamic system and the algorithm turns out to be a multiple model &#40;MM&#41; algorithm considering all possible model sequences &#91;<a class="elsevierStyleCrossRef" href="#bib0075">15</a>&#93;&#46; Fault diagnosis by multiple model algorithms is gaining attentions&#46; A bank of mathematical models is constructed to model the normal operation mode and the fault modes&#46; Filters based on these models are running in parallel&#44; and the system state estimation is obtained by the outputs from MM&#44; and the fault isolation can be done by comparing the model probabilities with the pre-defined thresholds&#46; So&#44; the fault diagnosis and state estimation can be done simultaneously&#44; and the performance of the state estimation is independent to that of fault diagnosis&#46; The MM is attractive since it uses a bunch of models rather than a single model to represent the faulty behaviours of a system &#91;<a class="elsevierStyleCrossRef" href="#bib0050">10</a>&#93;&#46; The autonomous multiple model &#40;AMM&#41; &#91;<a class="elsevierStyleCrossRef" href="#bib0075">15</a>&#93; algorithm was the first MM algorithm proposed for fault diagnosis &#91;<a class="elsevierStyleCrossRefs" href="#bib0080">16-18</a>&#93;&#46; However the underlying assumption of AMM about the model trajectory-the model in effect does not change over time-does not fit the change detection problem&#46; Then&#44; the interacting multiple model &#40;IMM&#41; &#91;<a class="elsevierStyleCrossRef" href="#bib0095">19</a>&#93; algorithm&#44; which considers the interaction between models&#44; was proposed &#91;<a class="elsevierStyleCrossRef" href="#bib0035">7</a>&#44; <a class="elsevierStyleCrossRef" href="#bib0050">10</a>&#44; <a class="elsevierStyleCrossRef" href="#bib0100">20</a>&#44; <a class="elsevierStyleCrossRef" href="#bib0105">21</a>&#93; and they outperform AMM in general&#46; In &#91;<a class="elsevierStyleCrossRef" href="#bib0035">7</a>&#93;&#44; the IMM was directly applied to a fault isolation problem&#44; but it was assumed that the fault models are exactly known&#46; The hierarchical IMM &#91;<a class="elsevierStyleCrossRef" href="#bib0110">22</a>&#93; and IM3L &#91;<a class="elsevierStyleCrossRef" href="#bib0050">10</a>&#93; were proposed to address the fault isolation and estimation&#46; However&#44; they were tackled in a sequential manner&#44; i&#46;e&#46;&#44; isolation-then-estimation&#46; Without the information of the fault severeness&#44; the isolation performance suffers&#46; In this paper&#44; we propose a multiple model algorithm that solves the fault isolation and estimation simultaneously&#46;</p><p id="par0035" class="elsevierStylePara elsevierViewall">In practical applications&#44; each sensor&#47;actuator fault can be total or partial&#46; So&#44; a parameter <span class="elsevierStyleItalic">&#945;</span> &#8712; &#91;0&#44; 1&#93; is introduced for each sensor&#47;actuator to indicate its fault severeness &#91;7&#44;10&#93;&#46; <span class="elsevierStyleItalic">&#945;</span> &#61; 0 means complete failure while 0 &#60; <span class="elsevierStyleItalic">&#945;</span> &#60; 1 denotes a partial fault&#46; If <span class="elsevierStyleItalic">&#945;</span> is known after a fault occurrence&#44; the hypothesis for each sensor&#47;actuator fault becomes a simple hypothesis and the GSSPRT algorithm for this case is exactly the same as the MM algorithm considering all possible model sequences&#46; Hence&#44; the optimality of GSSPRT and the virtues of MM algorithms are all preserved&#46; Further&#44; the system state can be also estimated as a by-product&#46; However&#44; two difficulties impede its exact implementation in practice&#58;<ul class="elsevierStyleList" id="lis0005"><li class="elsevierStyleListItem" id="lsti0005"><span class="elsevierStyleLabel">a&#41;</span><p id="par0040" class="elsevierStylePara elsevierViewall">Its computational complexity is increasing due to the increasing number of model sequences&#46;</p></li><li class="elsevierStyleListItem" id="lsti0010"><span class="elsevierStyleLabel">b&#41;</span><p id="par0045" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleItalic">&#945;</span> is unknown in general&#46;</p></li></ul></p><p id="par0050" class="elsevierStylePara elsevierViewall">The first problem can be solved by pruning and merging the model sequences so that the total number of sequences is bounded&#46; A bunch of algorithms were proposed for this purpose&#44; e&#46;g&#46;&#44; B-best and GPBn&#44; see &#91;<a class="elsevierStyleCrossRef" href="#bib0075">15</a>&#93; and the references therein&#46; We propose to use the Gaussian mixture reduction &#91;<a class="elsevierStyleCrossRef" href="#bib0115">23</a>&#44; <a class="elsevierStyleCrossRef" href="#bib0120">24</a>&#93; to merge the &#8220;similar&#8221; model sequences&#44; since it can be better justified than GPBn or IMM&#46; Second&#44; the unknown parameter <span class="elsevierStyleItalic">&#945;</span> can be estimated online by model<a name="p411"></a> augmentation&#46; We introduce one augmented model for each sensor&#47;actuator with an &#40;unknown&#41; fault parameter <span class="elsevierStyleItalic">&#945;</span>&#44; which is updated at every step by maximum likelihood estimation &#40;MLE&#41; or expectation-the so-called maximum-likelihood model augmentation &#40;MMA&#41; &#91;<a class="elsevierStyleCrossRef" href="#bib0050">10</a>&#44; <a class="elsevierStyleCrossRef" href="#bib0100">20</a>&#93; or expected model augmentation &#40;EMA&#41; &#91;<a class="elsevierStyleCrossRef" href="#bib0075">15</a>&#44; <a class="elsevierStyleCrossRef" href="#bib0125">25</a>&#93;&#44; respectively&#46; So&#44; before declaration of a fault&#44; the fault severeness has been estimated and updated in real time based on these augmented models&#46; Further&#44; these augmented models are expected to be &#8220;close&#8221; to the truth&#44; and hence further benefit the overall performance of state estimation and fault isolation&#46; As shown in the simulation&#44; the EMA and MMA have their pros and cons to each other&#46; The MMA has better adaptation of parameter change and hence has faster isolation and smaller miss detection rate&#44; while the EMA performs better in terms of the parameter estimation and correct isolation rate&#46;</p><p id="par0055" class="elsevierStylePara elsevierViewall">Although our algorithm is developed based on the assumption of single fault&#44; it can be extended to deal with infrequent sequential multiple faults easily provided the interval between two faults is long enough for isolating the first fault before the second fault&#46; If a fault has been identified and its fault severeness estimated&#44; then all the models can be revised to accommodate this fault and hence detection for further fault can be carried out&#46; The case of simultaneous faults is more complicated and deserves further studies&#46;</p><p id="par0060" class="elsevierStylePara elsevierViewall">This paper is organized as follows&#46; First&#44; the problem of fault isolation and estimation for linear dynamic systems is formulated in <a class="elsevierStyleCrossRef" href="#sec0025">Sec&#46; 2</a>&#46; The algorithm based on GSSPRT is derived in <a class="elsevierStyleCrossRef" href="#sec0030">Sec&#46; 3</a>&#46; The multiple model methods based on the Gaussian mixture reduction and the model augmentation are presented in <a class="elsevierStyleCrossRef" href="#sec0035">Sec&#46; 4</a>&#46; Three illustrative examples are provided in <a class="elsevierStyleCrossRef" href="#sec0040">Sec&#46; 5</a>&#44; and our algorithms are compared with the IMM method&#46; Conclusions are made in <a class="elsevierStyleCrossRef" href="#sec0070">Sec&#46; 6</a>&#46;</p></span></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">2</span><span class="elsevierStyleSectionTitle" id="sect0035">Problem Formulation</span><p id="par0065" class="elsevierStylePara elsevierViewall">A linear stochastic system subject to a sensor&#47;actuator fault can be formulated as the following first-order Markov jump-linear hybrid system&#58;<elsevierMultimedia ident="eq0005"></elsevierMultimedia><elsevierMultimedia ident="eq0010"></elsevierMultimedia></p><p id="par0080" class="elsevierStylePara elsevierViewall">where <span class="elsevierStyleItalic">x<span class="elsevierStyleInf">k</span></span> and <span class="elsevierStyleItalic">z<span class="elsevierStyleInf">k</span></span> are the system state and the measurement at time <span class="elsevierStyleItalic">k</span>&#44; respectively&#46; Each column of <span class="elsevierStyleItalic">B<span class="elsevierStyleInf">k</span></span> is an &#8220;actuator&#8221; while each row of <span class="elsevierStyleItalic">H<span class="elsevierStyleInf">k</span></span> is a &#8220;sensor&#8221; in the system &#91;<a class="elsevierStyleCrossRef" href="#bib0035">7</a>&#44; <a class="elsevierStyleCrossRef" href="#bib0050">10</a>&#44; <a class="elsevierStyleCrossRef" href="#bib0105">21</a>&#93;&#46; The superscript <span class="elsevierStyleItalic">j</span> denotes that the matrices dependent the model <span class="elsevierStyleItalic">m<span class="elsevierStyleSup">j</span></span> in effect&#46; It is assumed that there are total <span class="elsevierStyleItalic">M</span> fault models &#123;<span class="elsevierStyleItalic">m</span><span class="elsevierStyleSup">1</span>&#44; <span class="elsevierStyleItalic">m</span><span class="elsevierStyleSup">2</span>&#44;&#46;&#46;&#46;<span class="elsevierStyleItalic">&#44;m<span class="elsevierStyleSup">M</span></span>&#125; and one normal model <span class="elsevierStyleItalic">m</span><span class="elsevierStyleSup">0</span>&#46; The control input <span class="elsevierStyleItalic">u<span class="elsevierStyleInf">k</span></span> is assumed deterministic and known all the time&#46; The process noise <span class="elsevierStyleItalic">w<span class="elsevierStyleInf">k</span></span> and measurement noise <span class="elsevierStyleItalic">v<span class="elsevierStyleInf">k</span></span> are Gaussian white noise with zero mean and covariances <span class="elsevierStyleItalic">Q<span class="elsevierStyleInf">k</span></span> and <span class="elsevierStyleItalic">R<span class="elsevierStyleInf">k</span></span>&#44; respectively&#46; The model sequence &#123;<span class="elsevierStyleItalic">m<span class="elsevierStyleInf">k</span></span>&#125; is assumed to be a first-order Markov sequence with the transition probability<elsevierMultimedia ident="eq0015"></elsevierMultimedia></p><p id="par0085" class="elsevierStylePara elsevierViewall">where mki denotes the event that <span class="elsevierStyleItalic">m<span class="elsevierStyleSup">i</span></span> is in effect at time <span class="elsevierStyleItalic">k</span>&#46; The system usually starts with the normal model m00 and at each time <span class="elsevierStyleItalic">k</span> it has probability &#960;<span class="elsevierStyleInf">0<span class="elsevierStyleItalic">i</span></span> &#62;0 to transfer to <span class="elsevierStyleItalic">m<span class="elsevierStyleSup">i</span></span> &#40;the <span class="elsevierStyleItalic">i</span> th fault model&#41;&#46; Further&#44; it is assumed that all fault models <span class="elsevierStyleItalic">m<span class="elsevierStyleSup">i</span>&#44; i &#61;</span> 1&#44;&#8230;&#44;<span class="elsevierStyleItalic">M</span>&#44; are absorbing state in the Markov chain&#44; that is<elsevierMultimedia ident="eq0020"></elsevierMultimedia></p><p id="par0090" class="elsevierStylePara elsevierViewall">meaning that once a system gets into one of the fault models&#44; it remains&#44; since we only consider the case with single fault&#46; The possibility that a system recovers automatically from a fault model is ignored since it rarely happens in practice&#46; So&#44; the transition probability matrix &#40;TPM&#41; is<a name="p412"></a><elsevierMultimedia ident="eq0025"></elsevierMultimedia></p><p id="par0100" class="elsevierStylePara elsevierViewall">The total and partial sensor&#47;actuator faults are considered&#44; and the fault models proposed in &#91;<a class="elsevierStyleCrossRef" href="#bib0035">7</a>&#44; <a class="elsevierStyleCrossRef" href="#bib0050">10</a>&#93; are adopted&#46; Let &#945;kj&#8712;&#40;0&#44;1&#93; denotes the severeness of the <span class="elsevierStyleItalic">j</span> th sensor&#47;actuator&#8217;s fault at time <span class="elsevierStyleItalic">k</span>&#46; The corresponding &#8220;actuator&#8221; in <span class="elsevierStyleItalic">B<span class="elsevierStyleInf">k</span></span> or&#8220;sensor&#8221; in <span class="elsevierStyleItalic">H<span class="elsevierStyleInf">k</span></span> is multiplied by &#945;kj due to the fault&#46; Clearly &#945;kj&#61;0 means that the sensor&#47;actuator fails completely while 0&#60;&#945;kj&#60;1 indicates a partial fault&#46; In general&#44; if a fault happens&#44; &#945;kj is unknown and time varying&#46; The problem becomes much more difficult if &#945;kj is fast changing&#46; For simplicity&#44; only a constant or a slowly drifting sequence is considered <span class="elsevierStyleItalic">for</span>&#945;kj&#46; If prior information is available&#44; more sophisticated dynamic models for &#945;kj are also optional&#46;</p><p id="par0105" class="elsevierStylePara elsevierViewall">Under these problem settings&#44; we are trying to achieve the following three goals simultaneously based on sequentially available measurements <span class="elsevierStyleItalic">Z<span class="elsevierStyleSup">k</span></span> &#61; &#123;<span class="elsevierStyleItalic">z</span><span class="elsevierStyleInf">1</span>&#44; z<span class="elsevierStyleInf">2</span>&#44;&#46;&#46;&#46;&#44;<span class="elsevierStyleItalic">z<span class="elsevierStyleInf">k</span></span> &#125; &#58;<ul class="elsevierStyleList" id="lis0010"><li class="elsevierStyleListItem" id="lsti0015"><span class="elsevierStyleLabel">&#40;a&#41;</span><p id="par0110" class="elsevierStylePara elsevierViewall">State estimation &#40;x&#710;k&#124;k&#41; in real time&#59;</p></li><li class="elsevierStyleListItem" id="lsti0020"><span class="elsevierStyleLabel">&#40;b&#41;</span><p id="par0115" class="elsevierStylePara elsevierViewall">Fault identification &#40;i&#46;e&#46;&#44; sensor&#47;actuator j&#710;&#41;&#59;</p></li><li class="elsevierStyleListItem" id="lsti0025"><span class="elsevierStyleLabel">&#40;c&#41;</span><p id="par0120" class="elsevierStylePara elsevierViewall">Fault severeness estimation &#945;&#710;kj when a fault is identified&#46;</p></li></ul></p><p id="par0125" class="elsevierStylePara elsevierViewall">Once a fault has been isolated and an estimate of the fault severeness is provided&#44; additional actions based on these results can be taken to further inspect the decision and improve the estimation accuracy&#46; This is problem dependent and there are many options&#44; e&#46;g&#46;&#44; use a different model set specifically designed for the faulty sensor&#47;actuator to achieve better state estimation and fault estimation&#46; Also&#44; the declared fault can be further tested against the normal model &#40;or other fault models&#41; to mitigate the possible false alarm &#40;or false isolation&#41; rate&#46; We do not further examine these possibilities since they are beyond the scope of this paper&#46;</p></span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">3</span><span class="elsevierStyleSectionTitle" id="sect0040">Generalized Shiryayev Sequential Probability Ratio Test</span><p id="par0130" class="elsevierStylePara elsevierViewall">First&#44; we only consider the goal &#40;b&#41; and assume &#945;kj is exactly known after a fault occurs&#46; Then an optimal solution in Bayesian framework-generalized Shiryayev sequential probability ratio test &#40;GSSPRT&#41;-was proposed in &#91;<a class="elsevierStyleCrossRef" href="#bib0040">8</a>&#93; for this fault isolation problem&#46; The optimality of GSSPRT was proved in terms of a Bayesian risk&#46; Further&#44; it minimizes the time of fault isolation given the costs of false alarm&#44; false isolation and a measurement at each time <span class="elsevierStyleItalic">k</span>&#44; see &#91;<a class="elsevierStyleCrossRef" href="#bib0040">8</a>&#93; for the proof and details&#46;</p><p id="par0135" class="elsevierStylePara elsevierViewall">Assume the system starts with no fault&#46; At each time <span class="elsevierStyleItalic">k</span>&#44; the GSSPRT computes the posterior probability of the event &#952;ki &#8414; &#123;Transition from <span class="elsevierStyleItalic">m</span><span class="elsevierStyleSup">0</span> to <span class="elsevierStyleItalic">m<span class="elsevierStyleSup">i</span></span> occurs at or before time <span class="elsevierStyleItalic">k</span>&#125;&#46; and compares it with a threshold &#956;Ti&#44;i&#61;1&#44;2&#44;&#8411;&#44;M&#46; Once one of the thresholds is exceeded&#44; the corresponding fault is declared&#46; The optimal thresholds can be determined by the given costs &#91;<a class="elsevierStyleCrossRef" href="#bib0040">8</a>&#93;&#46; Note that &#952;k0 means the system remains in normal mode up to time <span class="elsevierStyleItalic">k</span>&#46; The event &#952;ki is equivalent to the event mki since the fault model <span class="elsevierStyleItalic">m<span class="elsevierStyleSup">i</span></span> is an absorbing state in the Markov chain&#46; The GSSPRT algorithm is summarized as follows&#58;</p><p id="par0140" class="elsevierStylePara elsevierViewall">Declare a sensor&#47;actuator fault <span class="elsevierStyleItalic">i</span> if<elsevierMultimedia ident="eq0030"></elsevierMultimedia></p><p id="par0145" class="elsevierStylePara elsevierViewall">Else&#44; compute &#956;k&#43;1i&#44;i&#61;0&#44;1&#44;&#8411;&#44;M&#44; <elsevierMultimedia ident="eq0035"></elsevierMultimedia></p><p id="par0150" class="elsevierStylePara elsevierViewall">Note that in the algorithm there is no threshold set for <span class="elsevierStyleItalic">m</span><span class="elsevierStyleSup">0</span> since declaration of the normal model is of no interest&#46; The posterior probability &#956;ki is computed by<a name="p413"></a><elsevierMultimedia ident="eq0040"></elsevierMultimedia></p><p id="par0155" class="elsevierStylePara elsevierViewall">and mki&#44;h denotes a model sequence which starts from time 0 and reaches model <span class="elsevierStyleItalic">m<span class="elsevierStyleSup">i</span></span> at time <span class="elsevierStyleItalic">k&#44; h</span> is the index&#44; and nki is the total number of such sequences&#46; Since the system starts with no fault&#44; mk0&#44;h is the only valid sequence at time <span class="elsevierStyleItalic">k &#61;</span> 0&#44; and hence &#956;00&#44;&#40;1&#41;&#61;1&#46; The probability &#956;ki&#44;&#40;h&#41; can be computed recursively&#46; Since<elsevierMultimedia ident="eq0045"></elsevierMultimedia></p><p id="par0160" class="elsevierStylePara elsevierViewall">by Bayesian formula&#44; we have<elsevierMultimedia ident="eq0050"></elsevierMultimedia></p><p id="par0165" class="elsevierStylePara elsevierViewall">where the likelihood function f&#40;zk&#124;mki&#44;&#40;h&#41;&#44;Zk&#8722;1&#41; can be calculated based on the Kalman filter &#40;KF&#41; &#91;<a class="elsevierStyleCrossRef" href="#bib0130">26</a>&#93; under the linear Gaussian assumption&#46; This can be done since the model trajectory has been specified by mki&#44;&#40;h&#41;<elsevierMultimedia ident="eq0055"></elsevierMultimedia></p><p id="par0170" class="elsevierStylePara elsevierViewall">where<elsevierMultimedia ident="eq0060"></elsevierMultimedia><elsevierMultimedia ident="eq0065"></elsevierMultimedia></p><p id="par0175" class="elsevierStylePara elsevierViewall">and P&#710;k&#124;k&#8722;1&#40;h&#41;&#44; is the error covariance matrix of x&#175;k&#124;k&#8722;1&#40;h&#41; The model conditional density of the system state is<elsevierMultimedia ident="eq0070"></elsevierMultimedia></p><p id="par0185" class="elsevierStylePara elsevierViewall">Clearly&#44; f&#40;xk&#124;mki&#44;Zk&#41; is a Gaussian mixture density and the number of Gaussian components is increasing geometrically &#40;i&#46;e&#46;&#44; &#40;<span class="elsevierStyleItalic">M &#43;</span> 1&#41;<span class="elsevierStyleItalic"><span class="elsevierStyleSup">k</span></span>&#41; with respect to <span class="elsevierStyleItalic">k</span> for a general TPM&#46; However&#44; due to the assumption that all the fault models are absorbing states &#40;the special structure of <a class="elsevierStyleCrossRef" href="#eq0025">Eq&#46; &#40;3&#41;</a>&#41;&#44; it only increases linearly &#40;i&#46;e&#46;&#44; <span class="elsevierStyleItalic">MK</span>&#43;1&#41; for our problem&#46;</p><p id="par0190" class="elsevierStylePara elsevierViewall">The estimate of <span class="elsevierStyleItalic">x<span class="elsevierStyleInf">k</span></span> and its mean square error &#40;MSE&#41; matrix can be obtained by&#58;<elsevierMultimedia ident="eq0075"></elsevierMultimedia><elsevierMultimedia ident="eq0080"></elsevierMultimedia></p><p id="par0195" class="elsevierStylePara elsevierViewall">where<elsevierMultimedia ident="eq0085"></elsevierMultimedia><elsevierMultimedia ident="eq0090"></elsevierMultimedia></p><p id="par0200" class="elsevierStylePara elsevierViewall">can be obtained from f&#40;xk&#124;mki&#44;Zk&#41; &#40;<a class="elsevierStyleCrossRef" href="#eq0070">Eq&#46; &#40;4&#41;</a>&#41;&#46; x&#710;k is optimal in terms of the MSE&#46;</p><p id="par0205" class="elsevierStylePara elsevierViewall">The above procedure turns out to be the well-known cooperating multiple model &#40;CMM&#41; algorithm &#91;<a class="elsevierStyleCrossRef" href="#bib0075">15</a>&#93; considering all possible model trajectories&#46; Before&#44; the multiple model algorithm was developed for state estimation with model uncertainties&#46; It is estimation oriented&#46; Here&#44; it is derived from a totally different angle by starting from GSSPRT for decision purpose&#46; So&#44; the goal &#40;a&#41; and &#40;b&#41; can be fulfilled simultaneously and optimally in terms of their criterions&#44; respectively&#46; Further&#44; the state estimation is not affected by the performance of fault isolation&#46;</p><p id="par0210" class="elsevierStylePara elsevierViewall">Even a false alarm or false isolation occurs&#44; the state estimation is still reliable&#44; since the detection has no impact &#40;or feedback&#41; to the model-conditioned estimates and model probabilities&#44; and hence does not affect the state estimation&#46;</p><p id="par0215" class="elsevierStylePara elsevierViewall">Besides the increasing computational complexity&#44; the unknown fault parameters &#945;kj in practical applications incur further difficulties to our algorithm&#46; The hypothesis of a fault model becomes composite in this case&#44; rendering it much more complicated&#46; Further&#44; it is usually very desirable that a good estimate of &#945;kj can be provided at the time a fault is identified&#44; meaning<a name="p414"></a> that &#945;kj should be estimated online along with the fault identification process&#46; The fault estimation can also provide useful information for fault isolation&#44; and consequently benefits its performance&#46;</p></span><span id="sec0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">4</span><span class="elsevierStyleSectionTitle" id="sect0045">Multiple Model Algorithm Based on Gaussian Mixture Reduction and Model Augmentation</span><p id="par0220" class="elsevierStylePara elsevierViewall">First&#44; we address the problem of computation complexity&#46; As aforementioned&#44; <a class="elsevierStyleCrossRef" href="#eq0070">Eq&#46; &#40;4&#41;</a> is a Gaussian mixture density and its number of components is increasing rapidly&#46; Each Gaussian component in f&#40;xk&#124;mki&#44;Zk&#41; corresponds to a model trajectory mki&#44;&#40;h&#41;&#46; In real time implementation&#44; the number of the components must be bounded&#46;</p><p id="par0225" class="elsevierStylePara elsevierViewall">In MM method&#44; there are many algorithms proposed to reduce the number of model sequences &#91;<a class="elsevierStyleCrossRef" href="#bib0075">15</a>&#93;&#46; They can be classified as&#58; a&#125; methods based on hard decision&#44; such as the B-Best algorithm&#44; which keeps the most likely one or a few model sequences and prunes the rest&#59; b&#41; methods based on soft decision&#44; such as the GPBn algorithm&#44; which merges those sequences with common model trajectories in last n steps &#40;they may have different trajectories in older times&#41;&#46; In general&#44; the algorithms based on soft decision outperform those based on hard decision&#46; However&#44; for GPBn methods there is no solid ground to justify why sequences with common model steps should be merged&#46; These common parts of model trajectories do not necessarily imply that the corresponding Gaussian components are &#8220;close&#8221; to each other&#46; Consequently the merging may not lead to good estimation accuracy&#46; We propose to use a more sophisticated scheme based on Gaussian mixture reduction&#44; which involves both pruning and merging&#46; The idea is simple and better justified&#44; but requires more computation&#46; However&#44; in our problem&#44; the number of model trajectories increases linearly instead of geometrically&#46; The reduction process usually needs not to be performed frequently&#46; Of course&#44; this approach can be implemented for general MM algorithm&#44; which may require the reduction for every step&#46;</p><p id="par0230" class="elsevierStylePara elsevierViewall">Once the number of components in f&#40;xk&#124;mki&#44;Zk&#41; exceeds a threshold&#44; the extremely unlikely components can be pruned first&#46; Then&#44; the number of Gaussian components is further reduced to a pre-specified number by pairwise merging&#44; with the grand mean and covariance maintained&#46; This is the so-called Gaussian mixture reduction problem and was studied by &#91;<a class="elsevierStyleCrossRef" href="#bib0115">23</a>&#44; <a class="elsevierStyleCrossRef" href="#bib0120">24</a>&#44; <a class="elsevierStyleCrossRefs" href="#bib0135">27-32</a>&#93;&#46; The problem is to reduce the number of Gaussian components in a Gaussian mixture density by minimizing the &#8220;distance&#8221; &#40;to be defined&#41; between the original density and reduced density&#44; subject to the constraint that the grand mean and covariance are unaltered&#46; The optimal solution requires solving a high dimensional constrained nonlinear optimization problem that the weights&#44; means and covariances are chosen such that the &#8220;distance&#8221; between the original mixture and the reduced mixture is minimized&#46; This is still an open problem and optimal solution is computationally infeasible for most applications&#46; However&#44; a suboptimal and efficient solution is acceptable for our problem&#46; As proposed in &#91;<a class="elsevierStyleCrossRef" href="#bib0115">23</a>&#44; <a class="elsevierStyleCrossRef" href="#bib0120">24</a>&#44; <a class="elsevierStyleCrossRef" href="#bib0150">30</a>&#93;&#44; a top-down reduction algorithm based on greedy method is employed&#46; Two of the components are selected to merge by minimizing the &#8220;distance&#8221; between them at each iteration&#44; until the number of components reduces to a pre-determined threshold&#46; For two Gaussian components with weights <span class="elsevierStyleItalic">w<span class="elsevierStyleInf">i</span></span>&#44; means <span class="elsevierStyleItalic">&#181;<span class="elsevierStyleInf">i</span></span> and covariances <span class="elsevierStyleItalic">P<span class="elsevierStyleInf">i</span></span>&#44; they are merged by<elsevierMultimedia ident="eq0095"></elsevierMultimedia><elsevierMultimedia ident="eq0100"></elsevierMultimedia></p><p id="par0235" class="elsevierStylePara elsevierViewall">so that the grand mean and covariance are preserved&#46;</p><p id="par0240" class="elsevierStylePara elsevierViewall">Further&#44; there were many distances proposed for merging&#46; They can be categorized to two classes&#58; global distance and local distance&#46; The global distance of two Gaussian components measures the difference between the original mixture density and the reduced mixture density &#40;by merging these two elements&#41;&#44; while the local distance only measures the difference between these two components&#46; The global distance is preferred in general since it considers the overall performance&#46; Kullback-Leibler &#40;KL&#41; divergence may be a good choice &#91;<a class="elsevierStyleCrossRef" href="#bib0150">30</a>&#93;&#44; but it cannot be evaluated analytically between two Gaussian mixtures&#44; see &#91;<a class="elsevierStyleCrossRef" href="#bib0165">33</a>&#93; and<a name="p415"></a> reference therein for some numerical methods&#46; An upper bound of KL divergence was proposed in &#91;<a class="elsevierStyleCrossRef" href="#bib0150">30</a>&#93; to serve as the distance&#44; which is&#44; however&#44; a local distance&#46; We adopt the distance proposed in &#91;<a class="elsevierStyleCrossRef" href="#bib0115">23</a>&#44; <a class="elsevierStyleCrossRef" href="#bib0120">24</a>&#93;-the integral squared difference &#40;ISD&#41;&#46; For two Gaussian mixture densities <span class="elsevierStyleItalic">f</span>&#40;<span class="elsevierStyleItalic">x</span>&#41; and <span class="elsevierStyleItalic">g</span>&#40;<span class="elsevierStyleItalic">x</span>&#41;&#44; the ISD is defined as<elsevierMultimedia ident="eq0105"></elsevierMultimedia></p><p id="par0245" class="elsevierStylePara elsevierViewall">It is a global distance and can be evaluated analytically between any two Gaussian mixture<elsevierMultimedia ident="eq0110"></elsevierMultimedia></p><p id="par0250" class="elsevierStylePara elsevierViewall">where<elsevierMultimedia ident="eq0115"></elsevierMultimedia></p><p id="par0255" class="elsevierStylePara elsevierViewall">and &#123;<span class="elsevierStyleItalic">w<span class="elsevierStyleInf">i</span>&#44; &#181;<span class="elsevierStyleInf">i</span>&#44; p<span class="elsevierStyleInf">i</span></span>&#125; and &#123;w&#175;i&#44;&#956;&#175;i&#44;P&#175;i&#125; are the weights&#44; means and covariances&#44; respectively&#44; of the <span class="elsevierStyleItalic">i</span> th Gaussian components in <span class="elsevierStyleItalic">f</span>&#40;<span class="elsevierStyleItalic">x</span>&#41; and <span class="elsevierStyleItalic">g</span>&#40;<span class="elsevierStyleItalic">x</span>&#41;&#46; Efficient algorithms to compute the distance was proposed in &#91;<a class="elsevierStyleCrossRef" href="#bib0120">24</a>&#93;&#46; Hence&#44; the distance between two Gaussian components for merging is defined as<elsevierMultimedia ident="eq0120"></elsevierMultimedia></p><p id="par0265" class="elsevierStylePara elsevierViewall">where <span class="elsevierStyleItalic">f</span><span class="elsevierStyleSmallCaps">&#40;</span><span class="elsevierStyleItalic">x</span><span class="elsevierStyleSmallCaps">&#41;</span> is the original Gaussian mixture&#44; fijl&#40;x&#41; is the mixture density after merging the <span class="elsevierStyleItalic">i</span> th and <span class="elsevierStyleItalic">j</span> th components in <span class="elsevierStyleItalic">f<span class="elsevierStyleSup">l</span></span>&#40;<span class="elsevierStyleItalic">x</span>&#41;&#44; which is the reduced Gaussian mixture at iteration <span class="elsevierStyleItalic">l</span>&#46; For each iteration <span class="elsevierStyleItalic">l</span>&#44; two components are selected to merge such that Dijl is minimized&#46; The iteration stops when the number of the components reduces to the pre-specified number&#46; Compare with the merging method in GPBn&#44; the merging based on this Gaussian mixture reduction is better justified&#46; Although the above reduction procedure does not reduce the Gaussian component optimally&#44; it is based on a good guidance-only components that are &#8220;close&#8221; to each other are merged and hence the loss should be smaller than GPBn&#46;</p><p id="par0270" class="elsevierStylePara elsevierViewall">In MM algorithm&#44; at time <span class="elsevierStyleItalic">k</span> &#8722; 1&#44; assume the Gaussian mixture densities f&#40;xk&#8722;1&#124;mk&#8722;1j&#44;Zk&#8722;1&#41; and the model probabilities &#956;k&#8722;1j for <span class="elsevierStyleItalic">j &#61; 0&#44; 1&#44; &#8230;&#44; M</span> are obtained&#46; Then f&#40;xk&#124;mkj&#44;Zk&#41; can be updated recursively&#58;<elsevierMultimedia ident="eq0125"></elsevierMultimedia></p><p id="par0275" class="elsevierStylePara elsevierViewall">and the model probability &#956;ki<elsevierMultimedia ident="eq0130"></elsevierMultimedia></p><p id="par0280" class="elsevierStylePara elsevierViewall">where<elsevierMultimedia ident="eq0135"></elsevierMultimedia><elsevierMultimedia ident="eq0140"></elsevierMultimedia></p><p id="par0290" class="elsevierStylePara elsevierViewall">and<a name="p416"></a><elsevierMultimedia ident="eq0145"></elsevierMultimedia><elsevierMultimedia ident="eq0150"></elsevierMultimedia><elsevierMultimedia ident="eq0155"></elsevierMultimedia></p><p id="par0295" class="elsevierStylePara elsevierViewall">f&#40;xk&#124;mki&#44;xk&#8722;1&#41; and f&#40;zk&#124;mki&#44;xk&#41; are obtained from <a class="elsevierStyleCrossRef" href="#eq0005">Eqs&#46; &#40;1&#41;</a> and <a class="elsevierStyleCrossRef" href="#eq0010">&#40;2&#41;</a>&#44; respectively&#46; It can be seen from <a class="elsevierStyleCrossRef" href="#eq0135">Eq&#46; &#40;5&#41;</a> that the number of the Gaussian components in f&#40;xk&#124;mkj&#44;Zk&#41; is increasing in each cycle&#46; The Gaussian mixture reduction is implemented if necessary and f&#40;xk&#124;mkj&#44;Zk&#41; is replaced by the reduced density&#46;</p><p id="par0300" class="elsevierStylePara elsevierViewall">As mentioned before&#44; due to the special structure of the TPM in our problem&#44; the number of the Gaussian components increases linearly and hence the Gaussian reduction procedure needs not to be performed frequently&#46;</p><p id="par0305" class="elsevierStylePara elsevierViewall">The second problem of applying the MM algorithm is the unknown parameter &#945;kj for each sensor&#47;actuator in the fault identification process&#46; Before any fault occurrence&#44; &#945;kj&#61;1 and it subjects to a possible sudden jump to a value that<elsevierMultimedia ident="eq0160"></elsevierMultimedia></p><p id="par0315" class="elsevierStylePara elsevierViewall">Practically&#44; only when &#945;kj drops below a threshold <span class="elsevierStyleItalic">&#945;<span class="elsevierStyleSup">T&#44;j</span></span> &#60; 1 it is considered as a fault&#58;<elsevierMultimedia ident="eq0165"></elsevierMultimedia></p><p id="par0320" class="elsevierStylePara elsevierViewall">Several methods may be applied to estimate &#945;kj&#46; It may be augmented into the system state&#46; However&#44; this requires a dynamic model for &#945;kj&#44; and the system becomes nonlinear &#40;for sensor fault models&#41; and subjects to a constraint&#46; It can be also estimated by least squares method with fading memories &#91;<a class="elsevierStyleCrossRef" href="#bib0170">34</a>&#44; <a class="elsevierStyleCrossRef" href="#bib0175">35</a>&#93;&#46; However&#44; the abrupt change of &#945;kj when a fault happens can incur difficulties for this algorithm&#46; The method based on the maximum likelihood estimation &#40;MLE&#41; &#91;<a class="elsevierStyleCrossRef" href="#bib0050">10</a>&#93; is a good choice&#46; For the <span class="elsevierStyleItalic">j</span> th sensor&#47;actuator fault&#44; a few models with different but fixed &#945;kj &#40;&#945;kj&#61;&#945;j&#44;i&#44;i&#61;1&#44;2&#44;&#8411;&#44;I&#44; where <span class="elsevierStyleItalic">I</span> is the number of fault models for the <span class="elsevierStyleItalic">j</span> th sensor&#47;actuator&#41; values and one augmented model with the parameter &#945;kj estimated by the MLE in real time are included in the model set&#46; The estimate &#945;&#710;kj can be obtained by<elsevierMultimedia ident="eq0170"></elsevierMultimedia></p><p id="par0325" class="elsevierStylePara elsevierViewall">s&#46; t&#46; <a class="elsevierStyleCrossRef" href="#eq0160">Eq&#46; &#40;7&#41;</a></p><p id="par0330" class="elsevierStylePara elsevierViewall">where&#44; for simplicity&#44; f&#40;zk&#124;&#945;&#44;mkj&#44;Zk&#8722;1&#41; can be approximated by a single Gaussian density&#44; e&#46;g&#46;&#44; for a sensor fault&#44; it yields<elsevierMultimedia ident="eq0175"></elsevierMultimedia></p><p id="par0335" class="elsevierStylePara elsevierViewall">where<elsevierMultimedia ident="eq0180"></elsevierMultimedia><elsevierMultimedia ident="eq0185"></elsevierMultimedia><elsevierMultimedia ident="eq0190"></elsevierMultimedia></p><p id="par0340" class="elsevierStylePara elsevierViewall">Since both z&#732;&#59;k and <span class="elsevierStyleItalic">S<span class="elsevierStyleInf">k</span></span> are functions of &#945;kj&#44; the MLE becomes a one-dimensional nonlinear inequality-constrained optimization problem which may be solved numerically&#46; The MLE for an actuator fault can be obtained similarly&#44; but the optimization procedure is simpler since it becomes a quadratic programming problem&#44; which can be solved analytically by solving a linear equation&#46; Then&#44; the augmented models are updated by &#945;kj in real time&#46; This is the maximum likelihood model augmentation &#40;MMA&#41;&#46; It has a quick adaption in fault estimation when a fault occurs&#46;</p><p id="par0345" class="elsevierStylePara elsevierViewall">Another option is the expected model augmentation &#40;EMA&#41;&#46; It is similar to the MMA but the parameters &#945;kj for the augmented models are estimated by weighted average of the models for the same sensor&#47;actuator&#46; That is&#44; for a sensor&#47;actuator fault <span class="elsevierStyleItalic">j</span>&#44; the &#945;&#710;kj for the augmented model is obtained by<elsevierMultimedia ident="eq0195"></elsevierMultimedia></p><p id="par0350" class="elsevierStylePara elsevierViewall">where<a name="p417"></a><elsevierMultimedia ident="eq0200"></elsevierMultimedia></p><p id="par0355" class="elsevierStylePara elsevierViewall">is a normalizing constant&#44; &#945;k0&#8801;1&#44; &#956;k&#124;k&#8722;1&#945;&#710;k&#8722;1j is the predicted probability of the augmented model&#44; &#956;k&#124;k&#8722;1ij&#44; are the predicted model probabilities of the models with fixed parameter <span class="elsevierStyleItalic">&#945;<span class="elsevierStyleSup">j&#44;i</span></span>&#46; Note that this method circumvents the requirement of the constraint &#40;<a class="elsevierStyleCrossRef" href="#eq0160">Eq&#46; &#40;7&#41;</a>&#41; since it is automatically guaranteed by the convex sum&#46;</p><p id="par0360" class="elsevierStylePara elsevierViewall">The augmented models in the model set serve two purposes&#58; a&#41; They are expected &#40;hopefully&#41; to be closer to the truth than the other models&#44; and hence benefit the overall performance of the MM filter&#46; b&#41; The fault severeness can be obtained based on those augmented models&#44; i&#46;e&#46;&#44; once a particular fault is declared&#44; the corresponding &#945;&#710;kj can be outputted as the fault estimate&#46;</p><p id="par0365" class="elsevierStylePara elsevierViewall">It is clear that the state estimation&#44; fault isolation and estimation are solved simultaneously the a MM algorithm based on Gaussian mixture reduction and model augmentation&#46; The results provide a basis for further diagnosis and actions&#46; If&#44; for example&#44; a fault is declared but not sever or the faulty sensor&#47;actuator is not critical&#44; some online compensation can be applied to maintain the system in operation&#46; Major action may have to be taken if a crucial or total failure occurs&#46;</p></span><span id="sec0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">5</span><span class="elsevierStyleSectionTitle" id="sect0050">Illustrative Examples</span><p id="par0370" class="elsevierStylePara elsevierViewall">We provide three illustrative examples to demonstrate the applicability and performance of our algorithms by comparing with the results of IMM based on Monte Carlo &#40;MC&#41; simulation&#46;</p><span id="sec0045" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">5&#46;1</span><span class="elsevierStyleSectionTitle" id="sect0055">Simulation Scenario</span><p id="par0375" class="elsevierStylePara elsevierViewall">The ground truth is adopted from &#91;<a class="elsevierStyleCrossRef" href="#bib0050">10</a>&#44; <a class="elsevierStyleCrossRef" href="#bib0105">21</a>&#93;&#44; i&#46;e&#46;&#44; a longitudinal vertical take-off and landing &#40;VTOL&#41; of an aircraft&#46; The state is defined as<elsevierMultimedia ident="eq0205"></elsevierMultimedia></p><p id="par0380" class="elsevierStylePara elsevierViewall">where the components are horizontal velocity &#40;m&#47;s&#41;&#44; vertical velocity &#40;m&#47;s&#41;&#44; pitch rate &#40;rad&#47;s&#41; and pitch angle &#40;rad&#41;&#44; respectively&#46; The target dynamic matrix and measurement matrix are obtained by discretization of the continuous system&#58;<elsevierMultimedia ident="eq0210"></elsevierMultimedia><elsevierMultimedia ident="eq0215"></elsevierMultimedia><elsevierMultimedia ident="eq0220"></elsevierMultimedia></p><p id="par0385" class="elsevierStylePara elsevierViewall">Where T &#61; 0&#46;1<span class="elsevierStyleItalic">s</span> is the sampling interval&#44; and<elsevierMultimedia ident="eq0225"></elsevierMultimedia><elsevierMultimedia ident="eq0230"></elsevierMultimedia></p><p id="par0390" class="elsevierStylePara elsevierViewall">The control input is set to be <span class="elsevierStyleItalic">u<span class="elsevierStyleInf">k</span></span> &#61; &#91;0&#46;2 0&#46;05&#93;&#8242;&#44; the true initial state &#61; &#91;250 50 1 0&#46;1&#93;&#8242;&#44; the covariances of the process noise <span class="elsevierStyleItalic">Q<span class="elsevierStyleInf">k</span> &#61;</span> 0&#46;2<span class="elsevierStyleSup">2</span><span class="elsevierStyleItalic">I</span> and the measurement noise <span class="elsevierStyleItalic">R<span class="elsevierStyleInf">k</span> &#61; diag</span>&#91;1&#44; 1&#44;0&#46;1&#44;0&#46;1&#93;&#46; In this system&#44; there are two actuators &#40;A1 and A2&#41; and four sensors &#40;S1 &#8211; S4&#41;&#46; The simulation lasts for 70 steps and the fault occurs at <span class="elsevierStyleItalic">K</span> &#61; 10&#46; The initial density of the state for the algorithms is chosen to be a Gaussian density N&#40;x0&#44;P&#710;0&#41; with P&#710;0&#61;diag&#91;10&#44;10&#44;1&#44;1&#93;&#46;</p></span><span id="sec0050" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">5&#46;2</span><span class="elsevierStyleSectionTitle" id="sect0060">Performance Measures</span><p id="par0395" class="elsevierStylePara elsevierViewall">The performances of our algorithms are evaluated by the following measures&#58;<ul class="elsevierStyleList" id="lis0015"><li class="elsevierStyleListItem" id="lsti0030"><span class="elsevierStyleLabel">1&#46;-</span><p id="par0400" class="elsevierStylePara elsevierViewall">Correct identification &#40;CI&#41; rate&#58; the rate that an algorithm correctly identifies a fault after it happens&#46;</p></li><li class="elsevierStyleListItem" id="lsti0035"><span class="elsevierStyleLabel">2&#46;-</span><p id="par0405" class="elsevierStylePara elsevierViewall">False identification &#40;FI&#41; rate&#58; the rate that an algorithm incorrectly identifies a fault after it happens&#46;</p></li><li class="elsevierStyleListItem" id="lsti0040"><span class="elsevierStyleLabel">3&#46;-</span><p id="par0410" class="elsevierStylePara elsevierViewall">False alarm &#40;Fa&#41; rate&#58; the rate that an algorithm declares a fault before any fault happens&#46;</p></li><li class="elsevierStyleListItem" id="lsti0045"><span class="elsevierStyleLabel">4&#46;-</span><p id="par0415" class="elsevierStylePara elsevierViewall">Miss detection &#40;MD&#41; rate&#58; the rate that an algorithm fails to declare a fault within the total steps of each MC run&#46;<a name="p418"></a></p></li><li class="elsevierStyleListItem" id="lsti0050"><span class="elsevierStyleLabel">5&#46;-</span><p id="par0420" class="elsevierStylePara elsevierViewall">Average delay &#40;AD&#41;&#58; the average delay &#40;in terms of the number of sampling steps&#41; for a correct isolation&#46;</p></li><li class="elsevierStyleListItem" id="lsti0055"><span class="elsevierStyleLabel">6&#46;-</span><p id="par0425" class="elsevierStylePara elsevierViewall">&#945;&#8995; the root mean square error &#40;RMSE&#41; of &#945;&#710; for a correct isolation&#46;</p><p id="par0430" class="elsevierStylePara elsevierViewall">All the performances are obtained by Monte Carlo simulation with 1000 runs&#46; The thresholds for decision are determined by the results of simulation such that different methods have &#40;almost&#41; the same false alarm rate&#46;</p></li></ul></p></span><span id="sec0055" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">5&#46;3</span><span class="elsevierStyleSectionTitle" id="sect0065">Total Failure</span><p id="par0435" class="elsevierStylePara elsevierViewall">In this case&#44; we consider the complete failure for each actuator&#47;sensor&#46; Hence&#44; the fault severeness <span class="elsevierStyleItalic">&#945; &#61;</span> 0 is known&#46; We compare the IMM&#44; the exact MM &#40;MME&#41; method &#40;i&#46;e&#46;&#44; considering all possible model trajectories&#41; and the MM method based on the Gaussian mixture reduction &#40;MMR&#41;&#46; All the methods have the same model set of <span class="elsevierStyleItalic">M</span> &#43; l models&#46; It includes one normal model&#44; and one fault model for each sensor&#47;actuator&#46;</p><p id="par0440" class="elsevierStylePara elsevierViewall">There is no model-set mismatch between the algorithms and the ground truth&#46; In MMR&#44; the number of the Gaussian components for each model is reduced to 2 if it exceeds 10&#46; This is a relative simple scenario since the fault parameter is known&#46; The results are given in <a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a>&#46; It is clear that a sensor fault is much easier than an actuator fault to be identified&#46;</p><elsevierMultimedia ident="tbl0005"></elsevierMultimedia><p id="par0445" class="elsevierStylePara elsevierViewall">A sensor fault can be detected &#40;almost&#41; immediately after the occurrence while it takes some time to detect an actuator fault&#46; This makes sense because a sensor fault is directly revealed by the measurement while an actuator fault affects the measurement only through the system state&#46;</p><p id="par0450" class="elsevierStylePara elsevierViewall">The performance differences among the three algorithms for a sensor fault are negligible&#44; while MME and MMR evidently outperform the IMM algorithm for an actuator fault&#46; But this superior performance is achieved at the cost of higher computational demands &#40;given in <a class="elsevierStyleCrossRef" href="#tbl0010">Table 2</a>&#41;&#46; Comparing with MME&#44; the performance loss of MMR is tiny&#46;</p><elsevierMultimedia ident="tbl0010"></elsevierMultimedia></span><span id="sec0060" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">5&#46;4</span><span class="elsevierStyleSectionTitle" id="sect0070">Random Scenario</span><p id="par0455" class="elsevierStylePara elsevierViewall">In this case&#44; for each MC run&#44; the fault severeness &#945;kj is sampled uniformly from the interval &#91;0&#44; <span class="elsevierStyleItalic">&#945;<span class="elsevierStyleSup">T&#44;j</span></span>&#93; when a fault occurs and remains constant&#46; The IMM&#44; EMA and MMA &#40;both based on Gaussian mixture reduction&#41; are implemented and evaluated&#46; The IMM contains 13 models&#58; one normal model&#44; two fault models for each sensor&#47;actuator with a &#61; 0 and 0&#46;5&#44; respectively&#46; The EMA and MMA contain 19 models&#58; all the models in IMM algorithm and one augmented model for each sensor&#47;actuator&#46; The results are given in <a class="elsevierStyleCrossRef" href="#tbl0015">Table 3</a>&#46; Similar to Case 1&#44; a sensor fault is easier to be identified than an actuator fault&#44; revealed by a shorter detection delay and better fault estimates&#46; The performance differences among the three algorithms are insignificant for sensor faults&#46; For actuator faults&#44; MMA has a shorter detection delay and smaller miss detection rate&#44; while EMA is better in terms of correct identification rate&#44; false identification rate and estimation root mean square error&#46; &#945;&#8995;<a name="p419"></a></p><elsevierMultimedia ident="tbl0015"></elsevierMultimedia><p id="par0460" class="elsevierStylePara elsevierViewall">This can be explained by the quick adaption of the change in <span class="elsevierStyleItalic">&#945;</span> by MLE after the fault occurrence&#46; It helps identifying the fault faster&#44; but in general its estimation is less accurate than EMA and hence may increase the false identification rate&#46; Overall&#44; they outperform the IMM method&#46;</p></span><span id="sec0065" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">5&#46;5</span><span class="elsevierStyleSectionTitle" id="sect0075">Fault with Drifting Parameter</span><p id="par0465" class="elsevierStylePara elsevierViewall">In this case&#44; &#945;kj is drifting after the fault&#46; It is sampled uniformly from theinterval &#91;0&#44; <span class="elsevierStyleItalic">&#945;<span class="elsevierStyleSup">T</span></span><span class="elsevierStyleSup">&#44;<span class="elsevierStyleItalic">j</span></span>&#93; at the time of the fault occurrence and then follows a randomwalk &#40;but bounded within &#91;0&#44; <span class="elsevierStyleItalic">&#945; <span class="elsevierStyleSup">T&#44;j</span></span>&#93;&#41;&#44; that is<elsevierMultimedia ident="eq0235"></elsevierMultimedia></p><p id="par0470" class="elsevierStylePara elsevierViewall">where<elsevierMultimedia ident="eq0240"></elsevierMultimedia></p><p id="par0475" class="elsevierStylePara elsevierViewall">and &#8467;<span class="elsevierStyleInf">k</span> is uniformly distributed random samples &#40;i&#46;e&#46;&#44; &#8467;<span class="elsevierStyleInf">k</span>~<span class="elsevierStyleItalic">U</span>&#40;&#91;&#8722;<span class="elsevierStyleItalic">&#963;&#44; &#963;</span>&#93; As mentioned before&#44; a sensor fault is easier to be detected&#46; It is identified &#40;almost&#41; immediately when it happens&#46; So&#44; in this case we only evaluate the performance for actuator faults&#46; The results are given in <a class="elsevierStyleCrossRef" href="#tbl0020">Table 4</a>&#46; Compared with Case 2&#44; the drifting &#945;kj decreases the estimation accuracy and miss detection rate for both actuators&#44; but increases the false identification rate significantly for actuator 1&#46;</p><elsevierMultimedia ident="tbl0020"></elsevierMultimedia></span></span><span id="sec0070" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">6</span><span class="elsevierStyleSectionTitle" id="sect0080">Conclusions</span><p id="par0480" class="elsevierStylePara elsevierViewall">Applying the generalized SSPRT to a linear dynamic system for fault isolation and estimation leads to the multiple model algorithm&#46; However&#44; this algorithm must be approximated in real applications due to the increasing computational demands and the unknown fault parameters&#46; The Gaussian mixture reduction &#40;GMR&#41; and model augmentations are proposed to address these two problems&#44; respectively&#46;</p><p id="par0485" class="elsevierStylePara elsevierViewall">The GMR reduces the number of Gaussian components in a greedy manner by merging iteratively components that are &#8220;close&#8221; to each other&#46; This merging algorithm is based on more solid ground than the conventional GPBn method for multiple model algorithms&#46; Further&#44; the fault parameters can be estimated based on the augmented models&#46;</p><p id="par0490" class="elsevierStylePara elsevierViewall">The model augmentations by expectation and MLE are good options&#46; They have their pros and cons as indicated by the simulation results&#46; The MLE provides a shorter fault isolation delay and an smaller miss detection while the EMA performs better in terms of the correct isolation rate and the estimation accuracy for the unknown parameter&#46;</p><p id="par0495" class="elsevierStylePara elsevierViewall">As mentioned before&#44; the isolation and estimation of a fault provide a reference for further actions&#44; and hence infrequent sequential faults can also be dealt with&#46; The case of simultaneous faults is more complicated and is considered as future work&#46;<a name="p420"></a></p></span></span>"
    "textoCompletoSecciones" => array:1 [
      "secciones" => array:10 [
        0 => array:3 [
          "identificador" => "xres498874"
          "titulo" => "Abstract"
          "secciones" => array:1 [
            0 => array:1 [
              "identificador" => "abst0005"
            ]
          ]
        ]
        1 => array:2 [
          "identificador" => "xpalclavsec520367"
          "titulo" => "Keywords"
        ]
        2 => array:3 [
          "identificador" => "sec0005"
          "titulo" => "Introduction"
          "secciones" => array:3 [
            0 => array:2 [
              "identificador" => "sec0010"
              "titulo" => "Fault detection"
            ]
            1 => array:2 [
              "identificador" => "sec0015"
              "titulo" => "Fault isolation &#40;or identification&#41;"
            ]
            2 => array:2 [
              "identificador" => "sec0020"
              "titulo" => "Fault estimation"
            ]
          ]
        ]
        3 => array:2 [
          "identificador" => "sec0025"
          "titulo" => "Problem Formulation"
        ]
        4 => array:2 [
          "identificador" => "sec0030"
          "titulo" => "Generalized Shiryayev Sequential Probability Ratio Test"
        ]
        5 => array:2 [
          "identificador" => "sec0035"
          "titulo" => "Multiple Model Algorithm Based on Gaussian Mixture Reduction and Model Augmentation"
        ]
        6 => array:3 [
          "identificador" => "sec0040"
          "titulo" => "Illustrative Examples"
          "secciones" => array:5 [
            0 => array:2 [
              "identificador" => "sec0045"
              "titulo" => "Simulation Scenario"
            ]
            1 => array:2 [
              "identificador" => "sec0050"
              "titulo" => "Performance Measures"
            ]
            2 => array:2 [
              "identificador" => "sec0055"
              "titulo" => "Total Failure"
            ]
            3 => array:2 [
              "identificador" => "sec0060"
              "titulo" => "Random Scenario"
            ]
            4 => array:2 [
              "identificador" => "sec0065"
              "titulo" => "Fault with Drifting Parameter"
            ]
          ]
        ]
        7 => array:2 [
          "identificador" => "sec0070"
          "titulo" => "Conclusions"
        ]
        8 => array:2 [
          "identificador" => "xack161163"
          "titulo" => "Acknowledgments"
        ]
        9 => array:1 [
          "titulo" => "References"
        ]
      ]
    ]
    "pdfFichero" => "main.pdf"
    "tienePdf" => true
    "PalabrasClave" => array:1 [
      "en" => array:1 [
        0 => array:4 [
          "clase" => "keyword"
          "titulo" => "Keywords"
          "identificador" => "xpalclavsec520367"
          "palabras" => array:6 [
            0 => "Generalized SSPRT"
            1 => "state estimation"
            2 => "fault isolation and estimation"
            3 => "multiple model"
            4 => "Gaussian mixture reduction"
            5 => "model augmentation"
          ]
        ]
      ]
    ]
    "tieneResumen" => true
    "resumen" => array:1 [
      "en" => array:2 [
        "titulo" => "Abstract"
        "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">The generalized Shiryayev sequential probability ratio test &#40;SSPRT&#41; is applied to linear dynamic systems for single fault isolation and estimation&#46; The algorithm turns out to be the multiple model &#40;MM&#41; algorithm considering all the possible model trajectories&#46; In real application&#44; this algorithm must be approximated due to its increasing computation complexity and the unknown parameters of the fault severeness&#46; The Gaussian mixture reduction is employed to address the problem of computation complexity&#46; The unknown parameters are estimated in real time by model augmentation based on maximum likelihood estimation &#40;MLE&#41; or expectation&#46; Hence&#44; the system state estimation&#44; fault identification and estimation can be fulfilled simultaneously by a multiple model algorithm incorporating these two techniques&#46; The performance of the proposed algorithm is demonstrated by Monte Carlo simulation&#46; Although our algorithm is developed under the assumption of single fault&#44; it can be generalized to deal with the case of &#40;infrequent&#41; sequential multiple faults&#46; The case of simultaneous faults is more complicated and will be considered in future work&#46;</p></span>"
      ]
    ]
    "multimedia" => array:52 [
      0 => array:7 [
        "identificador" => "tbl0005"
        "etiqueta" => "Table 1"
        "tipo" => "MULTIMEDIATABLA"
        "mostrarFloat" => true
        "mostrarDisplay" => false
        "tabla" => array:1 [
          "tablatextoimagen" => array:1 [
            0 => array:2 [
              "tabla" => array:1 [
                0 => """
                  <table border="0" frame="\n
                  \t\t\t\t\tvoid\n
                  \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="table-head  " align="center" valign="middle" scope="col" style="border-bottom: 2px solid black">Fault&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</th><th class="td" title="table-head  " align="center" valign="middle" scope="col" style="border-bottom: 2px solid black">Algo&#46;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</th><th class="td" title="table-head  " align="center" valign="middle" scope="col" style="border-bottom: 2px solid black">CI&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</th><th class="td" title="table-head  " align="center" valign="middle" scope="col" style="border-bottom: 2px solid black">Fa&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</th><th class="td" title="table-head  " align="center" valign="middle" scope="col" style="border-bottom: 2px solid black">FI&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</th><th class="td" title="table-head  " align="center" valign="middle" scope="col" style="border-bottom: 2px solid black">MD&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</th><th class="td" title="table-head  " align="center" valign="middle" scope="col" style="border-bottom: 2px solid black">AD&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="table-entry  " rowspan="3" align="center" valign="middle">A1</td><td class="td" title="table-entry  " align="center" valign="middle">MME&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;854&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;010&#46;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;136&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">11&#46;01&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry  " align="center" valign="middle">MMR&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;850&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;010&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;140&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">11&#46;09&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry  " align="center" valign="middle">IMM&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;819&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;010&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;001&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;170&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">11&#46;94&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry  " rowspan="3" align="center" valign="middle">A2</td><td class="td" title="table-entry  " align="center" valign="middle">MME&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;823&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;016&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;057&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;104&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">15&#46;8&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry  " align="center" valign="middle">MMR&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;823&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;016&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;057&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;104&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">15&#46;8&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry  " align="center" valign="middle">IMM&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;771&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;016&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;039&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;174&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">17&#46;3&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry  " rowspan="3" align="center" valign="middle">S1</td><td class="td" title="table-entry  " align="center" valign="middle">MME&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;985&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;015&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry  " align="center" valign="middle">MMR&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;985&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;015&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry  " align="center" valign="middle">IMM&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;985&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;015&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry  " rowspan="3" align="center" valign="middle">S2</td><td class="td" title="table-entry  " align="center" valign="middle">MME&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;990&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;010&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;36&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry  " align="center" valign="middle">MMR&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;990&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;010&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;36&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry  " align="center" valign="middle">IMM&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;990&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;010&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;39&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry  " rowspan="3" align="center" valign="middle">S3</td><td class="td" title="table-entry  " align="center" valign="middle">MME&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;992&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;008&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry  " align="center" valign="middle">MMR&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;992&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;008&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;002&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry  " align="center" valign="middle">IMM&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;992&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;008&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;002&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry  " rowspan="3" align="center" valign="middle">S4</td><td class="td" title="table-entry  " align="center" valign="middle">MME&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;990&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;010&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry  " align="center" valign="middle">MMR&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;990&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;010&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry  " align="center" valign="middle">IMM&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;990&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;010&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr></tbody></table>
                  """
              ]
              "imagenFichero" => array:1 [
                0 => "xTab796399.png"
              ]
            ]
          ]
        ]
        "descripcion" => array:1 [
          "en" => "<p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">Total fault&#44; <span class="elsevierStyleItalic">&#945;</span> &#61; 0 and known&#46;</p>"
        ]
      ]
      1 => array:7 [
        "identificador" => "tbl0010"
        "etiqueta" => "Table 2"
        "tipo" => "MULTIMEDIATABLA"
        "mostrarFloat" => true
        "mostrarDisplay" => false
        "tabla" => array:1 [
          "tablatextoimagen" => array:1 [
            0 => array:2 [
              "tabla" => array:1 [
                0 => """
                  <table border="0" frame="\n
                  \t\t\t\t\tvoid\n
                  \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="table-head  " align="center" valign="middle" scope="col" style="border-bottom: 2px solid black">IMM&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</th><th class="td" title="table-head  " align="center" valign="middle" scope="col" style="border-bottom: 2px solid black">MME&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</th><th class="td" title="table-head  " align="center" valign="middle" scope="col" style="border-bottom: 2px solid black">MMR&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="table-entry  " align="center" valign="middle">1&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">20&#46;7&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">15&#46;4&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr></tbody></table>
                  """
              ]
              "imagenFichero" => array:1 [
                0 => "xTab796397.png"
              ]
            ]
          ]
        ]
        "descripcion" => array:1 [
          "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Average computational cost &#40;normalized&#41;&#46;</p>"
        ]
      ]
      2 => array:7 [
        "identificador" => "tbl0015"
        "etiqueta" => "Table 3"
        "tipo" => "MULTIMEDIATABLA"
        "mostrarFloat" => true
        "mostrarDisplay" => false
        "tabla" => array:1 [
          "tablatextoimagen" => array:1 [
            0 => array:2 [
              "tabla" => array:1 [
                0 => """
                  <table border="0" frame="\n
                  \t\t\t\t\tvoid\n
                  \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="table-head  " align="center" valign="middle" scope="col" style="border-bottom: 2px solid black">Fault&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</th><th class="td" title="table-head  " align="center" valign="middle" scope="col" style="border-bottom: 2px solid black">Algo&#46;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</th><th class="td" title="table-head  " align="center" valign="middle" scope="col" style="border-bottom: 2px solid black">CI&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</th><th class="td" title="table-head  " align="center" valign="middle" scope="col" style="border-bottom: 2px solid black">Fa&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</th><th class="td" title="table-head  " align="center" valign="middle" scope="col" style="border-bottom: 2px solid black">FI&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</th><th class="td" title="table-head  " align="center" valign="middle" scope="col" style="border-bottom: 2px solid black">MD&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</th><th class="td" title="table-head  " align="center" valign="middle" scope="col" style="border-bottom: 2px solid black">AD&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</th><th class="td" title="table-head  " align="center" valign="middle" scope="col" style="border-bottom: 2px solid black"><span class="elsevierStyleItalic">a</span>&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="table-entry  " rowspan="3" align="center" valign="middle">A1</td><td class="td" title="table-entry  " align="center" valign="middle">MMA&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;709&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;009&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;066&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;216&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">18&#46;2&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;208&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry  " align="center" valign="middle">EMA&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;711&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;009&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;037&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;243&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">18&#46;4&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;199&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry  " align="center" valign="middle">IMM&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;707&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;009&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;045&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;239&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">18&#46;7&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;209&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry  " rowspan="3" align="center" valign="middle">A2</td><td class="td" title="table-entry  " align="center" valign="middle">MMA&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;762&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;011&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;116&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;111&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">15&#46;1&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;230&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry  " align="center" valign="middle">EMA&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;771&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;011&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;099&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;119&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">17&#46;1&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;215&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry  " align="center" valign="middle">IMM&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;743&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;011&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;118&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;128&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">17&#46;5&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;219&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry  " rowspan="3" align="center" valign="middle">S1</td><td class="td" title="table-entry  " align="center" valign="middle">MMA&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;992&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;008&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;103&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry  " align="center" valign="middle">EMA&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;992&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;008&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;257&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;117&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry  " align="center" valign="middle">IMM&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;992&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;008&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;500&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;206&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry  " rowspan="3" align="center" valign="middle">S2</td><td class="td" title="table-entry  " align="center" valign="middle">MMA&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;981&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;012&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;007&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">1&#46;320&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;147&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry  " align="center" valign="middle">EMA&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;984&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;012&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;004&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">1&#46;322&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;138&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry  " align="center" valign="middle">IMM&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;980&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;012&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;008&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">1&#46;320&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;235&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry  " rowspan="3" align="center" valign="middle">S3</td><td class="td" title="table-entry  " align="center" valign="middle">MMA&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;990&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;010&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;131&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry  " align="center" valign="middle">EMA&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;990&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;010&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;001&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;126&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry  " align="center" valign="middle">IMM&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;990&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;010&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;235&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry  " rowspan="3" align="center" valign="middle">S4</td><td class="td" title="table-entry  " align="center" valign="middle">MMA&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;991&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;009&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;135&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry  " align="center" valign="middle">EMA&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;991&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;009&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;127&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry  " align="center" valign="middle">IMM&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;991&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;009&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;232&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr></tbody></table>
                  """
              ]
              "imagenFichero" => array:1 [
                0 => "xTab796398.png"
              ]
            ]
          ]
        ]
        "descripcion" => array:1 [
          "en" => "<p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">Random fault&#44; &#945;<span class="elsevierStyleSup">T&#44;j</span>&#61; 0&#46;7&#46;</p>"
        ]
      ]
      3 => array:7 [
        "identificador" => "tbl0020"
        "etiqueta" => "Table 4"
        "tipo" => "MULTIMEDIATABLA"
        "mostrarFloat" => true
        "mostrarDisplay" => false
        "tabla" => array:1 [
          "tablatextoimagen" => array:1 [
            0 => array:2 [
              "tabla" => array:1 [
                0 => """
                  <table border="0" frame="\n
                  \t\t\t\t\tvoid\n
                  \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="table-head  " align="center" valign="middle" scope="col" style="border-bottom: 2px solid black">Fault&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</th><th class="td" title="table-head  " align="center" valign="middle" scope="col" style="border-bottom: 2px solid black">Algo&#46;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</th><th class="td" title="table-head  " align="center" valign="middle" scope="col" style="border-bottom: 2px solid black">CI&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</th><th class="td" title="table-head  " align="center" valign="middle" scope="col" style="border-bottom: 2px solid black">Fa&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</th><th class="td" title="table-head  " align="center" valign="middle" scope="col" style="border-bottom: 2px solid black">FI&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</th><th class="td" title="table-head  " align="center" valign="middle" scope="col" style="border-bottom: 2px solid black">MD&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</th><th class="td" title="table-head  " align="center" valign="middle" scope="col" style="border-bottom: 2px solid black">AD&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</th><th class="td" title="table-head  " align="center" valign="middle" scope="col" style="border-bottom: 2px solid black">&#945;&#8995;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="table-entry  " rowspan="3" align="center" valign="middle">A1</td><td class="td" title="table-entry  " align="center" valign="middle">MMA&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;710&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;04&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;188&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;062&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">14&#46;8&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;220&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry  " align="center" valign="middle">EMA&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;724&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;04&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;160&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;076&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">15&#46;3&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;208&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry  " align="center" valign="middle">IMM&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;681&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;04&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;188&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;091&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">16&#46;9&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;225&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry  " rowspan="3" align="center" valign="middle">A2</td><td class="td" title="table-entry  " align="center" valign="middle">MMA&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;745&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;08&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;106&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;069&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">15&#46;6&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;236&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry  " align="center" valign="middle">EMA&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;755&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;08&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;094&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;071&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">16&#46;3&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;231&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry  " align="center" valign="middle">IMM&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;726&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;08&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;118&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;076&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">17&#46;9&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="table-entry  " align="center" valign="middle">0&#46;245&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr></tbody></table>
                  """
              ]
              "imagenFichero" => array:1 [
                0 => "xTab796400.png"
              ]
            ]
          ]
        ]
        "descripcion" => array:1 [
          "en" => "<p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">Fault with Drifting Parameter&#44; where &#945;<span class="elsevierStyleSup">T&#44;j</span> &#61; 0&#46;7 and <span class="elsevierStyleItalic">&#963;</span> &#61; 0&#46;02&#46;</p>"
        ]
      ]
      4 => array:6 [
        "identificador" => "eq0005"
        "etiqueta" => "&#40;1&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "xk&#61;Fk&#8722;1xk&#8722;1&#43;Bk&#8722;1juk&#8722;1&#43;Gk&#8722;1wk&#8722;1"
          "Fichero" => "si1.jpeg"
          "Tamanyo" => 2318
          "Alto" => 22
          "Ancho" => 276
        ]
      ]
      5 => array:6 [
        "identificador" => "eq0010"
        "etiqueta" => "&#40;2&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "zk&#61;Hkjxk&#43;vk"
          "Fichero" => "si2.jpeg"
          "Tamanyo" => 1041
          "Alto" => 22
          "Ancho" => 106
        ]
      ]
      6 => array:5 [
        "identificador" => "eq0015"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "&#960;ji&#8796;Pmkimk&#8722;1j"
          "Fichero" => "si3.jpeg"
          "Tamanyo" => 1477
          "Alto" => 30
          "Ancho" => 134
        ]
      ]
      7 => array:5 [
        "identificador" => "eq0020"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "&#960;ji&#61;1&#44;fori&#61;j&#8800;00&#44;fori&#8800;j&#44;j&#8800;0"
          "Fichero" => "si6.jpeg"
          "Tamanyo" => 2934
          "Alto" => 49
          "Ancho" => 187
        ]
      ]
      8 => array:6 [
        "identificador" => "eq0025"
        "etiqueta" => "&#40;3&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "&#960;&#61;&#960;00&#960;01&#960;02&#8411;&#960;0M010&#8411;0001&#8411;0&#8942;&#8942;&#8942;&#8945;&#8942;000&#8411;1"
          "Fichero" => "si7.jpeg"
          "Tamanyo" => 4679
          "Alto" => 126
          "Ancho" => 239
        ]
      ]
      9 => array:5 [
        "identificador" => "eq0030"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "&#956;ki&#8796;P&#952;kiZk&#61;PmkiZk&#62;&#956;Tii&#61;1&#44;2&#44;&#8411;&#44;M"
          "Fichero" => "si25.jpeg"
          "Tamanyo" => 3196
          "Alto" => 41
          "Ancho" => 251
        ]
      ]
      10 => array:5 [
        "identificador" => "eq0035"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "Loopk&#61;k&#43;1"
          "Fichero" => "si27.jpeg"
          "Tamanyo" => 1025
          "Alto" => 15
          "Ancho" => 107
        ]
      ]
      11 => array:5 [
        "identificador" => "eq0040"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "&#956;ki&#61;&#8721;h&#61;1nki&#956;ki&#44;h&#44;&#956;ki&#44;h&#8796;Pmki&#44;hZk"
          "Fichero" => "si29.jpeg"
          "Tamanyo" => 3072
          "Alto" => 55
          "Ancho" => 306
        ]
      ]
      12 => array:5 [
        "identificador" => "eq0045"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "mki&#44;hh&#61;1&#44;&#8411;&#44;nki&#61;mki&#44;mk&#8722;1j&#44;lj&#61;0&#44;&#8411;&#44;Ml&#61;1&#44;&#8411;&#44;nk&#8722;1i"
          "Fichero" => "si35.jpeg"
          "Tamanyo" => 3027
          "Alto" => 41
          "Ancho" => 270
        ]
      ]
      13 => array:5 [
        "identificador" => "eq0050"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "&#956;ki&#44;h&#61;f&#40;zk&#124;mki&#44;h&#44;Zk&#8722;1&#41;&#960;ji&#956;k&#8722;1j&#44;&#40;l&#41;f&#40;zkZk&#8722;1&#41;"
          "Fichero" => "si36.jpeg"
          "Tamanyo" => 2484
          "Alto" => 35
          "Ancho" => 191
        ]
      ]
      14 => array:5 [
        "identificador" => "eq0055"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "f&#40;zk&#124;mki&#44;h&#44;Zk&#8722;1&#41;&#61;N&#40;zk&#59;Hkix&#175;kk&#8722;1&#40;h&#41;&#44;Sk&#40;h&#41;&#41;"
          "Fichero" => "si39.jpeg"
          "Tamanyo" => 2863
          "Alto" => 24
          "Ancho" => 280
        ]
      ]
      15 => array:5 [
        "identificador" => "eq0060"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "x&#175;k&#124;k&#8722;1&#40;h&#41;&#61;E&#91;xk&#124;mki&#44;h&#44;Zk&#8722;1&#93;"
          "Fichero" => "si40.jpeg"
          "Tamanyo" => 1827
          "Alto" => 25
          "Ancho" => 183
        ]
      ]
      16 => array:5 [
        "identificador" => "eq0065"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "Sk&#40;h&#41;&#61;HkiP&#710;k&#124;k&#8722;1&#40;h&#41;&#40;Hki&#41;&#8242;&#43;Rk"
          "Fichero" => "si41.jpeg"
          "Tamanyo" => 2087
          "Alto" => 25
          "Ancho" => 181
        ]
      ]
      17 => array:6 [
        "identificador" => "eq0070"
        "etiqueta" => "&#40;4&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "f&#40;xk&#124;mki&#44;&#44;Zk&#41;&#61;1&#956;ki&#8721;h&#61;1nkif&#40;xk&#124;mki&#44;h&#44;Zk&#41;&#956;ki&#44;&#40;h&#41;"
          "Fichero" => "si44.jpeg"
          "Tamanyo" => 3492
          "Alto" => 34
          "Ancho" => 319
        ]
      ]
      18 => array:5 [
        "identificador" => "eq0075"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "x&#710;k&#8796;E&#91;xk&#124;Zk&#93;&#61;&#8721;i&#61;0Mx&#710;ki&#956;ki"
          "Fichero" => "si46.jpeg"
          "Tamanyo" => 2243
          "Alto" => 49
          "Ancho" => 172
        ]
      ]
      19 => array:5 [
        "identificador" => "eq0080"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "P&#710;k&#61;&#8721;i&#61;0M&#91;P&#710;ki&#43;&#40;x&#710;ki&#8722;x&#710;k&#41;&#40;x&#710;ki&#8722;x&#710;k&#41;&#8242;&#93;&#956;ki"
          "Fichero" => "si47.jpeg"
          "Tamanyo" => 2971
          "Alto" => 49
          "Ancho" => 252
        ]
      ]
      20 => array:5 [
        "identificador" => "eq0085"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "x&#710;ki&#8796;E&#91;xk&#124;mki&#44;Zk&#93;"
          "Fichero" => "si48.jpeg"
          "Tamanyo" => 1384
          "Alto" => 20
          "Ancho" => 122
        ]
      ]
      21 => array:5 [
        "identificador" => "eq0090"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "P&#710;ki&#8796;MSE&#40;x&#710;k&#124;mki&#44;Zk&#41;"
          "Fichero" => "si49.jpeg"
          "Tamanyo" => 1586
          "Alto" => 20
          "Ancho" => 144
        ]
      ]
      22 => array:5 [
        "identificador" => "eq0095"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "w&#61;w1&#43;w2&#44;&#956;&#61;1w&#40;w1&#956;1&#43;w2&#956;2&#41;"
          "Fichero" => "si58.jpeg"
          "Tamanyo" => 2135
          "Alto" => 21
          "Ancho" => 263
        ]
      ]
      23 => array:5 [
        "identificador" => "eq0100"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "P&#61;1w&#8721;i&#61;12wi&#91;Pi&#43;&#40;&#956;i&#8722;&#956;&#41;&#40;&#956;i&#8722;&#956;&#41;&#8242;&#93;"
          "Fichero" => "si59.jpeg"
          "Tamanyo" => 2617
          "Alto" => 49
          "Ancho" => 249
        ]
      ]
      24 => array:5 [
        "identificador" => "eq0105"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "D&#61;&#8747;&#40;f&#40;x&#41;&#8722;g&#40;x&#41;&#41;2dx"
          "Fichero" => "si60.jpeg"
          "Tamanyo" => 1579
          "Alto" => 20
          "Ancho" => 160
        ]
      ]
      25 => array:5 [
        "identificador" => "eq0110"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "D&#61;Jff&#43;Jgg&#43;Jfg"
          "Fichero" => "si61.jpeg"
          "Tamanyo" => 1212
          "Alto" => 16
          "Ancho" => 139
        ]
      ]
      26 => array:5 [
        "identificador" => "eq0115"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "Jff&#61;&#8721;inf&#8721;jnfwiwjN&#40;&#956;i&#59;&#956;j&#44;Pi&#43;Pj&#41;Jgg&#61;&#8721;ing&#8721;jngw&#175;iw&#175;jN&#40;&#956;&#175;i&#59;&#956;&#175;j&#44;P&#175;i&#43;P&#175;j&#41;Jfg&#61;&#8721;inf&#8721;jngwiw&#175;jN&#40;&#956;i&#59;&#956;&#175;j&#44;Pi&#43;P&#175;j&#41;"
          "Fichero" => "si62.jpeg"
          "Tamanyo" => 8871
          "Alto" => 171
          "Ancho" => 248
        ]
      ]
      27 => array:5 [
        "identificador" => "eq0120"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "Dijl&#61;&#8747;&#40;f&#40;x&#41;&#8722;fijl&#40;x&#41;&#41;2dx"
          "Fichero" => "si64.jpeg"
          "Tamanyo" => 2015
          "Alto" => 26
          "Ancho" => 178
        ]
      ]
      28 => array:5 [
        "identificador" => "eq0125"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "f&#40;xk&#124;mkj&#44;Zk&#41;&#61;f&#40;xk&#124;mki&#44;xk&#41;f&#40;xk&#124;mki&#44;Zk&#8722;1&#41;f&#40;zk&#124;mki&#44;Zk&#8722;1&#41;"
          "Fichero" => "si70.jpeg"
          "Tamanyo" => 3168
          "Alto" => 33
          "Ancho" => 252
        ]
      ]
      29 => array:5 [
        "identificador" => "eq0130"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "&#956;ki&#61;f&#40;zk&#124;mkj&#44;Zk&#8722;1&#41;&#956;k&#124;k&#8722;1if&#40;zk&#124;Zk&#8722;1&#41;"
          "Fichero" => "si72.jpeg"
          "Tamanyo" => 1989
          "Alto" => 35
          "Ancho" => 155
        ]
      ]
      30 => array:6 [
        "identificador" => "eq0135"
        "etiqueta" => "&#40;5&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "f&#40;xk&#124;mki&#44;Zk&#8722;1&#41;&#61;&#8721;j&#61;0Mf&#40;xk&#124;mki&#44;mk&#8722;1j&#44;Zk&#8722;1&#41;f&#40;mk&#8722;1j&#124;mki&#44;Zk&#8722;1&#41;"
          "Fichero" => "si73.jpeg"
          "Tamanyo" => 4262
          "Alto" => 24
          "Ancho" => 433
        ]
      ]
      31 => array:6 [
        "identificador" => "eq0140"
        "etiqueta" => "&#40;6&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "f&#40;xk&#124;mki&#44;mk&#8722;1j&#44;Zk&#8722;1&#41;&#61;&#8747;f&#40;xk&#124;mki&#44;xk&#8722;1&#41;f&#40;xk&#8722;1&#124;mk&#8722;1i&#44;Zk&#8722;1&#41;dxk&#8722;1"
          "Fichero" => "si74.jpeg"
          "Tamanyo" => 4149
          "Alto" => 22
          "Ancho" => 453
        ]
      ]
      32 => array:5 [
        "identificador" => "eq0145"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "&#956;k&#124;k&#8722;1i&#8796;&#8747;f&#40;mki&#124;Zk&#8722;1&#41;&#61;&#8721;j&#61;0M&#960;ji&#956;k&#8722;1j"
          "Fichero" => "si75.jpeg"
          "Tamanyo" => 2950
          "Alto" => 51
          "Ancho" => 255
        ]
      ]
      33 => array:5 [
        "identificador" => "eq0150"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "f&#40;zk&#124;mk&#8722;1j&#44;Zk&#8722;1&#41;&#61;&#8747;f&#40;zk&#124;mki&#44;xk&#41;f&#40;xk&#124;mki&#44;zk&#8722;1&#41;dxk"
          "Fichero" => "si76.jpeg"
          "Tamanyo" => 3501
          "Alto" => 22
          "Ancho" => 377
        ]
      ]
      34 => array:5 [
        "identificador" => "eq0155"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "f&#40;mk&#8722;1i&#124;mkj&#44;Zk&#8722;1&#41;&#61;&#960;ji&#956;j&#8721;j&#960;ji&#956;j"
          "Fichero" => "si77.jpeg"
          "Tamanyo" => 2239
          "Alto" => 28
          "Ancho" => 195
        ]
      ]
      35 => array:6 [
        "identificador" => "eq0160"
        "etiqueta" => "&#40;7&#41;"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "0&#8804;&#945;kj&#60;1"
          "Fichero" => "si84.jpeg"
          "Tamanyo" => 805
          "Alto" => 22
          "Ancho" => 76
        ]
      ]
      36 => array:5 [
        "identificador" => "eq0165"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "0&#8804;&#945;kj&#60;&#945;T&#44;j"
          "Fichero" => "si86.jpeg"
          "Tamanyo" => 952
          "Alto" => 22
          "Ancho" => 94
        ]
      ]
      37 => array:5 [
        "identificador" => "eq0170"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "&#945;&#710;kj&#61;max&#945;f&#40;zk&#124;&#945;&#44;mkj&#44;Zk&#8722;1&#41;"
          "Fichero" => "si94.jpeg"
          "Tamanyo" => 1940
          "Alto" => 27
          "Ancho" => 185
        ]
      ]
      38 => array:5 [
        "identificador" => "eq0175"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "f&#40;zk&#124;&#945;&#44;mkj&#44;Zk&#8722;1&#41;&#8776;N&#40;z&#732;&#59;k&#59;0&#44;Sk&#41;"
          "Fichero" => "si96.jpeg"
          "Tamanyo" => 2244
          "Alto" => 22
          "Ancho" => 217
        ]
      ]
      39 => array:5 [
        "identificador" => "eq0180"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "z&#732;&#59;k&#61;zk&#8722;Hkj&#40;Fk&#8722;1x&#710;k&#8722;1j&#43;Bk&#8722;10uk&#8722;1&#41;"
          "Fichero" => "si97.jpeg"
          "Tamanyo" => 2295
          "Alto" => 22
          "Ancho" => 251
        ]
      ]
      40 => array:5 [
        "identificador" => "eq0185"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "Sk&#61;HkjP&#710;&#40;Hkj&#41;&#8242;&#43;Rk"
          "Fichero" => "si98.jpeg"
          "Tamanyo" => 1556
          "Alto" => 24
          "Ancho" => 143
        ]
      ]
      41 => array:5 [
        "identificador" => "eq0190"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "P&#710;&#61;Fk&#8722;1P&#710;k&#8722;1&#40;Fk&#8722;1&#41;&#8242;&#43;Gk&#8722;1Qk&#8722;1&#40;Gk&#8722;1&#41;&#8242;"
          "Fichero" => "si99.jpeg"
          "Tamanyo" => 2442
          "Alto" => 18
          "Ancho" => 289
        ]
      ]
      42 => array:5 [
        "identificador" => "eq0195"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "&#945;&#710;kj&#61;1c&#40;&#945;k0&#956;kk&#8722;10&#43;&#8721;i&#61;1I&#945;j&#44;i&#956;kk&#8722;1j&#44;i&#43;&#945;&#710;k&#8722;1j&#956;kk&#8722;1&#945;&#710;k&#8722;1j&#41;"
          "Fichero" => "si105.jpeg"
          "Tamanyo" => 3808
          "Alto" => 49
          "Ancho" => 328
        ]
      ]
      43 => array:5 [
        "identificador" => "eq0200"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "c&#61;&#956;kk&#8722;10&#43;&#8721;i&#61;1I&#956;kk&#8722;1j&#44;i&#43;&#956;kk&#8722;1&#945;&#710;k&#8722;1j"
          "Fichero" => "si106.jpeg"
          "Tamanyo" => 2452
          "Alto" => 49
          "Ancho" => 226
        ]
      ]
      44 => array:5 [
        "identificador" => "eq0205"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "x&#61;&#91;vh&#44;vv&#44;q&#44;&#952;&#93;"
          "Fichero" => "si111.jpeg"
          "Tamanyo" => 954
          "Alto" => 15
          "Ancho" => 108
        ]
      ]
      45 => array:5 [
        "identificador" => "eq0210"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "Fk&#61;eAT"
          "Fichero" => "si112.jpeg"
          "Tamanyo" => 580
          "Alto" => 17
          "Ancho" => 64
        ]
      ]
      46 => array:5 [
        "identificador" => "eq0215"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "Bk&#61;&#8747;0TeATd&#964;G"
          "Fichero" => "si113.jpeg"
          "Tamanyo" => 1492
          "Alto" => 29
          "Ancho" => 137
        ]
      ]
      47 => array:5 [
        "identificador" => "eq0220"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "Hk&#61;1000010000100111"
          "Fichero" => "si114.jpeg"
          "Tamanyo" => 2235
          "Alto" => 88
          "Ancho" => 148
        ]
      ]
      48 => array:5 [
        "identificador" => "eq0225"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "A&#61;&#8722;0&#46;03660&#46;02710&#46;0188&#8722;0&#46;45550&#46;0482&#8722;1&#46;010&#46;0024&#8722;4&#46;02080&#46;10020&#46;3681&#8722;0&#46;7071&#46;4200010"
          "Fichero" => "si115.jpeg"
          "Tamanyo" => 6584
          "Alto" => 88
          "Ancho" => 318
        ]
      ]
      49 => array:5 [
        "identificador" => "eq0230"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "G&#61;0&#46;44220&#46;17613&#46;5446&#8722;7&#46;5922&#8722;5&#46;524&#46;4900"
          "Fichero" => "si116.jpeg"
          "Tamanyo" => 3672
          "Alto" => 88
          "Ancho" => 179
        ]
      ]
      50 => array:5 [
        "identificador" => "eq0235"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "&#945;kj&#61;&#945;T&#44;j&#44;if&#945;k&#124;k&#8722;1j&#62;&#945;T&#44;j0&#44;if&#945;k&#124;k&#8722;1j&#60;0&#945;k&#124;k&#8722;1j&#44;else"
          "Fichero" => "si124.jpeg"
          "Tamanyo" => 3818
          "Alto" => 83
          "Ancho" => 318
        ]
      ]
      51 => array:5 [
        "identificador" => "eq0240"
        "tipo" => "MULTIMEDIAFORMULA"
        "mostrarFloat" => false
        "mostrarDisplay" => true
        "Formula" => array:5 [
          "Matematica" => "&#945;kk&#8722;1j&#61;&#945;k&#8722;1j&#43;&#8467;k"
          "Fichero" => "si125.jpeg"
          "Tamanyo" => 1166
          "Alto" => 24
          "Ancho" => 131
        ]
      ]
    ]
    "bibliografia" => array:2 [
      "titulo" => "References"
      "seccion" => array:1 [
        0 => array:2 [
          "identificador" => "bibs0005"
          "bibliografiaReferencia" => array:35 [
            0 => array:3 [
              "identificador" => "bib0005"
              "etiqueta" => "&#91;1&#93;"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Simultaneous optimum detection and estimation of signals in noise"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:2 [
                            0 => "D&#46; Middleton"
                            1 => "R&#46; Esposito"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Revista" => array:6 [
                        "tituloSerie" => "IEEE Transactions on Information Theory"
                        "fecha" => "1968"
                        "volumen" => "14"
                        "numero" => "3"
                        "paginaInicial" => "434"
                        "paginaFinal" => "444"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            1 => array:3 [
              "identificador" => "bib0010"
              "etiqueta" => "&#91;2&#93;"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:1 [
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:1 [
                            0 => "H&#46;L&#46;V&#46; Trees"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Libro" => array:4 [
                        "titulo" => "Detection&#44; Estimation&#44; and Modulation Theory&#44; Part I&#58; Detection&#44; Estimation&#44; and Linear Modulation Theory"
                        "fecha" => "1971"
                        "editorial" => "Wiley"
                        "editorialLocalizacion" => "New York"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            2 => array:3 [
              "identificador" => "bib0015"
              "etiqueta" => "&#91;3&#93;"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "A survey of design methods for failure detection in dynamic systems"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:1 [
                            0 => "A&#46;S&#46; Willsky"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Revista" => array:6 [
                        "tituloSerie" => "Automatica"
                        "fecha" => "1976"
                        "volumen" => "12"
                        "numero" => "6"
                        "paginaInicial" => "601"
                        "paginaFinal" => "611"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            3 => array:3 [
              "identificador" => "bib0020"
              "etiqueta" => "&#91;4&#93;"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy &#8212; asurvey and some new results"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:1 [
                            0 => "P&#46;M&#46; Frank"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Revista" => array:6 [
                        "tituloSerie" => "Automatica"
                        "fecha" => "1990"
                        "volumen" => "26"
                        "numero" => "3"
                        "paginaInicial" => "459"
                        "paginaFinal" => "474"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            4 => array:3 [
              "identificador" => "bib0025"
              "etiqueta" => "&#91;5&#93;"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:1 [
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:2 [
                            0 => "M&#46; Basseville"
                            1 => "I&#46; Nikiforov"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Libro" => array:4 [
                        "titulo" => "Detection of Abrupt Changes&#58; Theory and Application"
                        "fecha" => "1993"
                        "editorial" => "Prentice Hall"
                        "editorialLocalizacion" => "Englewood Cliffs&#44; NJ"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            5 => array:3 [
              "identificador" => "bib0030"
              "etiqueta" => "&#91;6&#93;"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "A generalized change detection problem"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:1 [
                            0 => "I&#46;V&#46; Nikiforov"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Revista" => array:6 [
                        "tituloSerie" => "IEEE Journal of Oceanic Engineering Transactions on Information Theory"
                        "fecha" => "1995"
                        "volumen" => "41"
                        "numero" => "1"
                        "paginaInicial" => "171"
                        "paginaFinal" => "187"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            6 => array:3 [
              "identificador" => "bib0035"
              "etiqueta" => "&#91;7&#93;"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Detection and diagnosis of sensor and actuator failures using IMM estimator"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:2 [
                            0 => "Y&#46; Zhang"
                            1 => "X&#46;R&#46; Li"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Revista" => array:6 [
                        "tituloSerie" => "IEEE Transactions on Aerospace and Electronic Systems"
                        "fecha" => "1998"
                        "volumen" => "34"
                        "numero" => "4"
                        "paginaInicial" => "1293"
                        "paginaFinal" => "1313"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            7 => array:3 [
              "identificador" => "bib0040"
              "etiqueta" => "&#91;8&#93;"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "A generalized Shiryayev sequential probability ratio test for change detection and isolation"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:2 [
                            0 => "D&#46;P&#46; Malladi"
                            1 => "J&#46;L&#46; Speyer"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Revista" => array:6 [
                        "tituloSerie" => "IEEE Transactions on Automatic Control"
                        "fecha" => "1999"
                        "volumen" => "44"
                        "numero" => "8"
                        "paginaInicial" => "1522"
                        "paginaFinal" => "1534"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            8 => array:3 [
              "identificador" => "bib0045"
              "etiqueta" => "&#91;9&#93;"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Sequential multiple hypothesis testing and efficient fault detection-isolation in stochastic systems"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:1 [
                            0 => "T&#46;L&#46; Lai"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Revista" => array:6 [
                        "tituloSerie" => "IEEE Transactions on Information Theory"
                        "fecha" => "2000"
                        "volumen" => "46"
                        "numero" => "2"
                        "paginaInicial" => "595"
                        "paginaFinal" => "608"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            9 => array:3 [
              "identificador" => "bib0050"
              "etiqueta" => "&#91;10&#93;"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Variable-structure multiple-model approach to fault detection&#44; identification&#44; and estimation"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:2 [
                            0 => "J&#46; Ru"
                            1 => "X&#46;R&#46; Li"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Revista" => array:6 [
                        "tituloSerie" => "IEEE Transactions on Control Systems Technology"
                        "fecha" => "2008"
                        "volumen" => "16"
                        "numero" => "5"
                        "paginaInicial" => "1029"
                        "paginaFinal" => "1038"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            10 => array:3 [
              "identificador" => "bib0055"
              "etiqueta" => "&#91;11&#93;"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Continuous inspection schemes"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:1 [
                            0 => "E&#46;S&#46; Page"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Revista" => array:5 [
                        "tituloSerie" => "Biometrika"
                        "fecha" => "1954"
                        "volumen" => "41"
                        "paginaInicial" => "100"
                        "paginaFinal" => "115"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            11 => array:3 [
              "identificador" => "bib0060"
              "etiqueta" => "&#91;12&#93;"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Procedures for reacting to a change in distribution"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:1 [
                            0 => "G&#46; Lorden"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Revista" => array:6 [
                        "tituloSerie" => "The Annals of Mathematical Statistics"
                        "fecha" => "1971"
                        "volumen" => "42"
                        "numero" => "6"
                        "paginaInicial" => "1897"
                        "paginaFinal" => "1908"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            12 => array:3 [
              "identificador" => "bib0065"
              "etiqueta" => "&#91;13&#93;"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Optimal stopping times for detecting changes in distributions"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:1 [
                            0 => "G&#46;V&#46; Moustakides"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Revista" => array:6 [
                        "tituloSerie" => "The Annals of Statistic"
                        "fecha" => "1986"
                        "volumen" => "14"
                        "numero" => "4"
                        "paginaInicial" => "1379"
                        "paginaFinal" => "1387"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            13 => array:3 [
              "identificador" => "bib0070"
              "etiqueta" => "&#91;14&#93;"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:1 [
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:1 [
                            0 => "A&#46;N&#46; Shiryayev"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Libro" => array:4 [
                        "titulo" => "Optimal Stopping Rules"
                        "fecha" => "1977"
                        "editorial" => "Springer-Verlag"
                        "editorialLocalizacion" => "New York"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            14 => array:3 [
              "identificador" => "bib0075"
              "etiqueta" => "&#91;15&#93;"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Survey of maneuvering target tracking &#8212; part V&#58; multiple-model methods"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:2 [
                            0 => "X&#46;R&#46; Li"
                            1 => "V&#46;P&#46; Jilkov"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Revista" => array:6 [
                        "tituloSerie" => "IEEE Transaction on Aerospace and Electronic Systems"
                        "fecha" => "2005"
                        "volumen" => "41"
                        "numero" => "4"
                        "paginaInicial" => "1255"
                        "paginaFinal" => "1321"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            15 => array:3 [
              "identificador" => "bib0080"
              "etiqueta" => "&#91;16&#93;"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Reconfigurable flight control via multiple model adaptive control method"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:2 [
                            0 => "P&#46;S&#46; Maybeck"
                            1 => "R&#46;D&#46; Stevens"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Revista" => array:6 [
                        "tituloSerie" => "IEEE Transactions on Aerospace and Electronic Systems"
                        "fecha" => "1991"
                        "volumen" => "27"
                        "numero" => "3"
                        "paginaInicial" => "470"
                        "paginaFinal" => "480"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            16 => array:3 [
              "identificador" => "bib0085"
              "etiqueta" => "&#91;17&#93;"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Application of multiple model adaptive algorithms to reconfigurable flight control"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:1 [
                            0 => "P&#46;S&#46; Maybeck"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Revista" => array:5 [
                        "tituloSerie" => "Control and Dynamic Systems"
                        "fecha" => "1992"
                        "volumen" => "52"
                        "paginaInicial" => "291"
                        "paginaFinal" => "320"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            17 => array:3 [
              "identificador" => "bib0090"
              "etiqueta" => "&#91;18&#93;"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Sensor&#47;actuator failure detection in the Vista F-16 by multiple model adaptive estimation"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:2 [
                            0 => "T&#46;E&#46; Menke"
                            1 => "P&#46;S&#46; Maybeck"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Revista" => array:6 [
                        "tituloSerie" => "IEEE Transactions on Aerospace and Electronic Systems"
                        "fecha" => "1995"
                        "volumen" => "31"
                        "numero" => "4"
                        "paginaInicial" => "1218"
                        "paginaFinal" => "1229"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            18 => array:3 [
              "identificador" => "bib0095"
              "etiqueta" => "&#91;19&#93;"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "The interacting multiple model algorithm for systems with Markovian switching coefficients"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:2 [
                            0 => "H&#46;A&#46;P&#46; Blom"
                            1 => "Y&#46; Bar-Shalom"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Revista" => array:6 [
                        "tituloSerie" => "IEEE Transactions on Automatic Control"
                        "fecha" => "1988"
                        "volumen" => "33"
                        "numero" => "8"
                        "paginaInicial" => "780"
                        "paginaFinal" => "783"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            19 => array:3 [
              "identificador" => "bib0100"
              "etiqueta" => "&#91;20&#93;"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Interacting multiple model algorithm with maximum likelihood estimation for FDI"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:2 [
                            0 => "J&#46; Ru"
                            1 => "X&#46;R&#46; Li"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Libro" => array:4 [
                        "titulo" => "IEEE International Symposium on Intelligent Control"
                        "fecha" => "2003"
                        "paginaInicial" => "661"
                        "paginaFinal" => "666"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            20 => array:3 [
              "identificador" => "bib0105"
              "etiqueta" => "&#91;21&#93;"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:1 [
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:1 [
                            0 => "J&#46;F&#46; Ru"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Libro" => array:4 [
                        "titulo" => "Adaptive estimation and detection techniques with applications"
                        "fecha" => "2005"
                        "editorial" => "Ph&#46;D&#46; dissertation&#44; University of New Orleans"
                        "editorialLocalizacion" => "New Orleans&#44; LA"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            21 => array:3 [
              "identificador" => "bib0110"
              "etiqueta" => "&#91;22&#93;"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:1 [
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:3 [
                            0 => "J&#46;-F&#46; Ru"
                            1 => "X&#46;R&#46; Li"
                            2 => "V&#46;P&#46; Jilkov"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "LibroEditado" => array:5 [
                        "titulo" => "Multiple model detection of target maneuvers"
                        "paginaInicial" => "100"
                        "paginaFinal" => "108"
                        "conferencia" => "Proceedings of Signal and Data Processing of Small Target"
                        "serieFecha" => "2005"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            22 => array:3 [
              "identificador" => "bib0115"
              "etiqueta" => "&#91;23&#93;"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:1 [
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:2 [
                            0 => "J&#46;L&#46; Williams"
                            1 => "P&#46;S&#46; Mayback"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "LibroEditado" => array:3 [
                        "titulo" => "Cost-function-based Gaussian mixture reduction for target tracking"
                        "conferencia" => "Proceedings of the 6th International Conference on Information Fusion"
                        "serieFecha" => "2003"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            23 => array:3 [
              "identificador" => "bib0120"
              "etiqueta" => "&#91;24&#93;"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:1 [
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:1 [
                            0 => "J&#46;L&#46; Williams"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Libro" => array:3 [
                        "titulo" => "Gaussian mixture reduction for tracking multiple maneuvering targets in clutter"
                        "fecha" => "2003"
                        "editorial" => "M&#46;S&#46;E&#46;E&#44; Air Force Institute of Technology&#44; Wright-Patterson Air Force Base&#44; OH"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            24 => array:3 [
              "identificador" => "bib0125"
              "etiqueta" => "&#91;25&#93;"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Multiple-model estimation with variable structure - part VI&#58; expected-mode augmentation"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:3 [
                            0 => "X&#46;R&#46; Li"
                            1 => "V&#46;P&#46; Jilkov"
                            2 => "J&#46; Ru"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Revista" => array:6 [
                        "tituloSerie" => "IEEE Transactions on Aerospace and Electronic Systems"
                        "fecha" => "2005"
                        "volumen" => "41"
                        "numero" => "3"
                        "paginaInicial" => "853"
                        "paginaFinal" => "867"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            25 => array:3 [
              "identificador" => "bib0130"
              "etiqueta" => "&#91;26&#93;"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "A new approach to linear filtering and prediction problems"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:1 [
                            0 => "R&#46;E&#46; Kalman"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Revista" => array:6 [
                        "tituloSerie" => "Journal of Basic Engineering"
                        "fecha" => "1960"
                        "volumen" => "82"
                        "numero" => "1"
                        "paginaInicial" => "35"
                        "paginaFinal" => "45"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            26 => array:3 [
              "identificador" => "bib0135"
              "etiqueta" => "&#91;27&#93;"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:1 [
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:1 [
                            0 => "D&#46;J&#46; Salmond"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "LibroEditado" => array:6 [
                        "paginaInicial" => "434"
                        "paginaFinal" => "445"
                        "conferencia" => "Proceedings of SPIE Signal and Data Processing of Small Targets"
                        "serieVolumen" => "1305"
                        "serieTitulo" => "Mixture reduction algorithms for target tracking in clutter"
                        "serieFecha" => "1990"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            27 => array:3 [
              "identificador" => "bib0140"
              "etiqueta" => "&#91;28&#93;"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Approximating posterior distributions by mixtures"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:1 [
                            0 => "M&#46; West"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Revista" => array:6 [
                        "tituloSerie" => "Journal of the Royal Statistical Society Series B Methodological"
                        "fecha" => "1993"
                        "volumen" => "55"
                        "numero" => "2"
                        "paginaInicial" => "409"
                        "paginaFinal" => "422"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            28 => array:3 [
              "identificador" => "bib0145"
              "etiqueta" => "&#91;29&#93;"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:1 [
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:2 [
                            0 => "P&#46;S&#46; Mayback"
                            1 => "B&#46;D&#46; Smith"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "LibroEditado" => array:5 [
                        "titulo" => "Multiple model tracker based on Gaussian mixture reduction for maneuvering targets in clutter"
                        "paginaInicial" => "40"
                        "paginaFinal" => "47"
                        "conferencia" => "Proceedings of 8th International Conference on Information Fusion"
                        "serieFecha" => "2005"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            29 => array:3 [
              "identificador" => "bib0150"
              "etiqueta" => "&#91;30&#93;"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Kullback-Leibler approach to Gaussian mixture reduction"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:1 [
                            0 => "A&#46;R&#46; Runnalls"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Revista" => array:6 [
                        "tituloSerie" => "IEEE Transactions on Aerospace and Electronic Systems"
                        "fecha" => "2007"
                        "volumen" => "43"
                        "numero" => "3"
                        "paginaInicial" => "989"
                        "paginaFinal" => "999"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            30 => array:3 [
              "identificador" => "bib0155"
              "etiqueta" => "&#91;31&#93;"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:1 [
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:3 [
                            0 => "M&#46; Huber"
                            1 => "P&#46; Krauthausen"
                            2 => "U&#46;D&#46; Hanebeck"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "LibroEditado" => array:3 [
                        "titulo" => "Superficial Gaussian mixture reduction"
                        "conferencia" => "Proceedings of the IEEE ISIF Workshop on Sensor Data Fusion Trends Solutions Applications SDF"
                        "serieFecha" => "2011"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            31 => array:3 [
              "identificador" => "bib0160"
              "etiqueta" => "&#91;32&#93;"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Single maneuvering target tracking in clutter based on multiple model algorithm with Gaussian mixture reduction"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:2 [
                            0 => "J&#46; Zhang"
                            1 => "Y&#46; Liu"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Revista" => array:6 [
                        "tituloSerie" => "Journal of Applied Research and Technology"
                        "fecha" => "2013"
                        "volumen" => "11"
                        "numero" => "5"
                        "paginaInicial" => "641"
                        "paginaFinal" => "652"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            32 => array:3 [
              "identificador" => "bib0165"
              "etiqueta" => "&#91;33&#93;"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:1 [
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:2 [
                            0 => "J&#46;R&#46; Hershey"
                            1 => "P&#46;A&#46; Olsen"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "LibroEditado" => array:5 [
                        "titulo" => "Approximating the Kullback-Leibler divergence between Gaussian mixture models"
                        "paginaInicial" => "IV317"
                        "paginaFinal" => "IV320"
                        "conferencia" => "Proceedings of IEEE International Conference on Acoustics&#44; Speech and Signal Processing"
                        "serieFecha" => "2007"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            33 => array:3 [
              "identificador" => "bib0170"
              "etiqueta" => "&#91;34&#93;"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Efficient recursive state estimator for dynamic systems without knowledge of noise covariances"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:1 [
                            0 => "Y&#46; Zhu"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Revista" => array:6 [
                        "tituloSerie" => "IEEE Transactions on Aerospace and Electronic Systems"
                        "fecha" => "1999"
                        "volumen" => "35"
                        "numero" => "1"
                        "paginaInicial" => "102"
                        "paginaFinal" => "114"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            34 => array:3 [
              "identificador" => "bib0175"
              "etiqueta" => "&#91;35&#93;"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Fusion of distributed extended forgetting factor RLS state estimators"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:3 [
                            0 => "Y&#46; Zhu"
                            1 => "K&#46; Zhang"
                            2 => "X&#46;R&#46; Li"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Revista" => array:6 [
                        "tituloSerie" => "IEEE Transactions on Aerospace and Electronic Systems"
                        "fecha" => "2008"
                        "volumen" => "44"
                        "numero" => "2"
                        "paginaInicial" => "457"
                        "paginaFinal" => "467"
                      ]
                    ]
                  ]
                ]
              ]
            ]
          ]
        ]
      ]
    ]
    "agradecimientos" => array:1 [
      0 => array:4 [
        "identificador" => "xack161163"
        "titulo" => "Acknowledgments"
        "texto" => "<p id="par0500" class="elsevierStylePara elsevierViewall">Research was supported by the Fundamental Research Funds for the Central Universities &#40;China&#41;&#44; project No&#46; 12QN41&#46;</p>"
        "vista" => "all"
      ]
    ]
  ]
  "idiomaDefecto" => "en"
  "url" => "/16656423/0000001200000003/v2_201505081651/S1665642314716220/v2_201505081651/en/main.assets"
  "Apartado" => null
  "PDF" => "https://static.elsevier.es/multimedia/16656423/0000001200000003/v2_201505081651/S1665642314716220/v2_201505081651/en/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/"
  "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1665642314716220?idApp=UINPBA00004N"
]
Article information
ISSN: 16656423
Original language: English
The statistics are updated each day
Year/Month Html Pdf Total
2024 November 2 0 2
2024 October 5 4 9
2024 September 7 7 14
2024 August 9 3 12
2024 July 9 5 14
2024 June 10 5 15
2024 May 7 3 10
2024 April 6 3 9
2024 March 11 2 13
2024 February 6 2 8
2024 January 6 4 10
2023 December 12 16 28
2023 November 10 3 13
2023 October 26 4 30
2023 September 10 6 16
2023 August 11 3 14
2023 July 9 4 13
2023 June 5 2 7
2023 May 19 4 23
2023 April 15 1 16
2023 March 14 5 19
2023 February 9 6 15
2023 January 7 1 8
2022 December 9 6 15
2022 November 7 5 12
2022 October 9 9 18
2022 September 8 11 19
2022 August 10 8 18
2022 July 10 9 19
2022 June 5 8 13
2022 May 22 9 31
2022 April 13 7 20
2022 March 12 7 19
2022 February 7 4 11
2022 January 14 5 19
2021 December 9 11 20
2021 November 9 7 16
2021 October 12 14 26
2021 September 13 9 22
2021 August 14 9 23
2021 July 8 5 13
2021 June 16 10 26
2021 May 19 8 27
2021 April 35 14 49
2021 March 13 11 24
2021 February 8 5 13
2021 January 7 10 17
2020 December 6 10 16
2020 November 7 3 10
2020 October 8 10 18
2020 September 15 10 25
2020 August 10 9 19
2020 July 16 11 27
2020 June 20 11 31
2020 May 22 3 25
2020 April 11 2 13
2020 March 9 7 16
2020 February 14 6 20
2020 January 4 9 13
2019 December 9 5 14
2019 November 4 2 6
2019 October 5 0 5
2019 September 10 13 23
2019 August 7 6 13
2019 July 5 8 13
2019 June 26 19 45
2019 May 96 51 147
2019 April 18 4 22
2019 March 5 5 10
2019 February 6 3 9
2019 January 2 4 6
2018 December 1 3 4
2018 November 1 5 6
2018 October 5 8 13
2018 September 1 2 3
2018 August 0 1 1
2018 July 1 2 3
2018 June 1 6 7
2018 May 7 14 21
2018 April 0 7 7
2018 February 0 1 1
2018 January 4 0 4
2017 December 2 1 3
2017 November 3 0 3
2017 October 5 1 6
2017 September 2 5 7
2017 August 3 18 21
2017 July 4 3 7
2017 June 4 4 8
2017 May 10 7 17
2017 April 6 7 13
2017 March 15 55 70
2017 February 6 9 15
2017 January 2 4 6
2016 December 6 4 10
2016 November 1 2 3
2016 October 6 3 9
2016 September 5 1 6
2016 August 3 0 3
2016 July 4 0 4
2016 June 2 2 4
2016 May 3 4 7
2016 April 0 3 3
2016 March 6 10 16
2016 February 3 8 11
2016 January 3 8 11
2015 December 7 7 14
2015 November 5 11 16
2015 October 6 11 17
2015 September 5 3 8
2015 August 3 1 4
2015 July 2 1 3
2015 June 1 1 2
2015 May 4 0 4
2015 April 2 1 3
Show all

Follow this link to access the full text of the article