array:24 [ "pii" => "S2387020618305898" "issn" => "23870206" "doi" => "10.1016/j.medcle.2018.08.012" "estado" => "S300" "fechaPublicacion" => "2019-02-15" "aid" => "4646" "copyright" => "Elsevier España, S.L.U.. All rights reserved" "copyrightAnyo" => "2018" "documento" => "article" "crossmark" => 1 "subdocumento" => "rev" "cita" => "Med Clin. 2019;152:147-53" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "Traduccion" => array:1 [ "es" => array:19 [ "pii" => "S0025775318305682" "issn" => "00257753" "doi" => "10.1016/j.medcli.2018.08.019" "estado" => "S300" "fechaPublicacion" => "2019-02-15" "aid" => "4646" "copyright" => "Elsevier España, S.L.U." "documento" => "article" "crossmark" => 1 "subdocumento" => "rev" "cita" => "Med Clin. 2019;152:147-53" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:2 [ "total" => 22 "formatos" => array:2 [ "HTML" => 12 "PDF" => 10 ] ] "es" => array:12 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Revisión</span>" "titulo" => "El holobionte enfermo, el ejemplo de la esclerosis múltiple" "tienePdf" => "es" "tieneTextoCompleto" => "es" "tieneResumen" => array:2 [ 0 => "es" 1 => "en" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "147" "paginaFinal" => "153" ] ] "titulosAlternativos" => array:1 [ "en" => array:1 [ "titulo" => "Disease of the holobiont, the example of multiple sclerosis" ] ] "contieneResumen" => array:2 [ "es" => true "en" => true ] "contieneTextoCompleto" => array:1 [ "es" => true ] "contienePdf" => array:1 [ "es" => true ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Federico Castillo-Álvarez, María Eugenia Marzo-Sola" "autores" => array:2 [ 0 => array:2 [ "nombre" => "Federico" "apellidos" => "Castillo-Álvarez" ] 1 => array:2 [ "nombre" => "María Eugenia" "apellidos" => "Marzo-Sola" ] ] ] ] ] "idiomaDefecto" => "es" "Traduccion" => array:1 [ "en" => array:9 [ "pii" => "S2387020618305898" "doi" => "10.1016/j.medcle.2018.08.012" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2387020618305898?idApp=UINPBA00004N" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0025775318305682?idApp=UINPBA00004N" "url" => "/00257753/0000015200000004/v1_201901310615/S0025775318305682/v1_201901310615/es/main.assets" ] ] "itemSiguiente" => array:19 [ "pii" => "S2387020618305886" "issn" => "23870206" "doi" => "10.1016/j.medcle.2018.07.018" "estado" => "S300" "fechaPublicacion" => "2019-02-15" "aid" => "4600" "copyright" => "Elsevier España, S.L.U." "documento" => "article" "crossmark" => 1 "subdocumento" => "sco" "cita" => "Med Clin. 2019;152:154-8" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "en" => array:10 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Special article</span>" "titulo" => "Tobacco consumption, the forgotten factor in the calculation and approach of cardiovascular risk" "tienePdf" => "en" "tieneTextoCompleto" => "en" "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "154" "paginaFinal" => "158" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Tabaquismo, el gran olvidado en el cálculo y abordaje del riesgo cardiovascular" ] ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "César Minué-Lorenzo, Eduardo Olano-Espinosa" "autores" => array:2 [ 0 => array:2 [ "nombre" => "César" "apellidos" => "Minué-Lorenzo" ] 1 => array:2 [ "nombre" => "Eduardo" "apellidos" => "Olano-Espinosa" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "es" => array:9 [ "pii" => "S0025775318304986" "doi" => "10.1016/j.medcli.2018.07.004" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0025775318304986?idApp=UINPBA00004N" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2387020618305886?idApp=UINPBA00004N" "url" => "/23870206/0000015200000004/v1_201902100719/S2387020618305886/v1_201902100719/en/main.assets" ] "itemAnterior" => array:19 [ "pii" => "S2387020618305850" "issn" => "23870206" "doi" => "10.1016/j.medcle.2018.05.053" "estado" => "S300" "fechaPublicacion" => "2019-02-15" "aid" => "4555" "copyright" => "Elsevier España, S.L.U." "documento" => "article" "crossmark" => 1 "subdocumento" => "sco" "cita" => "Med Clin. 2019;152:145-6" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "en" => array:10 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Editorial article</span>" "titulo" => "Austerity, bad-governance, innovation and the future of the Spanish National Health Service" "tienePdf" => "en" "tieneTextoCompleto" => "en" "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "145" "paginaFinal" => "146" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Austeridad, desgobierno, innovación y futuro del Sistema Nacional de Salud español" ] ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "José Ramón Repullo Labrador" "autores" => array:1 [ 0 => array:2 [ "nombre" => "José Ramón" "apellidos" => "Repullo Labrador" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "es" => array:9 [ "pii" => "S002577531830366X" "doi" => "10.1016/j.medcli.2018.05.028" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S002577531830366X?idApp=UINPBA00004N" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2387020618305850?idApp=UINPBA00004N" "url" => "/23870206/0000015200000004/v1_201902100719/S2387020618305850/v1_201902100719/en/main.assets" ] "en" => array:19 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Review</span>" "titulo" => "Disease of the holobiont, the example of multiple sclerosis" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "147" "paginaFinal" => "153" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "Federico Castillo-Álvarez, María Eugenia Marzo-Sola" "autores" => array:2 [ 0 => array:4 [ "nombre" => "Federico" "apellidos" => "Castillo-Álvarez" "email" => array:1 [ 0 => "fcastilloa@riojasalud.es" ] "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0005" ] ] ] 1 => array:2 [ "nombre" => "María Eugenia" "apellidos" => "Marzo-Sola" ] ] "afiliaciones" => array:1 [ 0 => array:2 [ "entidad" => "Servicio de Neurología, Hospital San Pedro, Calle Piqueras n° 98, 26006 Logroño, La Rioja, Spain" "identificador" => "aff0005" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "Corresponding author." ] ] ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "El holobionte enfermo, el ejemplo de la esclerosis múltiple" ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0025">Introduction</span><p id="par0005" class="elsevierStylePara elsevierViewall">The role assigned to the microbiota, understood as the set of microorganisms present in a certain habitat, in higher organisms, has undergone an important change in recent years, establishing an important role in the normal physiology of the hosts, as well as in their health-disease state. This change has aroused great interest in both the medical community and the general population, with abundant scientific and informative literature published regarding the microbiota and the microbiome, together with their genes.</p><p id="par0010" class="elsevierStylePara elsevierViewall">Knowledge of the role of the microbiota in higher organisms has undergone a great resolve since approximately 2006 when Rosenberg put forward the coral probiotic hypothesis according to which the <span class="elsevierStyleItalic">Patagonian Oculina</span>, a species of coral that suffered an epidemic produced by a bacterium of the <span class="elsevierStyleItalic">Vibrio</span> genus, managed to overcome the disease thanks to the genetic information provided by its microbiota.<a class="elsevierStyleCrossRef" href="#bib0300"><span class="elsevierStyleSup">1</span></a> Two years later, the same group proposed the Hologenome theory of evolution, which studies higher organisms and their microbiota as a whole at functional and evolutionary levels, and that possesses a hologenome, understood as the sum of genetic information of the complex multicellular organism, in our case the human being, and the microbiota that it hosts. This theory can be summarised in four points<a class="elsevierStyleCrossRef" href="#bib0305"><span class="elsevierStyleSup">2</span></a>:<ul class="elsevierStyleList" id="lis0005"><li class="elsevierStyleListItem" id="lsti0005"><span class="elsevierStyleLabel">1.</span><p id="par0015" class="elsevierStylePara elsevierViewall">All animals and plants establish a symbiotic relationship with their microbiota (whose genetic information often exceeds that of the host itself)</p></li><li class="elsevierStyleListItem" id="lsti0010"><span class="elsevierStyleLabel">2.</span><p id="par0020" class="elsevierStylePara elsevierViewall">The cooperation between the host and the microbiota contributes to the strength of the holobion and affects both parties</p></li><li class="elsevierStyleListItem" id="lsti0015"><span class="elsevierStyleLabel">3.</span><p id="par0025" class="elsevierStylePara elsevierViewall">Variations in the hologenome can occur both in the host and in the microbiota, but in situations of environmental stress, the symbiotic microbial community adapts and changes much faster than the host</p></li><li class="elsevierStyleListItem" id="lsti0020"><span class="elsevierStyleLabel">4.</span><p id="par0030" class="elsevierStylePara elsevierViewall">The symbiotic microbiota is transmitted between generations</p></li></ul></p><p id="par0035" class="elsevierStylePara elsevierViewall">At the same time the conceptual change of the role assigned to the microorganisms occurred, a series of technological advances revolutionised how much knowledge we could obtain from the microbiota through metagenomic techniques. For the study of microbial communities, classical microbiology required the isolation and culture of microorganisms for their subsequent identification, either by staining or growing in certain culture media, or by the subsequent extraction of genetic material and with it the sequencing and identification of species. The limitations for this whole process was the first point, since it was difficult to isolate microorganisms from such complex communities as, for example, intestinal microbiota, and because many microorganisms were, and still are, non-culturable.</p><p id="par0040" class="elsevierStylePara elsevierViewall">This limitation has been resolved in recent years with the birth of metagenomics, which consist of the application of modern genomic techniques for the direct study of communities of microorganisms in their natural environment, avoiding the need to isolate and cultivate each of the species that comprise the community. Basically, to date, DNA is extracted from the entire microbial community<a class="elsevierStyleCrossRef" href="#bib0310"><span class="elsevierStyleSup">3</span></a> and then the 16S ribosomal DNA sequencing is carried out, especially in certain hypervariable regions. This DNA has the characteristic of being universally found in all bacterial and <span class="elsevierStyleItalic">archaea</span> organisms, but not in eukaryotic cells, which makes it possible to exclude host cells from the study of the holobion. Subsequently, the obtained sequences can be treated in different ways to increase yield, and are quantified and identified by comparison with certain databases of known sequences in order to assign them an ‘operational taxonomic unit’, that is, to identify them as a determined taxon, at any level of the phylogenetic scale, from phylum (the highest level in which each kingdom can be separated) to species.<a class="elsevierStyleCrossRefs" href="#bib0315"><span class="elsevierStyleSup">4–7</span></a> The global RDP (<span class="elsevierStyleItalic">Ribosomal Database Project</span>) was specifically created for the analysis of the metagenomic data of the gene that codifies for the 16S and which hosts approximately one million sequences, comprising part of GenBank, the USA NIH (National Institute of Health) genetic sequences database.<a class="elsevierStyleCrossRef" href="#bib0335"><span class="elsevierStyleSup">8</span></a></p><p id="par0045" class="elsevierStylePara elsevierViewall">As a result of these technological and knowledge changes, in recent years scientific production has increased exponentially in terms of microbiota. When the term ‘microbiota” was entered into PubMed in 2006, it would give 289 results; in 2017 it would give 6683. And a search for the term ‘metagenomic’, has gone from 65 publications in 2006 to 1659 in 2017.</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0030">The human holobion</span><p id="par0050" class="elsevierStylePara elsevierViewall">Recently, in 2016, the relationship between the number of human and bacterial cells in the human holobion was revised. Thus, it is estimated that a male human body weighing approximately 70<span class="elsevierStyleHsp" style=""></span>kg comprises 3.0<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>10<span class="elsevierStyleSup">13</span> cells, most of them corresponding to erythrocytes, which total a weight of approximately 46<span class="elsevierStyleHsp" style=""></span>kg. The numbers do not vary much for a female of equal weight. For this same model, bacteria provide a much lower weight, around 200 grams, but the number of bacteria is around 3.8<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>10<span class="elsevierStyleSup">13</span> (somewhat higher, 4.4<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>10<span class="elsevierStyleSup">13</span> for women), that is, a number slightly higher than that of human cells, but in a ratio close to 1:1.<a class="elsevierStyleCrossRef" href="#bib0340"><span class="elsevierStyleSup">9</span></a></p><p id="par0055" class="elsevierStylePara elsevierViewall">If instead of number of cells we study the gene, considering that human cells share the same genetic load, but the microorganisms of the microbiota do not, the ratio shoots up in favour of the bacteria, which contribute 3.3<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>10<span class="elsevierStyleSup">6</span> genes to the holobiont, exceeding human genes by about 150 times.<a class="elsevierStyleCrossRef" href="#bib0345"><span class="elsevierStyleSup">10</span></a> We also know today that 10% of the metabolites found in the blood of mammals is bacterial.<a class="elsevierStyleCrossRef" href="#bib0350"><span class="elsevierStyleSup">11</span></a></p><p id="par0060" class="elsevierStylePara elsevierViewall">Until recently, it was assumed that newborns were sterile, and that the first contact with microorganisms occurred in the birth canal. Today it is suggested that the implantation of the microbiota in the holobiont occurs before birth, having been shown that there are microbial communities in the uterus, semen, placenta, amniotic fluid, umbilical cord and meconium. However, it is during vaginal delivery and during lactation that large bacterial communities are introduced into the intestine of the new human being. At the end of lactation, and coinciding with solid feeding, the ideal conditions for the growth of bacteria that degrade plant polysaccharides, such as <span class="elsevierStyleItalic">Bacteroidetes</span>, prepare the way for the implantation of the second dominant phyla in the human intestinal microbiota, <span class="elsevierStyleItalic">Firmicutes</span>. Thus, at age three, the microbiota is already mature, diverse and stable, and it will remain that way, except for changes that are maintained over time, until old age, where an impoverishment in bacterial diversity is again observed with an increase in anaerobes, which subtracts adaptation capacity from the microbiota, increasing the risk of dysbiosis.<a class="elsevierStyleCrossRef" href="#bib0355"><span class="elsevierStyleSup">12</span></a></p></span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0035">Functions of the microbiota</span><p id="par0065" class="elsevierStylePara elsevierViewall">Nowadays, fundamentally thanks to studies carried out with axenic mice (those reared in sterile conditions that ensure the absence of germs in their organism), we can confirm that the microbiota is necessary, but not vital, for adequate development and metabolic functioning. <a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a> summarises the functions that the aforementioned microbiota contribute to the holobion, and in turn for the study and understanding of multiple sclerosis (MS), the maturation and development of the central nervous system (CNS) and the development and modulation of the immune response.<a class="elsevierStyleCrossRef" href="#bib0360"><span class="elsevierStyleSup">13</span></a></p><elsevierMultimedia ident="tbl0005"></elsevierMultimedia><p id="par0070" class="elsevierStylePara elsevierViewall">The presence of cerebral anomalies in axenic mice, and their reversibility through early recolonisation – not when it is carried out in adult life – has revealed the influence of the microbiota on brain development.<a class="elsevierStyleCrossRefs" href="#bib0365"><span class="elsevierStyleSup">14,15</span></a> The term bowel–brain axis is used to describe the close relationship between the bowel and the CNS, both at afferent and efferent levels. Bidirectional modulation occurs at the following levels: hormonal, mediated by adrenocorticotropin and cortisol; nervous, mainly through the vagus nerve; immunological, and through neurotransmitters, where the role of serotonin, but also of adrenaline and dopamine, stand out.<a class="elsevierStyleCrossRef" href="#bib0375"><span class="elsevierStyleSup">16</span></a></p><p id="par0075" class="elsevierStylePara elsevierViewall">In addition to MS, the microbiota has been implicated in various pathologies that affect the normal functioning of the CNS, such as mood alterations, autism spectrum disorders, attention deficit hyperactivity disorder, and optic neuromyelitis.<a class="elsevierStyleCrossRef" href="#bib0380"><span class="elsevierStyleSup">17</span></a> Within this last autoimmune disease, belonging to the demyelinating spectrum, in addition to the role played by the microbiota in the CNS and in the immunological regulation, we now know that those positive aquaporin patients are capable of developing a cross-reactivity with a homologous sequence in an epitope present in <span class="elsevierStyleItalic">Clostridium perfringes</span>, representative of the commensal flora, suggesting that a mechanism of cellular mimicry may be involved in the activation of a Th17 response.<a class="elsevierStyleCrossRef" href="#bib0385"><span class="elsevierStyleSup">18</span></a></p><p id="par0080" class="elsevierStylePara elsevierViewall">Regarding the role of the intestinal microbiota in the immune response, it has been implicated in various mechanisms of the development and maturation of the immune system, both innate and adaptive, thus, to cite some examples, it has been involved in the regulation and maturation of the immune systems, Peyer's patches, mesenteric lymph nodes and germinal centres, in the regulation of the number of plasma cells that produce IgA, intestinal T lymphocytes and CD4+, with the same type of expression in the lamina propria or intraepithelial cells, as well as in the gene expression of TLR and Major histocompatibility complex II.<a class="elsevierStyleCrossRef" href="#bib0390"><span class="elsevierStyleSup">19</span></a></p><p id="par0085" class="elsevierStylePara elsevierViewall">On the other hand, the microbiota can modulate the immune system through numerous metabolites, which gives it a preponderant role in autoimmune diseases, and therefore in MS. First, bacteria can metabolise dietary components, such as dietary fibre, tryptophan or arginine, resulting in polyamines, indoles and short chain fatty acids, including propionic, butyric or acetic. The latter present a central role in the regulation of the immune response, increasing the expansion of regulatory T cells (tolerogenic), decreasing and favouring an anti-inflammatory phenotype in dendritic cells and decreasing the production of proinflammatory cytokines in neutrophils and macrophages,<a class="elsevierStyleCrossRef" href="#bib0395"><span class="elsevierStyleSup">20</span></a> in addition to promoting the integrity of the blood–brain barrier.<a class="elsevierStyleCrossRef" href="#bib0400"><span class="elsevierStyleSup">21</span></a></p><p id="par0090" class="elsevierStylePara elsevierViewall">Other mechanisms by which the microbiota regulates the immune response is through metabolites produced by the host and modified by bacteria, as is the case of secondary bile acids that regulate dendritic cells, macrophages and natural killers, or through metabolites produced de novo by bacteria; the protective role of polysaccharide A of <span class="elsevierStyleItalic">Bacteroides fragilis</span>, and the autoimmune progen of ATP produced by <span class="elsevierStyleItalic">segmented filamentous</span> bacteria have been much studied.<a class="elsevierStyleCrossRef" href="#bib0395"><span class="elsevierStyleSup">20</span></a></p></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">The microbiota in experimental autoimmune encephalomyelitis</span><p id="par0095" class="elsevierStylePara elsevierViewall">In the last decade, a large amount of scientific evidence has been produced that relates the experimental autoimmune encephalomyelitis (EAE), animal model of multiple sclerosis, with the intestinal microbiota.<a class="elsevierStyleCrossRef" href="#bib0405"><span class="elsevierStyleSup">22</span></a> Thus, in 2007, based on the studies carried out by Ochoa-Repáraz, intestinal bacterial began to be associated with peripheral tolerance and the prevention or treatment of EAE. It was shown that mice ‘vaccinated’ with the antigenic colonisation factor I (CFA/I) fimbriae of enterotoxigenic <span class="elsevierStyleItalic">Escherichia coli</span> presented a clinically milder, histologically less inflammatory disease, with less differentiation to T lymphocytes producers of IFN-Y, and greater than TregFoxP3+, lymphocytes, and overexpression of IL-4, IL-10, IL-13 and TGF-β.<a class="elsevierStyleCrossRefs" href="#bib0410"><span class="elsevierStyleSup">23–25</span></a> These studies showed that certain microbial components influence the development of EAE.</p><p id="par0100" class="elsevierStylePara elsevierViewall">To implicate the microbiota directly in the development of the EAE, mice were treated with broad-spectrum antibiotics prior to the induction of the disease, which hindered their development, reducing the production of proinflammatory cytokines and mesenteric Th17 cells,<a class="elsevierStyleCrossRef" href="#bib0425"><span class="elsevierStyleSup">26</span></a> also being implicated in the process to TregFoxP3+ lymphocytes and dendritic cells CD103+. In addition, the reintroduction of the microbiota in the mice reversed the effects of the antibiotics.<a class="elsevierStyleCrossRef" href="#bib0430"><span class="elsevierStyleSup">27</span></a> From these experiments it is clear that the presence or absence of intestinal microbiota affects the course of EAE.</p><p id="par0105" class="elsevierStylePara elsevierViewall">The next step was to try to involve certain specific microorganisms, or their products in the EAE. Thus, the polysaccharide A (PSA) of the <span class="elsevierStyleItalic">Bacteroides fragilis capsule</span>, known for its protective role in inflammatory bowel disease was tested for its ability to correct deviations between Th1 proinflammatory and Th2 more tolerogenic, lymphocytes. For this, mice were treated with antibiotics and re-colonised with <span class="elsevierStyleItalic">B. fragilis</span> PSA+ or PSA− were used, and it was seen that the first maintained an EAE resistance, presenting a greater ratio of TregFoxP3+ lymphocytes producing IL-10 (tolerogenic). A similar effect was obtained when treating only with purified PSA administered orally. These benefits were lost if the mice in the experiment were deficient for the production of IL-10.<a class="elsevierStyleCrossRefs" href="#bib0435"><span class="elsevierStyleSup">28–31</span></a> In the opposite direction, and now working with axenic mice, it was demonstrated that monocolonisation with <span class="elsevierStyleItalic">segmented filamentous bacteria</span> generated EAE in predisposed mice, implicating the Th17 lymphocytes (pro-autoimmune) and the IL-17 produced by them in the process, which increased at both gastrointestinal and CNS levels.<a class="elsevierStyleCrossRef" href="#bib0455"><span class="elsevierStyleSup">32</span></a> This demonstrated that certain bacteria or bacterial products alone could have a protective or inducer role in EAE.</p><p id="par0110" class="elsevierStylePara elsevierViewall">Also working with axenic mice, capable of developing EAE spontaneously, and after the administration of the self-antigen target, the MOG (myelin oligodendrocyte glycoprotein), a lower production of antibodies was observed. The replacement of the microbiota in conjunction with MOG produced an inflammatory response and a rapid increase in the production of antibodies against MOG.<a class="elsevierStyleCrossRef" href="#bib0460"><span class="elsevierStyleSup">33</span></a> With this, the implication of humoral immunity was added to the already known mechanisms by which the microbiota intervenes in the EAE.</p><p id="par0115" class="elsevierStylePara elsevierViewall">Since then, numerous studies have been published that implicate multiple microorganisms – some used as probiotics – and various immunological mechanisms in the modulation of the immune response in EAE.<a class="elsevierStyleCrossRefs" href="#bib0465"><span class="elsevierStyleSup">34–41</span></a> Today we can state that there is important evidence showing the modulation of the immune response in the EAE by the microbiota, which influences the genesis, prevention and treatment of the EAE, based mainly on three immunological pillars, the Th1-Th17/Th2 equilibrium, Treg cells and humoural immunity.</p></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0045">The microbiota in multiple sclerosis</span><p id="par0120" class="elsevierStylePara elsevierViewall">The first studies linking MS with the microbiota were presented in the form of poster communications in congresses, during the 2014 American Academy of Neurology (AAN) meeting. The first was presented by the Jangi group, and presented the results of a yet unpublished study – which we will explore further below – that showed an increase in <span class="elsevierStyleItalic">archeas</span> (microorganisms straddling bacteria and eukaryotes) in patients with MS and a decrease in butyrate producing microorganisms.<a class="elsevierStyleCrossRef" href="#bib0505"><span class="elsevierStyleSup">42</span></a> The second of the papers presented in this congress, a modest study with seven patients and eight controls, also published later, showed differences between patients with MS and controls at the phyla level, but that were not statistically significant.<a class="elsevierStyleCrossRef" href="#bib0510"><span class="elsevierStyleSup">43</span></a></p><p id="par0125" class="elsevierStylePara elsevierViewall">That same year, the following data were presented at the ACTRIMS-ECTRIMS meeting in Boston: a preliminary study carried out on a paediatric population showing differences in certain bacterial genres; a second poster that further explored the immunological mechanisms presented by Jangi, and a third study outlining the role of human Treg lymphocytes and IL-10 in lymphocyte cultures in the presence of <span class="elsevierStyleItalic">B. fragilis</span> PSA.<a class="elsevierStyleCrossRef" href="#bib0515"><span class="elsevierStyleSup">44</span></a></p><p id="par0130" class="elsevierStylePara elsevierViewall">Later in 2015, the study presented in the AAN meeting by Mowry was published; this was a substudy of another study carried out whose objectives were to demonstrate the influence of treatment with vitamin D on patients with MS. They presented differences between eight healthy control subjects and seven with MS – two without treatment and five treated with glatiramer acetate – which were mainly associated with sex and changes in treatment; however, the study weakness, sample size and methodological problems where three of the treated patients gave stool samples outside the initially defined period, limited theses results.<a class="elsevierStyleCrossRef" href="#bib0520"><span class="elsevierStyleSup">45</span></a></p><p id="par0135" class="elsevierStylePara elsevierViewall">Subsequently, also in 2015, Miyake et al. published the first descriptive and comparative study with a significant number of patients – working with a Japanese population, the authors managed to recruit 20 patients with relapsing-remitting MS (RRMS) and 40 healthy controls. The first observation, and one which has been maintained throughout the different published studies, is that patients with RRMS did not present differences compared to healthy patients in the alpha diversity, i.e. the bacterial richness, the differences resided in specific taxa and not in the total number of species that comprised individuals’ intestinal microbiota. Apropos specific taxa: they reveal differences at the phyla level, although not statistically significance differences. They are, however, statistically significant in the abundance of 21 species, belonging mainly to taxa included in the <span class="elsevierStyleItalic">clostridia</span> XIVa and IV clusters and in the phylum <span class="elsevierStyleItalic">Bacteroidetes</span>, taxa involved in the production of short chain fatty acids.<a class="elsevierStyleCrossRef" href="#bib0525"><span class="elsevierStyleSup">46</span></a></p><p id="par0140" class="elsevierStylePara elsevierViewall">One year later, a study by Chen et al. into a North American population was published comparing 36 controls and 31 patients with RRMS. This study focused on a difference in species richness between patients with active MS and those in remission and the control group, although this difference may be caused by the fact that patients undergoing corticosteroid treatment were not excluded. This group also revealed changes in certain bacterial genera, reinforcing the idea that the profile of microbial communities in MS varies specific taxa.<a class="elsevierStyleCrossRef" href="#bib0530"><span class="elsevierStyleSup">47</span></a></p><p id="par0145" class="elsevierStylePara elsevierViewall">Tremlett et al. carried out a study with 18 patients with RRMS and 17 healthy controls also in the North American population, but in this case the sample was from the paediatric age. Concurring with what had been published until then, the authors found no differences in alpha diversity, but they did find differences in certain genres, with an emphasis in the enrichment in MS patients of genres involved in the metabolism of glutathione.<a class="elsevierStyleCrossRef" href="#bib0535"><span class="elsevierStyleSup">48</span></a> In another study, this same group found an inverse relationship between the <span class="elsevierStyleItalic">Bacteroidetes</span> phylum and Th17, and a direct relationship between richness and Th17 in patients with MS, but not in controls.<a class="elsevierStyleCrossRef" href="#bib0540"><span class="elsevierStyleSup">49</span></a></p><p id="par0150" class="elsevierStylePara elsevierViewall">Going one step further, the Jangi group, which had already submitted partial results in the 2014 ANA, published an article using a North American adult population, 60 patients with MS and 43 control subjects, and, in addition to looking for differences at the metagenomic level in faeces by means of two different techniques, they took serum from the subjects and performed a profile analysis of gene expression in mononuclear cells. Thus, in addition to demonstrating differences in the abundance of certain genera, they found a correlation between their abundance and the expression of genes related to the maturation of dendritic cells, and the signalling of interferons or NF-kB in T lymphocytes and circulating monocytes, coinciding with the fact that these alterations in the abundance of taxa are associated with immunological changes that point to pro or anti-inflammatory profiles.<a class="elsevierStyleCrossRef" href="#bib0545"><span class="elsevierStyleSup">50</span></a></p><p id="par0155" class="elsevierStylePara elsevierViewall">Recently, in October 2017, two studies were published by the same group combining the studies carried out in humans, in vitro and in animal models. Thus, in a first phase of the study, intestinal microbiota samples obtained from control subjects and patients with MS were compared using metagenomics, and colonisation of animal models was subsequently carried out with the microbiota obtained from each of the groups to explore the ‘clinical evolution’ in EAE.</p><p id="par0160" class="elsevierStylePara elsevierViewall">In the first of these, 71 patients with MS and 71 controls were chosen, and those bacteria that were increased and decreased in subjects with MS were identified. Subsequently, it was observed that those taxa that were increased in patients with MS were able to increase the inflammatory response both in vitro, in lymphocyte colonies, and in vivo, in axenic mice, which were subsequently monocolonised with these bacteria. Likewise, the diminished bacteria in patients with MS were able to stimulate the differentiation to IL-10+ T lymphocytes in vitro, and to stimulate Treg in monocolonised mice. Finally, they demonstrated that mice colonised with microbiota MS showed severe symptoms of EAE and a decreased proportion of IL-10+ Treg lymphocytes.<a class="elsevierStyleCrossRef" href="#bib0550"><span class="elsevierStyleSup">51</span></a></p><p id="par0165" class="elsevierStylePara elsevierViewall">In the second series, first carried out with a European population, in Germany, an almost perfect control group was sought. Thus, they took 34 pairs of twins that differed in the disease, that is, one that was healthy and the other who had it. Increased bacteria were identified in the subjects affected by MS who were not treated compared to the controls, and it was subsequently observed that the mice that had been colonised with the faeces of the patients, generated in mice models for spontaneous cerebral autoimmunity a higher incidence of autoimmunity and a lower production of IL-10.<a class="elsevierStyleCrossRef" href="#bib0555"><span class="elsevierStyleSup">52</span></a></p><p id="par0170" class="elsevierStylePara elsevierViewall">Finally, and already in 2018, a study carried out in a Spanish population with 15 patients with RRMS who were not treated, 15 who were treated with interferon-β1b and 14 control subjects, showed statistically significant differences in the β diversity of MS patients compared to controls, specifically in four phyla and 17 taxa at the species level. In addition this study showed statistically significant differences between patients who were not treated and those treated with interferon-β-1b in <span class="elsevierStyleItalic">Prevotella copri</span>, a species previous studies have implicated in the protection against MS, which opens the door to investigating a possible role of treatment of the disease in the normalisation of the changes produced in the microbiota of patients affected by MS and possible clinical benefits associated with this event.<a class="elsevierStyleCrossRef" href="#bib0560"><span class="elsevierStyleSup">53</span></a></p><p id="par0175" class="elsevierStylePara elsevierViewall">The results of the main studies described into patients with multiple sclerosis are presented in <a class="elsevierStyleCrossRef" href="#tbl0010">Table 2</a></p><elsevierMultimedia ident="tbl0010"></elsevierMultimedia></span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0050">Unanswered questions</span><p id="par0180" class="elsevierStylePara elsevierViewall">There are still many questions surrounding the role of the microbiota in MS. First, none of the studies carried out so far in humans has been able to demonstrate causality, and answer the question of what came first, whether it was the chicken or the egg; i.e. is it the alterations in the microbiota that condition a susceptibility to MS? Or vice versa, does the disease condition changes in the microbiota?</p><p id="par0185" class="elsevierStylePara elsevierViewall">Second, the revolution that metagenomics has supposed, based on the study of 16s ribosomal DNA, leaves out by definition other microorganisms that do not possess said DNA, such as fungi. There are certain indications – studies that associate antigens or antibodies against certain fungi with MS, or the fact that dimethyl fumarate was initially used as an antifungal – that suggests that fungi may have a role to study in MS.<a class="elsevierStyleCrossRefs" href="#bib0565"><span class="elsevierStyleSup">54,55</span></a> For the same reason, we also need to study the possible role of viruses in the disease, beyond the well-known role of the Epstein Barr virus.<a class="elsevierStyleCrossRef" href="#bib0575"><span class="elsevierStyleSup">56</span></a></p><p id="par0190" class="elsevierStylePara elsevierViewall">The possible therapeutic utility of interventions related to the microbiota in MS has also been pointed out in very modest studies, such as stool transplantation,<a class="elsevierStyleCrossRef" href="#bib0580"><span class="elsevierStyleSup">57</span></a> administration to probiotic patients,<a class="elsevierStyleCrossRef" href="#bib0585"><span class="elsevierStyleSup">58</span></a> or dietary interventions aimed at increasing the amount of non-digestible polysaccharides available that can act as prebiotics and that are associated with changes in the microbiota, in addition to immunological and clinical changes in patients.<a class="elsevierStyleCrossRef" href="#bib0590"><span class="elsevierStyleSup">59</span></a></p></span><span id="sec0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0055">Conclusions</span><p id="par0195" class="elsevierStylePara elsevierViewall">The role of the microbiota in autoimmune diseases has gained much interest in the last 15 years, due to the development of metagenomics and the concept of the holobiont. It could be said that certain pathologies cause the holobiont to fall ill – a group comprising the human being and its microbiota – rather than the human being, the former having the greater number of genes, a 150:1 ratio, that play a fundamental role in the maturation and immune regulation, this fact being what allows the microbiota to influence the health-disease state, especially notable in the field of autoimmune diseases.</p><p id="par0200" class="elsevierStylePara elsevierViewall">To date, there is extensive evidence showing the role of the microbiota in the genesis, prevention and treatment of EAE, based mainly on three immunological pillars, the Th1–Th17/Th2 equilibrium, Treg cells and humoural immunity. It is also well documented that there are differences in the microbiota of patients with MS which are associated with a different expression of genes related to inflammation.</p><p id="par0205" class="elsevierStylePara elsevierViewall">There are still many open questions – such as those that demonstrate causality, i.e. whether it is the microbiota that influences the disease or vice versa, the role of viruses or fungi and the usefulness of probiotics, dietary interventions and stool transplants, etc. – which when answered may be able to give a totally novel perspective to the understanding of the physiopathological and therapeutic mechanisms of certain autoimmune diseases, among them MS.</p></span><span id="sec0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0060">Conflict of interest</span><p id="par0210" class="elsevierStylePara elsevierViewall">The authors declare no conflict of interest.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:13 [ 0 => array:3 [ "identificador" => "xres1148387" "titulo" => "Abstract" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0005" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec1077690" "titulo" => "Keywords" ] 2 => array:3 [ "identificador" => "xres1148386" "titulo" => "Resumen" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0010" ] ] ] 3 => array:2 [ "identificador" => "xpalclavsec1077691" "titulo" => "Palabras clave" ] 4 => array:2 [ "identificador" => "sec0005" "titulo" => "Introduction" ] 5 => array:2 [ "identificador" => "sec0010" "titulo" => "The human holobion" ] 6 => array:2 [ "identificador" => "sec0015" "titulo" => "Functions of the microbiota" ] 7 => array:2 [ "identificador" => "sec0020" "titulo" => "The microbiota in experimental autoimmune encephalomyelitis" ] 8 => array:2 [ "identificador" => "sec0025" "titulo" => "The microbiota in multiple sclerosis" ] 9 => array:2 [ "identificador" => "sec0030" "titulo" => "Unanswered questions" ] 10 => array:2 [ "identificador" => "sec0035" "titulo" => "Conclusions" ] 11 => array:2 [ "identificador" => "sec0040" "titulo" => "Conflict of interest" ] 12 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2018-07-02" "fechaAceptado" => "2018-08-31" "PalabrasClave" => array:2 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec1077690" "palabras" => array:6 [ 0 => "Microbiota" 1 => "Microbiome" 2 => "Holobiont" 3 => "Hologenoma" 4 => "Multiple sclerosis" 5 => "Experimental autoimmune encephalomyelitis" ] ] ] "es" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec1077691" "palabras" => array:6 [ 0 => "Microbiota" 1 => "Microbioma" 2 => "Holobionte" 3 => "Hologenoma" 4 => "Esclerosis múltiple" 5 => "Encefalomielitis autoinmune experimental" ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "en" => array:2 [ "titulo" => "Abstract" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">In recent years there has been a revolution regarding the role of the microbiota in different diseases, most of them within the spectrum of inflammatory and autoimmune diseases, associated with the development of metagenomics and the concept of holobiont, a large organism together with its microbiota. Specifically, in Multiple Sclerosis, multiple evidence points to the role of the microbiota in experimental autoimmune encephalomyelitis, animal model of the disease, and several articles have been published in recent years about differences in intestinal microbiota among patients with multiple sclerosis and control subjects. We review in this article the concept of holobiont and the gut microbiota functions, as well as the evidence accumulated about the role of the microbiota in experimental autoimmune encephalomyelitis and multiple sclerosis. Nowadays, there is a lot of evidence showing the role of the microbiota in the genesis, prevention and treatment of experimental autoimmune encephalomyelitis based mainly on three immunological pillars, the Th1–Th17/Th2 balance, the Treg cells and the humoral immunity. It is also well documented that there are differences in the microbiota of patients with MS that are associated with a different expression of genes related to inflammation.</p></span>" ] "es" => array:2 [ "titulo" => "Resumen" "resumen" => "<span id="abst0010" class="elsevierStyleSection elsevierViewall"><p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">En los últimos años se ha producido una revolución en torno al papel de la microbiota en diferentes enfermedades, la mayoría dentro del espectro de las inflamatorias y autoinmunes, asociado al desarrollo de la metagenómica y al concepto de holobionte, entendido como el conjunto formado por los organismos superiores y su microbiota. Concretamente, en la esclerosis múltiple, existe múltiple evidencia acerca del papel de la microbiota en la encefalomielitis autoinmune experimental, modelo animal de la enfermedad y se han publicado en los últimos años diversos artículos acerca de las diferencias en la microbiota intestinal entre pacientes enfermos de esclerosis múltiple y sujetos control. En este artículo revisamos el concepto de holobionte y las funciones de la microbiota dentro del mismo, así como la evidencia acumulada en el papel de la microbiota en la encefalomielitis autoinmune experimental y en la esclerosis múltiple. A día de hoy, existe una amplia evidencia científica del papel de la microbiota en la génesis, prevención y tratamiento de la encefalomielitis autoinmune experimental en base fundamentalmente a tres pilares inmunológicos, el equilibrio Th1-Th17/Th2, las células Treg y la inmunidad humoral. Así mismo está bien documentado que existen diferencias en la microbiota de pacientes con EM que se asocian a una diferente expresión de genes relacionados con la inflamación.</p></span>" ] ] "NotaPie" => array:1 [ 0 => array:2 [ "etiqueta" => "☆" "nota" => "<p class="elsevierStyleNotepara" id="npar0005">Please cite this article as: Castillo-Álvarez F, Marzo-Sola ME. El holobionte enfermo, el ejemplo de la esclerosis múltiple. Med Clin (Barc). 2019;152:147–153.</p>" ] ] "multimedia" => array:2 [ 0 => array:8 [ "identificador" => "tbl0005" "etiqueta" => "Table 1" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at1" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:1 [ "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Integrity of the epithelial barrier \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Barrier to the colonisation of pathogens \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Development of the immune response \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Energy source \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Biosynthesis of vitamins \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Transformation of bile salts \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Metabolism of xenobiotics \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Maturation and development of the central nervous system \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab1959482.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Biological functions of the gut microbiota in humans.</p>" ] ] 1 => array:8 [ "identificador" => "tbl0010" "etiqueta" => "Table 2" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at2" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:2 [ "leyenda" => "<p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">MS: multiple sclerosis; EAE: experimental autoimmune encephalomyelitis; IFN: interferon.</p>" "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Medullary \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Sample \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Results \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Ref \t\t\t\t\t\t\n \t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Cases and controls \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">7 patients<br>8 controls<br>American adults \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Differences in <span class="elsevierStyleItalic">Firmicutes</span>, <span class="elsevierStyleItalic">Bacteroidetes</span> and <span class="elsevierStyleItalic">Proteobacteria</span> but not statistically significant \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top"><a class="elsevierStyleCrossRef" href="#bib0520"><span class="elsevierStyleSup">45</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Cases and controls \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">20 patients<br>40 controls<br>18 long-term controls<br>Japanese adults \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Not statistically significant differences in <span class="elsevierStyleItalic">Actinobacteria</span>, <span class="elsevierStyleItalic">Bacteroidetes</span> and <span class="elsevierStyleItalic">Firmicutes</span> phyla<br>Statistically significant differences in 21 species, 14 belonging to <span class="elsevierStyleItalic">Clostridia</span> XIVa and IV groupings \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top"><a class="elsevierStyleCrossRef" href="#bib0525"><span class="elsevierStyleSup">46</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Cases and controls \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">31 patients<br>36 controls<br>American adults \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Increase among patients in the <span class="elsevierStyleItalic">Pseudomonas</span>, <span class="elsevierStyleItalic">Mycoplana</span>, <span class="elsevierStyleItalic">Haemophilus</span>, <span class="elsevierStyleItalic">Blautia</span> and <span class="elsevierStyleItalic">Dorea</span> genera. Increase in controls of <span class="elsevierStyleItalic">Parabacteroides</span>, <span class="elsevierStyleItalic">Adlercreutzia</span> and <span class="elsevierStyleItalic">Prevotella</span> genera \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top"><a class="elsevierStyleCrossRef" href="#bib0530"><span class="elsevierStyleSup">47</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Cases and controls \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">20 patients<br>16 controls<br>American children \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Enrichment in patients in the relative abundance of genera belonging to <span class="elsevierStyleItalic">Desulfovibrionaceae</span> (<span class="elsevierStyleItalic">Bilophila</span>, <span class="elsevierStyleItalic">Desulfovibrio</span> and <span class="elsevierStyleItalic">Christensenellaceae</span>) and between controls in <span class="elsevierStyleItalic">Lachnospiraceae</span> and <span class="elsevierStyleItalic">Ruminococcaceae</span>. Increase in bacteria involved in glutathione metabolism \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top"><a class="elsevierStyleCrossRef" href="#bib0535"><span class="elsevierStyleSup">48</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Cases and controls \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">15 patients<br>9 controls<br>American children \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Relationship in the direct cases between richness and Th17 and inverse between Bacteroidetes and Th17<br>Relationship in the controls between Fusobacteria and the Tregs \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top"><a class="elsevierStyleCrossRef" href="#bib0540"><span class="elsevierStyleSup">49</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Cases and controls \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">60 patients<br>43 controls<br>American adults \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Increase in MS of <span class="elsevierStyleItalic">Methanobrevibacteriaceae</span> and Akkermansia, and decrease of <span class="elsevierStyleItalic">Butyricimonas</span>, and correlation with gene expression of interleukins of T cells and monocytes<br>Increase in patients treated for <span class="elsevierStyleItalic">Prevotella</span> and <span class="elsevierStyleItalic">Sutterella</span>, and decrease in <span class="elsevierStyleItalic">Sarcina</span><br>Increase of exhaled methane in patients with MS \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top"><a class="elsevierStyleCrossRef" href="#bib0545"><span class="elsevierStyleSup">50</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Cases and controls<br><br>In vitro<br><br>Animal models \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">71 patients<br>71 controls<br>American adults \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Differences in the relative abundance of 25 bacterial genera<br>Induction of proinflammatory response in mononuclear cells and in monocolonised mice with <span class="elsevierStyleItalic">Akkermansia muciniphila</span> and <span class="elsevierStyleItalic">Acinetobacter calcoaceticus</span>, increased in MS; induction of anti-inflammatory response by <span class="elsevierStyleItalic">Parabacteroides distasonis</span>, increased in controls.<br>More severe EAE in mice colonised with the patient's microbiota. \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top"><a class="elsevierStyleCrossRef" href="#bib0550"><span class="elsevierStyleSup">51</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Cases and controls<br><br>Animal models \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">34 pairs of twins one with the disease, the other control<br>German adults \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Increase in certain taxa increased in patients with MS who were not treated versus controls.<br>Mice colonised with patients’ faeces had a higher incidence of autoimmunity and lower production of IL-10. \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top"><a class="elsevierStyleCrossRef" href="#bib0555"><span class="elsevierStyleSup">52</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Cases and controls \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">14 controls<br>15 patients who were not treated<br>15 patients treated with IFN-β1b<br>Spanish Adults \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Differences in 4 phyla and 17 taxa at the species level.<br>Statistically significant differences between patients who were not treated and those treated with interferon-β1b in <span class="elsevierStyleItalic">Prevotella copri</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top"><a class="elsevierStyleCrossRef" href="#bib0560"><span class="elsevierStyleSup">53</span></a> \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab1959483.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">Summary of studies into microbiota in multiple sclerosis.</p>" ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0015" "bibliografiaReferencia" => array:59 [ 0 => array:3 [ "identificador" => "bib0300" "etiqueta" => "1" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The coral probiotic hypothesis" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "L. Reshef" 1 => "O. Koren" 2 => "Y. Loya" 3 => "I. Zilber-Rosenberg" 4 => "E. Rosenberg" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/j.1462-2920.2006.01148.x" "Revista" => array:6 [ "tituloSerie" => "Environ Microbiol" "fecha" => "2006" "volumen" => "8" "paginaInicial" => "2068" "paginaFinal" => "2073" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17107548" "web" => "Medline" ] ] ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0305" "etiqueta" => "2" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "I. Zilber-Rosenberg" 1 => "E. Rosenberg" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/j.1574-6976.2008.00123.x" "Revista" => array:6 [ "tituloSerie" => "FEMS Microbiol Rev" "fecha" => "2008" "volumen" => "32" "paginaInicial" => "723" "paginaFinal" => "735" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18549407" "web" => "Medline" ] ] ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0310" "etiqueta" => "3" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Bioinformatics for whole-genome shotgun sequencing of microbial communities" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "K. Chen" 1 => "L. Pachter" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "PLoS Comput Biol" "fecha" => "2005" "volumen" => "1" "paginaInicial" => "106" "paginaFinal" => "112" ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0315" "etiqueta" => "4" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "J.G. Caporaso" 1 => "C.L. Lauber" 2 => "W.A. Walters" 3 => "D. Berg-Lyons" 4 => "J. Huntley" 5 => "N. Fierer" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/ismej.2012.8" "Revista" => array:6 [ "tituloSerie" => "ISME J" "fecha" => "2012" "volumen" => "6" "paginaInicial" => "1621" "paginaFinal" => "1624" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22402401" "web" => "Medline" ] ] ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0320" "etiqueta" => "5" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The Ribosomal Database Project: improved alignments and new tools for rRNA analysis" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "J.R. Cole" 1 => "Q. Wang" 2 => "E. Cardenas" 3 => "J. Fish" 4 => "B. Chai" 5 => "R.J. Farris" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1093/nar/gkn879" "Revista" => array:6 [ "tituloSerie" => "Nucleic Acids Res" "fecha" => "2009" "volumen" => "37" "paginaInicial" => "D141" "paginaFinal" => "D145" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19004872" "web" => "Medline" ] ] ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0325" "etiqueta" => "6" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Chapter 12: Human microbiome analysis. Lewitter F, Kann M, editors" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "XC Morgan" 1 => "C. Huttenhower" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1371/journal.pcbi.1002808" "Revista" => array:5 [ "tituloSerie" => "PLoS Comput Biol" "fecha" => "2012" "volumen" => "8" "paginaInicial" => "e1002808" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23300406" "web" => "Medline" ] ] ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0330" "etiqueta" => "7" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Computational meta’omics for microbial community studies" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "N. Segata" 1 => "D. Boernigen" 2 => "T.L. Tickle" 3 => "X.C. Morgan" 4 => "W.S. Garrett" 5 => "C. Huttenhower" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/msb.2013.22" "Revista" => array:5 [ "tituloSerie" => "Mol Syst Biol" "fecha" => "2013" "volumen" => "9" "paginaInicial" => "666" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23670539" "web" => "Medline" ] ] ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0335" "etiqueta" => "8" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "History and impact of RDP: a legacy from Carl Woese to microbiology" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "J.R. Cole" 1 => "J.M. Tiedje" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.4161/rna.28306" "Revista" => array:7 [ "tituloSerie" => "RNA Biol" "fecha" => "2014" "volumen" => "11" "paginaInicial" => "239" "paginaFinal" => "243" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/24607969" "web" => "Medline" ] ] "itemHostRev" => array:3 [ "pii" => "S0167527315300309" "estado" => "S300" "issn" => "01675273" ] ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0340" "etiqueta" => "9" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Revised estimates for the number of human and bacteria cells in the body" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "R. Sender" 1 => "S. Fuchs" 2 => "R. Milo" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1371/journal.pbio.1002533" "Revista" => array:5 [ "tituloSerie" => "PLoS Biol" "fecha" => "2016" "volumen" => "14" "paginaInicial" => "e1002533" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27541692" "web" => "Medline" ] ] ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0345" "etiqueta" => "10" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A human gut microbial gene catalogue established by metagenomic sequencing" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "J. Qin" 1 => "R. Li" 2 => "J. Raes" 3 => "M. Arumugam" 4 => "K.S. Burgdorf" 5 => "C. Manichanh" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/nature08821" "Revista" => array:6 [ "tituloSerie" => "Nature" "fecha" => "2010" "volumen" => "464" "paginaInicial" => "59" "paginaFinal" => "65" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20203603" "web" => "Medline" ] ] ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0350" "etiqueta" => "11" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "W.R. Wikoff" 1 => "A.T. Anfora" 2 => "J. Liu" 3 => "P.G. Schultz" 4 => "S.A. Lesley" 5 => "E.C. Peters" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1073/pnas.0812874106" "Revista" => array:6 [ "tituloSerie" => "Proc Natl Acad Sci U S A" "fecha" => "2009" "volumen" => "106" "paginaInicial" => "3698" "paginaFinal" => "3703" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19234110" "web" => "Medline" ] ] ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0355" "etiqueta" => "12" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Our gut microbiome: the evolving inner self" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "P. Kundu" 1 => "E. Blacher" 2 => "E. Elinav" 3 => "S. Pettersson" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.cell.2017.11.024" "Revista" => array:6 [ "tituloSerie" => "Cell" "fecha" => "2017" "volumen" => "171" "paginaInicial" => "1481" "paginaFinal" => "1493" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/29245010" "web" => "Medline" ] ] ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0360" "etiqueta" => "13" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Compositional and functional features of the gastrointestinal microbiome and their effects on human health" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "E.B. Hollister" 1 => "C. Gao" 2 => "J. Versalovic" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1053/j.gastro.2014.01.052" "Revista" => array:7 [ "tituloSerie" => "Gastroenterology" "fecha" => "2014" "volumen" => "146" "paginaInicial" => "1449" "paginaFinal" => "1458" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/24486050" "web" => "Medline" ] ] "itemHostRev" => array:3 [ "pii" => "S0168827816303075" "estado" => "S300" "issn" => "01688278" ] ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0365" "etiqueta" => "14" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The interplay between the intestinal microbiota and the brain" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "S.M. Collins" 1 => "M. Surette" 2 => "P. Bercik" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/nrmicro2876" "Revista" => array:6 [ "tituloSerie" => "Nat Rev Microbiol" "fecha" => "2012" "volumen" => "10" "paginaInicial" => "735" "paginaFinal" => "742" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23000955" "web" => "Medline" ] ] ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0370" "etiqueta" => "15" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The gut microbiome and the brain" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "L. Galland" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1089/jmf.2014.7000" "Revista" => array:6 [ "tituloSerie" => "J Med Food" "fecha" => "2014" "volumen" => "17" "paginaInicial" => "1261" "paginaFinal" => "1272" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25402818" "web" => "Medline" ] ] ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0375" "etiqueta" => "16" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "J.F. Cryan" 1 => "T.G. Dinan" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/nrn3346" "Revista" => array:6 [ "tituloSerie" => "Nat Rev Neurosci" "fecha" => "2012" "volumen" => "13" "paginaInicial" => "701" "paginaFinal" => "712" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22968153" "web" => "Medline" ] ] ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0380" "etiqueta" => "17" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Gut–microbiota–brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "A.I. Petra" 1 => "S. Panagiotidou" 2 => "E. Hatziagelaki" 3 => "J.M. Stewart" 4 => "P. Conti" 5 => "T.C. Theoharides" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.clinthera.2015.04.002" "Revista" => array:6 [ "tituloSerie" => "Clin Ther" "fecha" => "2015" "volumen" => "37" "paginaInicial" => "984" "paginaFinal" => "995" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/26046241" "web" => "Medline" ] ] ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib0385" "etiqueta" => "18" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The gut microbiome in neuromyelitis optica" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "S.S. Zamvil" 1 => "C.M. Spencer" 2 => "S.E. Baranzini" 3 => "B.A.C. Cree" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Neurother J Am Soc Exp Neurother" "fecha" => "2018" "volumen" => "15" "paginaInicial" => "92" "paginaFinal" => "101" ] ] ] ] ] ] 18 => array:3 [ "identificador" => "bib0390" "etiqueta" => "19" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Commensal gut flora and brain autoimmunity: a love or hate affair?" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "K. Berer" 1 => "G. Krishnamoorthy" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Acta Neuropathol (Berl)" "fecha" => "2012" "volumen" => "123" "paginaInicial" => "639" "paginaFinal" => "651" ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bib0395" "etiqueta" => "20" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Understanding the holobiont: how microbial metabolites affect human health and shape the immune system" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "T.S. Postler" 1 => "S. Ghosh" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.cmet.2017.05.008" "Revista" => array:6 [ "tituloSerie" => "Cell Metab" "fecha" => "2017" "volumen" => "26" "paginaInicial" => "110" "paginaFinal" => "130" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28625867" "web" => "Medline" ] ] ] ] ] ] ] ] 20 => array:3 [ "identificador" => "bib0400" "etiqueta" => "21" "referencia" => array:1 [ 0 => array:3 [ "comentario" => "a029017" "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The gut microbiome and multiple sclerosis" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "J. Ochoa-Repáraz" 1 => "T.O. Kirby" 2 => "L.H. Kasper" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:3 [ "tituloSerie" => "Cold Spring Harb Perspect Med" "fecha" => "2018" "volumen" => "8" ] ] ] ] ] ] 21 => array:3 [ "identificador" => "bib0405" "etiqueta" => "22" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Papel de la microbiota intestinal en el desarrollo de la esclerosis múltiple" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "F. Castillo-Álvarez" 1 => "M.E. Marzo-Sola" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Neurología" "fecha" => "2017" "volumen" => "32" "paginaInicial" => "175" "paginaFinal" => "184" ] ] ] ] ] ] 22 => array:3 [ "identificador" => "bib0410" "etiqueta" => "23" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Regulatory T cell vaccination without autoantigen protects against experimental autoimmune encephalomyelitis" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "J. Ochoa-Repáraz" 1 => "C. Riccardi" 2 => "A. Rynda" 3 => "S. Jun" 4 => "G. Callis" 5 => "D.W. Pascual" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J Immunol Baltim Md" "fecha" => "1950/2007" "volumen" => "178" "paginaInicial" => "1791" "paginaFinal" => "1799" ] ] ] ] ] ] 23 => array:3 [ "identificador" => "bib0415" "etiqueta" => "24" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "IL-13 production by regulatory T cells protects against experimental autoimmune encephalomyelitis independently of autoantigen" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "J. Ochoa-Repáraz" 1 => "A. Rynda" 2 => "M.A. Ascón" 3 => "X. Yang" 4 => "I. Kochetkova" 5 => "C. Riccardi" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J Immunol Baltim Md" "fecha" => "1950/2008" "volumen" => "181" "paginaInicial" => "954" "paginaFinal" => "968" ] ] ] ] ] ] 24 => array:3 [ "identificador" => "bib0420" "etiqueta" => "25" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Bystander-mediated stimulation of proteolipid protein-specific regulatory T (Treg) cells confers protection against experimental autoimmune encephalomyelitis (EAE) via TGF-β" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "S. Jun" 1 => "J. Ochoa-Repáraz" 2 => "D. Zlotkowska" 3 => "T. Hoyt" 4 => "D.W. Pascual" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jneuroim.2012.02.003" "Revista" => array:6 [ "tituloSerie" => "J Neuroimmunol" "fecha" => "2012" "volumen" => "245" "paginaInicial" => "39" "paginaFinal" => "47" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22418032" "web" => "Medline" ] ] ] ] ] ] ] ] 25 => array:3 [ "identificador" => "bib0425" "etiqueta" => "26" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "NKT cell-dependent amelioration of a mouse model of multiple sclerosis by altering gut flora" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "H. Yokote" 1 => "S. Miyake" 2 => "J.L. Croxford" 3 => "S. Oki" 4 => "H. Mizusawa" 5 => "T. Yamamura" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.2353/ajpath.2008.080622" "Revista" => array:6 [ "tituloSerie" => "Am J Pathol" "fecha" => "2008" "volumen" => "173" "paginaInicial" => "1714" "paginaFinal" => "1723" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18974295" "web" => "Medline" ] ] ] ] ] ] ] ] 26 => array:3 [ "identificador" => "bib0430" "etiqueta" => "27" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "J. Ochoa-Repáraz" 1 => "D.W. Mielcarz" 2 => "L.E. Ditrio" 3 => "A.R. Burroughs" 4 => "D.M. Foureau" 5 => "S. Haque-Begum" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J Immunol Baltim Md" "fecha" => "1950/2009" "volumen" => "183" "paginaInicial" => "6041" "paginaFinal" => "6050" ] ] ] ] ] ] 27 => array:3 [ "identificador" => "bib0435" "etiqueta" => "28" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Central nervous system demyelinating disease protection by the human commensal Bacteroides fragilis depends on polysaccharide A expression" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "J. Ochoa-Repáraz" 1 => "D.W. Mielcarz" 2 => "L.E. Ditrio" 3 => "A.R. Burroughs" 4 => "S. Begum-Haque" 5 => "S. Dasgupta" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J Immunol Baltim Md" "fecha" => "1950/2010" "volumen" => "185" "paginaInicial" => "4101" "paginaFinal" => "4108" ] ] ] ] ] ] 28 => array:3 [ "identificador" => "bib0440" "etiqueta" => "29" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "J. Ochoa-Repáraz" 1 => "D.W. Mielcarz" 2 => "Y. Wang" 3 => "S. Begum-Haque" 4 => "S. Dasgupta" 5 => "D.L. Kasper" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/mi.2010.29" "Revista" => array:6 [ "tituloSerie" => "Mucosal Immunol" "fecha" => "2010" "volumen" => "3" "paginaInicial" => "487" "paginaFinal" => "495" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20531465" "web" => "Medline" ] ] ] ] ] ] ] ] 29 => array:3 [ "identificador" => "bib0445" "etiqueta" => "30" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A commensal bacterial product elicits and modulates migratory capacity of CD39(+) CD4 T regulatory subsets in the suppression of neuroinflammation" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "Y. Wang" 1 => "S. Begum-Haque" 2 => "K.M. Telesford" 3 => "J. Ochoa-Repáraz" 4 => "M. Christy" 5 => "E.J. Kasper" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Gut Microb" "fecha" => "2014" "volumen" => "5" "paginaInicial" => "552" "paginaFinal" => "561" ] ] ] ] ] ] 30 => array:3 [ "identificador" => "bib0450" "etiqueta" => "31" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "An intestinal commensal symbiosis factor controls neuroinflammation via TLR2-mediated CD39 signalling" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "Y. Wang" 1 => "K.M. Telesford" 2 => "J. Ochoa-Repáraz" 3 => "S. Haque-Begum" 4 => "M. Christy" 5 => "E.J. Kasper" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/ncomms5432" "Revista" => array:5 [ "tituloSerie" => "Nat Commun" "fecha" => "2014" "volumen" => "5" "paginaInicial" => "4432" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25043484" "web" => "Medline" ] ] ] ] ] ] ] ] 31 => array:3 [ "identificador" => "bib0455" "etiqueta" => "32" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "Y.K. Lee" 1 => "J.S. Menezes" 2 => "Y. Umesaki" 3 => "S.K. Mazmanian" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Proc Natl Acad Sci U S A" "fecha" => "2011" "volumen" => "108" "paginaInicial" => "S4615" "paginaFinal" => "S4622" ] ] ] ] ] ] 32 => array:3 [ "identificador" => "bib0460" "etiqueta" => "33" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "K. Berer" 1 => "M. Mues" 2 => "M. Koutrolos" 3 => "Z.A. Rasbi" 4 => "M. Boziki" 5 => "C. Johner" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/nature10554" "Revista" => array:6 [ "tituloSerie" => "Nature" "fecha" => "2011" "volumen" => "479" "paginaInicial" => "538" "paginaFinal" => "541" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22031325" "web" => "Medline" ] ] ] ] ] ] ] ] 33 => array:3 [ "identificador" => "bib0465" "etiqueta" => "34" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A functionally specialized population of mucosal CD103<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>DCs induces Foxp3<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "J.L. Coombes" 1 => "K.R.R. Siddiqui" 2 => "C.V. Arancibia-Cárcamo" 3 => "J. Hall" 4 => "C.-M. Sun" 5 => "Y. Belkaid" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1084/jem.20070590" "Revista" => array:6 [ "tituloSerie" => "J Exp Med" "fecha" => "2007" "volumen" => "204" "paginaInicial" => "1757" "paginaFinal" => "1764" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17620361" "web" => "Medline" ] ] ] ] ] ] ] ] 34 => array:3 [ "identificador" => "bib0470" "etiqueta" => "35" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effects of Bifidobacterium animalis administered during lactation on allergic and autoimmune responses in rodents" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "J. Ezendam" 1 => "A. de Klerk" 2 => "E.R. Gremmer" 3 => "H. van Loveren" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/j.1365-2249.2008.03788.x" "Revista" => array:7 [ "tituloSerie" => "Clin Exp Immunol" "fecha" => "2008" "volumen" => "154" "paginaInicial" => "424" "paginaFinal" => "431" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19037925" "web" => "Medline" ] ] "itemHostRev" => array:3 [ "pii" => "S0140673614618389" "estado" => "S300" "issn" => "01406736" ] ] ] ] ] ] ] 35 => array:3 [ "identificador" => "bib0475" "etiqueta" => "36" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A novel probiotic mixture exerts a therapeutic effect on experimental autoimmune encephalomyelitis mediated by IL-10 producing regulatory T cells" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "S. Lavasani" 1 => "B. Dzhambazov" 2 => "M. Nouri" 3 => "F. Fåk" 4 => "S. Buske" 5 => "G. Molin" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1371/journal.pone.0009009" "Revista" => array:5 [ "tituloSerie" => "PLoS One" "fecha" => "2010" "volumen" => "5" "paginaInicial" => "e9009" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20126401" "web" => "Medline" ] ] ] ] ] ] ] ] 36 => array:3 [ "identificador" => "bib0480" "etiqueta" => "37" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The lactic acid bacterium <span class="elsevierStyleItalic">Pediococcus acidilactici</span> suppresses autoimmune encephalomyelitis by inducing IL-10-producing regulatory T cells" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "K. Takata" 1 => "M. Kinoshita" 2 => "T. Okuno" 3 => "M. Moriya" 4 => "T. Kohda" 5 => "J.A. Honorat" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1371/journal.pone.0027644" "Revista" => array:5 [ "tituloSerie" => "PLoS One" "fecha" => "2011" "volumen" => "6" "paginaInicial" => "e27644" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22110705" "web" => "Medline" ] ] ] ] ] ] ] ] 37 => array:3 [ "identificador" => "bib0485" "etiqueta" => "38" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Amelioration of experimental autoimmune encephalomyelitis by probiotic mixture is mediated by a shift in T helper cell immune response" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "H.-K. Kwon" 1 => "G.-C. Kim" 2 => "Y. Kim" 3 => "W. Hwang" 4 => "A. Jash" 5 => "A. Sahoo" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Clin Immunol Orlando Fla" "fecha" => "2013" "volumen" => "146" "paginaInicial" => "217" "paginaFinal" => "227" ] ] ] ] ] ] 38 => array:3 [ "identificador" => "bib0490" "etiqueta" => "39" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Dietary yeasts reduce inflammation in central nerve system via microflora" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "K. Takata" 1 => "T. Tomita" 2 => "T. Okuno" 3 => "M. Kinoshita" 4 => "T. Koda" 5 => "J.A. Honorat" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/acn3.153" "Revista" => array:6 [ "tituloSerie" => "Ann Clin Transl Neurol" "fecha" => "2015" "volumen" => "2" "paginaInicial" => "56" "paginaFinal" => "66" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25642435" "web" => "Medline" ] ] ] ] ] ] ] ] 39 => array:3 [ "identificador" => "bib0495" "etiqueta" => "40" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Oral administration of the probiotic strain <span class="elsevierStyleItalic">Escherichia coli</span> Nissle 1917 reduces susceptibility to neuroinflammation and repairs experimental autoimmune encephalomyelitis-induced intestinal barrier dysfunction" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "T. Secher" 1 => "S. Kassem" 2 => "M. Benamar" 3 => "I. Bernard" 4 => "M. Boury" 5 => "F. Barreau" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3389/fimmu.2017.01096" "Revista" => array:5 [ "tituloSerie" => "Front Immunol" "fecha" => "2017" "volumen" => "8" "paginaInicial" => "1096" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28959254" "web" => "Medline" ] ] ] ] ] ] ] ] 40 => array:3 [ "identificador" => "bib0500" "etiqueta" => "41" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Combined therapies to treat complex diseases: the role of the gut microbiota in multiple sclerosis" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "L. Calvo-Barreiro" 1 => "H. Eixarch" 2 => "X. Montalban" 3 => "C. Espejo" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.autrev.2017.11.019" "Revista" => array:6 [ "tituloSerie" => "Autoimmun Rev" "fecha" => "2018" "volumen" => "17" "paginaInicial" => "165" "paginaFinal" => "174" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/29191793" "web" => "Medline" ] ] ] ] ] ] ] ] 41 => array:3 [ "identificador" => "bib0505" "etiqueta" => "42" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Increased archaea species and changes with therapy in gut microbiome of multiple sclerosis subjects" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "S. Jhangi" 1 => "R. Gandhi" 2 => "B. Glanz" 3 => "S. Cook" 4 => "P. Nejad" 5 => "D. Ward" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "Neurology" "fecha" => "2014" "volumen" => "82" "paginaInicial" => "S24.001" ] ] ] ] ] ] 42 => array:3 [ "identificador" => "bib0510" "etiqueta" => "43" "referencia" => array:1 [ 0 => array:3 [ "comentario" => "P05.106" "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Gut bacterial populations in multiple sclerosis and in health" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "E. Mowry" 1 => "E. Waubant" 2 => "C. Chehoud" 3 => "T. DeSantis" 4 => "J. Kuczynski" 5 => "J. Warrington" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1212/WNL.0b013e31824cfd14" "Revista" => array:4 [ "tituloSerie" => "Neurology" "fecha" => "2012" "volumen" => "78" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22371420" "web" => "Medline" ] ] ] ] ] ] ] ] 43 => array:3 [ "identificador" => "bib0515" "etiqueta" => "44" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "titulo" => "ACTRIMS-ECTRIMS MS Boston 2014: Poster Sessions 2" ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Mult Scler Houndmills Basingstoke Engl" "fecha" => "2014" "volumen" => "20" "paginaInicial" => "S285" "paginaFinal" => "S496" ] ] ] ] ] ] 44 => array:3 [ "identificador" => "bib0520" "etiqueta" => "45" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Gut microbiota in multiple sclerosis: possible influence of immunomodulators" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "B.L. Cantarel" 1 => "E. Waubant" 2 => "C. Chehoud" 3 => "J. Kuczynski" 4 => "T.Z. DeSantis" 5 => "J. Warrington" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "J Investig Med Off Publ Am Fed Clin Res" "fecha" => "2015" "volumen" => "63" "paginaInicial" => "729" "paginaFinal" => "734" "itemHostRev" => array:3 [ "pii" => "S0735109712028963" "estado" => "S300" "issn" => "07351097" ] ] ] ] ] ] ] 45 => array:3 [ "identificador" => "bib0525" "etiqueta" => "46" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to clostridia XIVa and IV clusters" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "S. Miyake" 1 => "S. Kim" 2 => "W. Suda" 3 => "K. Oshima" 4 => "M. Nakamura" 5 => "T. Matsuoka" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1371/journal.pone.0137429" "Revista" => array:5 [ "tituloSerie" => "PLoS One" "fecha" => "2015" "volumen" => "10" "paginaInicial" => "e0137429" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/26367776" "web" => "Medline" ] ] ] ] ] ] ] ] 46 => array:3 [ "identificador" => "bib0530" "etiqueta" => "47" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "J. Chen" 1 => "N. Chia" 2 => "K.R. Kalari" 3 => "J.Z. Yao" 4 => "M. Novotna" 5 => "M.M.P. Soldan" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/srep28484" "Revista" => array:5 [ "tituloSerie" => "Sci Rep" "fecha" => "2016" "volumen" => "6" "paginaInicial" => "28484" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27346372" "web" => "Medline" ] ] ] ] ] ] ] ] 47 => array:3 [ "identificador" => "bib0535" "etiqueta" => "48" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Gut microbiota in early pediatric multiple sclerosis: a case-control study" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "H. Tremlett" 1 => "D.W. Fadrosh" 2 => "A.A. Faruqi" 3 => "F. Zhu" 4 => "J. Hart" 5 => "S. Roalstad" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/ene.13026" "Revista" => array:6 [ "tituloSerie" => "Eur J Neurol" "fecha" => "2016" "volumen" => "23" "paginaInicial" => "1308" "paginaFinal" => "1321" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27176462" "web" => "Medline" ] ] ] ] ] ] ] ] 48 => array:3 [ "identificador" => "bib0540" "etiqueta" => "49" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Associations between the gut microbiota and host immune markers in pediatric multiple sclerosis and controls" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "H. Tremlett" 1 => "D.W. Fadrosh" 2 => "A.A. Faruqi" 3 => "J. Hart" 4 => "S. Roalstad" 5 => "J. Graves" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1186/s12883-016-0703-3" "Revista" => array:5 [ "tituloSerie" => "BMC Neurol" "fecha" => "2016" "volumen" => "16" "paginaInicial" => "182" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27652609" "web" => "Medline" ] ] ] ] ] ] ] ] 49 => array:3 [ "identificador" => "bib0545" "etiqueta" => "50" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Alterations of the human gut microbiome in multiple sclerosis" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "S. Jangi" 1 => "R. Gandhi" 2 => "L.M. Cox" 3 => "N. Li" 4 => "F. von Glehn" 5 => "R. Yan" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/ncomms12015" "Revista" => array:5 [ "tituloSerie" => "Nat Commun" "fecha" => "2016" "volumen" => "7" "paginaInicial" => "12015" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27352007" "web" => "Medline" ] ] ] ] ] ] ] ] 50 => array:3 [ "identificador" => "bib0550" "etiqueta" => "51" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "E. Cekanaviciute" 1 => "B.B. Yoo" 2 => "T.F. Runia" 3 => "J.W. Debelius" 4 => "S. Singh" 5 => "C.A. Nelson" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1073/pnas.1711235114" "Revista" => array:6 [ "tituloSerie" => "Proc Natl Acad Sci U S A" "fecha" => "2017" "volumen" => "114" "paginaInicial" => "10713" "paginaFinal" => "10718" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28893978" "web" => "Medline" ] ] ] ] ] ] ] ] 51 => array:3 [ "identificador" => "bib0555" "etiqueta" => "52" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "K. Berer" 1 => "L.A. Gerdes" 2 => "E. Cekanaviciute" 3 => "X. Jia" 4 => "L. Xiao" 5 => "Z. Xia" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1073/pnas.1711233114" "Revista" => array:6 [ "tituloSerie" => "Proc Natl Acad Sci U S A" "fecha" => "2017" "volumen" => "114" "paginaInicial" => "10719" "paginaFinal" => "10724" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28893994" "web" => "Medline" ] ] ] ] ] ] ] ] 52 => array:3 [ "identificador" => "bib0560" "etiqueta" => "53" "referencia" => array:1 [ 0 => array:3 [ "comentario" => "[Epub ahead of print]" "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Composición de la microbiota intestinal en pacientes con esclerosis múltiple Influencia del tratamiento con interferón β-1b" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "F. Castillo-Álvarez" 1 => "P. Pérez-Matute" 2 => "J.A. Oteo" 3 => "M.E. Marzo-Sola" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:3 [ "tituloSerie" => "Neurol Barc Spain" "fecha" => "2018" "itemHostRev" => array:3 [ "pii" => "S073510971635104X" "estado" => "S300" "issn" => "07351097" ] ] ] ] ] ] ] 53 => array:3 [ "identificador" => "bib0565" "etiqueta" => "54" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The role of fungi in the etiology of multiple sclerosis" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "J. Benito-León" 1 => "M. Laurence" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3389/fneur.2017.00535" "Revista" => array:5 [ "tituloSerie" => "Front Neurol" "fecha" => "2017" "volumen" => "8" "paginaInicial" => "535" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/29085329" "web" => "Medline" ] ] ] ] ] ] ] ] 54 => array:3 [ "identificador" => "bib0570" "etiqueta" => "55" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Association between multiple sclerosis and <span class="elsevierStyleItalic">Candida</span> species: evidence from a case-control study" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "J. Benito-León" 1 => "D. Pisa" 2 => "R. Alonso" 3 => "P. Calleja" 4 => "M. Díaz-Sánchez" 5 => "L. Carrasco" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol" "fecha" => "2010" "volumen" => "29" "paginaInicial" => "1139" "paginaFinal" => "1145" "itemHostRev" => array:3 [ "pii" => "S0168827813006910" "estado" => "S300" "issn" => "01688278" ] ] ] ] ] ] ] 55 => array:3 [ "identificador" => "bib0575" "etiqueta" => "56" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Epstein-Barr virus and multiple sclerosis: updating Pender's hypothesis" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "M. Laurence" 1 => "J. Benito-León" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.msard.2017.05.009" "Revista" => array:6 [ "tituloSerie" => "Mult Scler Relat Disord" "fecha" => "2017" "volumen" => "16" "paginaInicial" => "8" "paginaFinal" => "14" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28755684" "web" => "Medline" ] ] ] ] ] ] ] ] 56 => array:3 [ "identificador" => "bib0580" "etiqueta" => "57" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Fecal microbiota transplantation broadening its application beyond intestinal disorders" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "M.-Q. Xu" 1 => "H.-L. Cao" 2 => "W.-Q. Wang" 3 => "S. Wang" 4 => "X.-C. Cao" 5 => "F. Yan" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3748/wjg.v21.i1.102" "Revista" => array:6 [ "tituloSerie" => "World J Gastroenterol WJG" "fecha" => "2015" "volumen" => "21" "paginaInicial" => "102" "paginaFinal" => "111" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25574083" "web" => "Medline" ] ] ] ] ] ] ] ] 57 => array:3 [ "identificador" => "bib0585" "etiqueta" => "58" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Investigation of probiotics in multiple sclerosis" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "S.K. Tankou" 1 => "K. Regev" 2 => "B.C. Healy" 3 => "L.M. Cox" 4 => "E. Tjon" 5 => "P. Kivisakk" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Mult Scler Houndmills Basingstoke Engl" "fecha" => "2018" "volumen" => "24" "paginaInicial" => "58" "paginaFinal" => "63" ] ] ] ] ] ] 58 => array:3 [ "identificador" => "bib0590" "etiqueta" => "59" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Immunological and clinical effect of diet modulation of the gut microbiome in multiple sclerosis patients: a pilot study" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "M. Saresella" 1 => "L. Mendozzi" 2 => "V. Rossi" 3 => "F. Mazzali" 4 => "F. Piancone" 5 => "F. LaRosa" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3389/fimmu.2017.01391" "Revista" => array:5 [ "tituloSerie" => "Front Immunol" "fecha" => "2017" "volumen" => "8" "paginaInicial" => "1391" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/29118761" "web" => "Medline" ] ] ] ] ] ] ] ] ] ] ] ] ] "idiomaDefecto" => "en" "url" => "/23870206/0000015200000004/v1_201902100719/S2387020618305898/v1_201902100719/en/main.assets" "Apartado" => array:4 [ "identificador" => "44147" "tipo" => "SECCION" "en" => array:2 [ "titulo" => "Review" "idiomaDefecto" => true ] "idiomaDefecto" => "en" ] "PDF" => "https://static.elsevier.es/multimedia/23870206/0000015200000004/v1_201902100719/S2387020618305898/v1_201902100719/en/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2387020618305898?idApp=UINPBA00004N" ]
Journal Information
Share
Download PDF
More article options
Review
Disease of the holobiont, the example of multiple sclerosis
El holobionte enfermo, el ejemplo de la esclerosis múltiple
Federico Castillo-Álvarez
, María Eugenia Marzo-Sola
Corresponding author
Servicio de Neurología, Hospital San Pedro, Calle Piqueras n° 98, 26006 Logroño, La Rioja, Spain