array:24 [ "pii" => "S2387020615000066" "issn" => "23870206" "doi" => "10.1016/j.medcle.2013.12.001" "estado" => "S300" "fechaPublicacion" => "2015-01-06" "aid" => "2864" "copyright" => "Elsevier España, S.L.U.. All rights reserved" "copyrightAnyo" => "2013" "documento" => "article" "crossmark" => 1 "subdocumento" => "rev" "cita" => "Med Clin. 2015;144:30-4" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:2 [ "total" => 253 "formatos" => array:2 [ "HTML" => 116 "PDF" => 137 ] ] "Traduccion" => array:1 [ "es" => array:18 [ "pii" => "S0025775314000700" "issn" => "00257753" "doi" => "10.1016/j.medcli.2013.12.013" "estado" => "S300" "fechaPublicacion" => "2015-01-06" "aid" => "2864" "copyright" => "Elsevier España, S.L.U." "documento" => "article" "subdocumento" => "rev" "cita" => "Med Clin. 2015;144:30-4" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:2 [ "total" => 682 "formatos" => array:2 [ "HTML" => 517 "PDF" => 165 ] ] "es" => array:12 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Revisión</span>" "titulo" => "Organización motora del córtex cerebral y el papel del sistema de las neuronas espejo. Repercusiones clínicas para la rehabilitación" "tienePdf" => "es" "tieneTextoCompleto" => "es" "tieneResumen" => array:2 [ 0 => "es" 1 => "en" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "30" "paginaFinal" => "34" ] ] "titulosAlternativos" => array:1 [ "en" => array:1 [ "titulo" => "The motor organization of cerebral cortex and the role of the mirror neuron system. Clinical impact for rehabilitation" ] ] "contieneResumen" => array:2 [ "es" => true "en" => true ] "contieneTextoCompleto" => array:1 [ "es" => true ] "contienePdf" => array:1 [ "es" => true ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Laia Sallés, Xavier Gironès, José Vicente Lafuente" "autores" => array:3 [ 0 => array:2 [ "nombre" => "Laia" "apellidos" => "Sallés" ] 1 => array:2 [ "nombre" => "Xavier" "apellidos" => "Gironès" ] 2 => array:2 [ "nombre" => "José Vicente" "apellidos" => "Lafuente" ] ] ] ] ] "idiomaDefecto" => "es" "Traduccion" => array:1 [ "en" => array:9 [ "pii" => "S2387020615000066" "doi" => "10.1016/j.medcle.2013.12.001" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2387020615000066?idApp=UINPBA00004N" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0025775314000700?idApp=UINPBA00004N" "url" => "/00257753/0000014400000001/v1_201412160101/S0025775314000700/v1_201412160101/es/main.assets" ] ] "itemSiguiente" => array:18 [ "pii" => "S2387020615000121" "issn" => "23870206" "doi" => "10.1016/j.medcle.2014.01.002" "estado" => "S300" "fechaPublicacion" => "2015-01-06" "aid" => "2868" "documento" => "article" "crossmark" => 1 "subdocumento" => "rev" "cita" => "Med Clin. 2015;144:35-41" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:2 [ "total" => 205 "formatos" => array:2 [ "HTML" => 143 "PDF" => 62 ] ] "en" => array:12 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Review</span>" "titulo" => "Postoperative radioiodine ablation in patients with low risk differentiated thyroid carcinoma" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "35" "paginaFinal" => "41" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Ablación posquirúrgica con radioyodo en pacientes con carcinoma diferenciado de tiroides de bajo riesgo" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Juan J. Díez, Enrique Grande, Pedro Iglesias" "autores" => array:3 [ 0 => array:2 [ "nombre" => "Juan J." "apellidos" => "Díez" ] 1 => array:2 [ "nombre" => "Enrique" "apellidos" => "Grande" ] 2 => array:2 [ "nombre" => "Pedro" "apellidos" => "Iglesias" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "es" => array:9 [ "pii" => "S0025775314000761" "doi" => "10.1016/j.medcli.2014.01.009" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0025775314000761?idApp=UINPBA00004N" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2387020615000121?idApp=UINPBA00004N" "url" => "/23870206/0000014400000001/v1_201509042040/S2387020615000121/v1_201509042040/en/main.assets" ] "itemAnterior" => array:19 [ "pii" => "S2387020615000078" "issn" => "23870206" "doi" => "10.1016/j.medcle.2014.07.001" "estado" => "S300" "fechaPublicacion" => "2015-01-06" "aid" => "3120" "copyright" => "Elsevier España, S.L.U." "documento" => "simple-article" "crossmark" => 1 "subdocumento" => "crp" "cita" => "Med Clin. 2015;144:26-9" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:2 [ "total" => 105 "formatos" => array:2 [ "HTML" => 77 "PDF" => 28 ] ] "en" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Clinical report</span>" "titulo" => "Hb Burgos (α<span class="elsevierStyleInf">1</span> CD64(E13)(Asp→Asn)): A new hemoglobin variant detected during follow-up of diabetic patients" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "26" "paginaFinal" => "29" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Hb Burgos (α<span class="elsevierStyleInf">1</span> CD64(E13)(Asp→Asn)): una nueva variante de hemoglobina detectada durante la monitorización de pacientes con diabetes" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0010" "etiqueta" => "Fig. 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 2331 "Ancho" => 3251 "Tamanyo" => 368625 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0055" class="elsevierStyleSimplePara elsevierViewall">(A) Direct sequencing: Hb Burgos (α<span class="elsevierStyleInf">1</span> 64 (E13) Asp→Asn):GAC→AAC in heterozygous state. (B) Direct sequencing: Hb Burgos (α<span class="elsevierStyleInf">1</span> 64(E13) Asp→Asn):GAC→AAC in homozygote state. Hb: haemoglobin.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Félix de la Fuente-Gonzalo, Jorge Martínez Nieto, María José Torrejón, Luis Antonio Mayor, Diego Velasco, Fernando Ataulfo González Fernández, Paloma Ropero Gradilla" "autores" => array:7 [ 0 => array:2 [ "nombre" => "Félix" "apellidos" => "de la Fuente-Gonzalo" ] 1 => array:2 [ "nombre" => "Jorge" "apellidos" => "Martínez Nieto" ] 2 => array:2 [ "nombre" => "María José" "apellidos" => "Torrejón" ] 3 => array:2 [ "nombre" => "Luis Antonio" "apellidos" => "Mayor" ] 4 => array:2 [ "nombre" => "Diego" "apellidos" => "Velasco" ] 5 => array:2 [ "nombre" => "Fernando Ataulfo" "apellidos" => "González Fernández" ] 6 => array:2 [ "nombre" => "Paloma" "apellidos" => "Ropero Gradilla" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "es" => array:9 [ "pii" => "S0025775314006940" "doi" => "10.1016/j.medcli.2014.07.035" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0025775314006940?idApp=UINPBA00004N" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2387020615000078?idApp=UINPBA00004N" "url" => "/23870206/0000014400000001/v1_201509042040/S2387020615000078/v1_201509042040/en/main.assets" ] "en" => array:19 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Review</span>" "titulo" => "The motor organization of cerebral cortex and the role of the mirror neuron system. Clinical impact for rehabilitation" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "30" "paginaFinal" => "34" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "Laia Sallés, Xavier Gironès, José Vicente Lafuente" "autores" => array:3 [ 0 => array:4 [ "nombre" => "Laia" "apellidos" => "Sallés" "email" => array:1 [ 0 => "lsalles@fub.edu" ] "referencia" => array:3 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] 2 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0005" ] ] ] 1 => array:3 [ "nombre" => "Xavier" "apellidos" => "Gironès" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 2 => array:3 [ "nombre" => "José Vicente" "apellidos" => "Lafuente" "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0015" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">d</span>" "identificador" => "aff0020" ] ] ] ] "afiliaciones" => array:4 [ 0 => array:3 [ "entidad" => "Departamento de Fisioterapia, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Barcelona, Spain" "etiqueta" => "a" "identificador" => "aff0005" ] 1 => array:3 [ "entidad" => "Departamento de Fisioterapia, Fundació Universitària del Bages (UAB), Barcelona, Spain" "etiqueta" => "b" "identificador" => "aff0010" ] 2 => array:3 [ "entidad" => "LaNCE, Departamento de Neurociencias, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Vizcaya, Spain" "etiqueta" => "c" "identificador" => "aff0015" ] 3 => array:3 [ "entidad" => "Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago de Chile, Chile" "etiqueta" => "d" "identificador" => "aff0020" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "Corresponding author." ] ] ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Organización motora del córtex cerebral y el papel del sistema de las neuronas espejo. Repercusiones clínicas para la rehabilitación" ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0025">Introduction</span><p id="par0005" class="elsevierStylePara elsevierViewall">The knowledge we have about the cortical representation of movement comes, essentially, from the works of Penfield et al., during the first half of <span class="elsevierStyleSmallCaps">20</span>th century .<a class="elsevierStyleCrossRefs" href="#bib0215"><span class="elsevierStyleSup">1–3</span></a> Those works identified a somatotopic and unique representation of the different parts of the body, and postulated that movement organization followed a sequential order.<a class="elsevierStyleCrossRefs" href="#bib0230"><span class="elsevierStyleSup">4,5</span></a></p><p id="par0010" class="elsevierStylePara elsevierViewall">Throughout the years, critical ideas about this concept started to appear. The development of new investigative technologies has revealed the existence of multiple cortical representations overlapping onto each other.<a class="elsevierStyleCrossRefs" href="#bib0235"><span class="elsevierStyleSup">5–7</span></a></p><p id="par0015" class="elsevierStylePara elsevierViewall">This evidence brings about the thought that the organization of movement requires the activation of several structures that work in parallel, integrating sensory and motor information, transforming all into motor actions.<a class="elsevierStyleCrossRef" href="#bib0225"><span class="elsevierStyleSup">3</span></a></p><p id="par0020" class="elsevierStylePara elsevierViewall">The anatomical and functional complexity of the motor system increased with the contribution of the mirror neuron systems (MNS), discovered by Rizzolatti and Sinigaglia at the beginning of 1990s. These systems are the neural substrate that allows us to understand the implication of cognitive functions such as observation, imitation and image of the action in the organization and the learning of the movements.<a class="elsevierStyleCrossRefs" href="#bib0225"><span class="elsevierStyleSup">3,8</span></a></p><p id="par0025" class="elsevierStylePara elsevierViewall">The aim of this work is to review the different points of view regarding the cortical organization of movement. In addition, this work includes some considerations about the clinical impact derived from motor organization and its relationship with cognitive functions, regarded as potential therapeutic tools in the recovery of movement.</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0030">Development</span><p id="par0030" class="elsevierStylePara elsevierViewall">In 1937, Penfield and Boldrey presented the cortical motor map (homunculus) that represented cortical regions corresponding to different parts of the body.<a class="elsevierStyleCrossRef" href="#bib0230"><span class="elsevierStyleSup">4</span></a></p><p id="par0035" class="elsevierStylePara elsevierViewall">In 1950, Penfield and Rasmussen, by means of direct stimulation of the cortex in conscious patients during surgical intervention, defined the organization of the first homunculus, obtaining the first map of the motor and sensory cortex separately.<a class="elsevierStyleCrossRefs" href="#bib0225"><span class="elsevierStyleSup">3,4</span></a> These maps follow a somatotopic and unique organization (parts of the body represented in anatomic order and in a delimited way) where variations were not considered.<a class="elsevierStyleCrossRef" href="#bib0235"><span class="elsevierStyleSup">5</span></a></p><p id="par0040" class="elsevierStylePara elsevierViewall">The authors established that motor areas of the brain are exclusively dedicated to executive functions. According to this conception of movement, the brain follows a sequentially organized process following the scheme: perception<span class="elsevierStyleHsp" style=""></span>→<span class="elsevierStyleHsp" style=""></span>cognition<span class="elsevierStyleHsp" style=""></span>→<span class="elsevierStyleHsp" style=""></span>movement. These events are associated with different cortical areas, such as language in Broca's area or motor function in Brodmann's area 4.<a class="elsevierStyleCrossRef" href="#bib0225"><span class="elsevierStyleSup">3</span></a></p><p id="par0045" class="elsevierStylePara elsevierViewall">All of this has an impact on understanding the way the primary motor area (M1) is organized: firstly, every cortical area is solely responsible for controlling a part of the body and its movement, which means that if there is a lesion in a certain cortical area, then the movement that depends on that area will not be recovered and, at the same time, the range of movements will be limited to a finite number of combinations. Secondly, the cortical region activated by the simultaneous movement of several fingers will be larger than that area activated by the movement of only one finger, as the first region would be the result of adding each finger's territory extension.<a class="elsevierStyleCrossRefs" href="#bib0215"><span class="elsevierStyleSup">1,6,9</span></a></p></span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0035">Contributions to the knowledge of the anatomo-functional organization</span><p id="par0050" class="elsevierStylePara elsevierViewall">In the second half of the 20th century, the work of Penfield was questioned and considered ambiguous. In fact, Penfield himself warned about the possible inaccuracy of his maps. The use of electrodes that were too large did not allow for more precise research. But even with these warnings, the idea of a somatotopic and unique organization was widespread and exerted a strong influence in the conception of the cortical organization.<a class="elsevierStyleCrossRefs" href="#bib0215"><span class="elsevierStyleSup">1,9</span></a> Subsequent studies<a class="elsevierStyleCrossRefs" href="#bib0225"><span class="elsevierStyleSup">3,4,6</span></a> using more sophisticated techniques have questioned the two essential characteristics of the Penfield homunculus: somatotopy and unique representation.</p><p id="par0055" class="elsevierStylePara elsevierViewall">Studies confirmed a somatotopic organization in the representation of the big body areas (face, upper and lower extremities); although, there are controversies about the anatomo-functional organization of minor areas of the body (fingers, wrist, elbow and shoulder in upper extremity representation).<a class="elsevierStyleCrossRefs" href="#bib0215"><span class="elsevierStyleSup">1,9,10</span></a> The existence of overlapping between cortical areas connected with each other by horizontal bidirectional connection was revealed.<a class="elsevierStyleCrossRefs" href="#bib0215"><span class="elsevierStyleSup">1,10</span></a> The overlapping means different segments share the same neural network. Several authors<a class="elsevierStyleCrossRefs" href="#bib0215"><span class="elsevierStyleSup">1,5</span></a> consider overlapping to be a differential characteristic of M1, transcending the somatotopic organization concept of Penfiel.<a class="elsevierStyleCrossRefs" href="#bib0220"><span class="elsevierStyleSup">2,9</span></a> This allows the cooperation between proximal and distal muscles, for example, in upper extremities, enabling better coordination between shoulder, elbow and wrist in the task of reaching an object.<a class="elsevierStyleCrossRefs" href="#bib0215"><span class="elsevierStyleSup">1,9</span></a> Other authors<a class="elsevierStyleCrossRefs" href="#bib0265"><span class="elsevierStyleSup">11,12</span></a> advocate for the classical opinion, accepting the existence of a certain degree of overlapping and attribute the control of small movements to the somatotopy in M1.</p><p id="par0060" class="elsevierStylePara elsevierViewall">Aflalo and Graziano<a class="elsevierStyleCrossRefs" href="#bib0275"><span class="elsevierStyleSup">13,14</span></a> note the importance of motor and learning practices to go from one somatotopic map to another with overlapping representations between the different parts of the body. They suggest that the role of plasticity and the reorganization of the motor cortex are central to this process, and show that the lesser somatotopy, the greater complexity of the movements.</p><p id="par0065" class="elsevierStylePara elsevierViewall">Several studies have shown the existence of multiple motor representations of different parts of the body, with a certain degree of overlapping. A movement may imply the activation of several cortical areas, sometimes distant from each other.<a class="elsevierStyleCrossRefs" href="#bib0220"><span class="elsevierStyleSup">2,15</span></a> In the 1980s, Strick and Preston<a class="elsevierStyleCrossRefs" href="#bib0290"><span class="elsevierStyleSup">16,17</span></a> discovered two representations of the hand in the monkey motor cortex, and observed that each of them were activated as a response to different somatosensory afferent activities: one reacted to tactile afferents and the other to the proprioceptive afferents. In 1986, Gould et al<span class="elsevierStyleItalic">.</span><a class="elsevierStyleCrossRefs" href="#bib0240"><span class="elsevierStyleSup">6,9</span></a> observed, in anaesthetized monkeys, that M1 presented a tendency to a somatotopy of the representations of the different segments, and the occurrence of the activation in several points of the brain, distributed like a mosaic, in the movement of any part of the body.</p><p id="par0070" class="elsevierStylePara elsevierViewall">In addition, this multiple distribution (mosaic) is present in the posterior part of the parietal lobe, establishing horizontal interconnections with other areas of the brain, which allow for a somatosensory afferent flow to the motor area.<a class="elsevierStyleCrossRefs" href="#bib0225"><span class="elsevierStyleSup">3,9,18</span></a> The different motor areas are connected to parietal areas via parieto-frontal circuits, forming a functional system.<a class="elsevierStyleCrossRef" href="#bib0225"><span class="elsevierStyleSup">3</span></a></p><p id="par0075" class="elsevierStylePara elsevierViewall">Neuroimaging techniques have shown that in the exploration of objects, when there is no visual control, the tactile and propioceptive somatosensory information was essential, as well as was the fronto-parietal circuit activation in shape and length discrimination by means of active finger movement.<a class="elsevierStyleCrossRefs" href="#bib0305"><span class="elsevierStyleSup">19,20</span></a></p><p id="par0080" class="elsevierStylePara elsevierViewall">The same thing happens with actions that need vision, where visual information arrives at the parietal lobe, activating parallel and simultaneous parieto-frontal circuits that will produce a visuomotor transformation. This includes several processes, such as placing the object in space, orientation, shape and size, and controlling upper extremity trajectory displacement.<a class="elsevierStyleCrossRef" href="#bib0300"><span class="elsevierStyleSup">18</span></a></p><p id="par0085" class="elsevierStylePara elsevierViewall">Knowledge of the complexity of the parallel organization of the motor system allows us to see the possibilities of reorganization after damage. The affectation of any of the structures involved rarely leads to the complete loss of the only element capable of performing a task; a group of neurons can participate in more than one task.<a class="elsevierStyleCrossRef" href="#bib0315"><span class="elsevierStyleSup">21</span></a> The cortical area activated to move one finger is larger than the area involved in the simultaneous movement of several fingers, as the fragmented movement required to move only one finger implies greater control and organization.<a class="elsevierStyleCrossRefs" href="#bib0240"><span class="elsevierStyleSup">6,9,15</span></a> Based on this evidence, the motor system cannot be reduced to a spatially organized map executor of orders originated in well differentiated areas (as is the Penfield homunculus), rather it should be considered a multiplicity of structures activated simultaneously in different areas (frontal, parietal, occipital, among others) related to each other by fronto-parietal circuits.<a class="elsevierStyleCrossRefs" href="#bib0225"><span class="elsevierStyleSup">3,15</span></a></p></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Mirror-neuron systems</span><p id="par0090" class="elsevierStylePara elsevierViewall">The discovery of mirror-neurons (MN) poses aspects related with motor organization such as empathy, the comprehension of actions, and the motivations of others.<a class="elsevierStyleCrossRefs" href="#bib0225"><span class="elsevierStyleSup">3,22</span></a></p><p id="par0095" class="elsevierStylePara elsevierViewall">The Parma group discovered the MN while registering the neuronal activity in the F5 area of a monkey (premotor cortex). They observed that neurons in that area became active the moment the researcher took some food and the monkey remained motionless.<a class="elsevierStyleCrossRef" href="#bib0250"><span class="elsevierStyleSup">8</span></a> They also detected the monkey was selective: the neurons discharged when the movements had a purpose, such as taking something, whereas there was no response when the movement was performed by an isolated part of the body without any intention. Later, they found the same kind of activity in the inferior parietal cortex.<a class="elsevierStyleCrossRef" href="#bib0250"><span class="elsevierStyleSup">8</span></a></p><p id="par0100" class="elsevierStylePara elsevierViewall">The mirror-neuron systems have been shown to exist in humans by means of non-invasive neurophysiological techniques.<a class="elsevierStyleCrossRefs" href="#bib0225"><span class="elsevierStyleSup">3,23</span></a> These neurons constitute a network that activates both when an action is performed by the actor, and when it is only observed by the subject but performed by others.<a class="elsevierStyleCrossRef" href="#bib0325"><span class="elsevierStyleSup">23</span></a></p><p id="par0105" class="elsevierStylePara elsevierViewall">Functional magnetic resonance has allowed areas and circuits supporting the mirror-neuron system (MNS) to be localized and identified: <span class="elsevierStyleItalic">the fronto-parietal MNS</span>, constituted by extensive areas of the premotor cortex; the inferior parietal lobe and the posterior part of Broca's area.<a class="elsevierStyleCrossRefs" href="#bib0225"><span class="elsevierStyleSup">3,24</span></a> It is involved in the recognition of voluntary behaviour through parieto-frontal circuits, which allow for the parallel and simultaneous processing of information, necessary to planning and execution of actions.<a class="elsevierStyleCrossRefs" href="#bib0225"><span class="elsevierStyleSup">3,18</span></a></p><p id="par0110" class="elsevierStylePara elsevierViewall">The <span class="elsevierStyleItalic">limbic MNS</span> is basically constituted by the insula region and by the anterior cingulate circumvolution.<a class="elsevierStyleCrossRef" href="#bib0330"><span class="elsevierStyleSup">24</span></a> This system is responsible for recognizing emotional behaviour.<a class="elsevierStyleCrossRef" href="#bib0225"><span class="elsevierStyleSup">3</span></a></p></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0045">The role of mirror neurons in the action</span><p id="par0115" class="elsevierStylePara elsevierViewall">The MNS transforms sensory information obtained from observation of others actions in a motor format that is very similar to the internal motor generated when the individual imagines himself performing the action or when he is really performing it.<a class="elsevierStyleCrossRefs" href="#bib0250"><span class="elsevierStyleSup">8,24</span></a> This system is responsible for our capacity to understand the intentions and the actions of others, allowing us to correlate the observed actions with the previous experience of each<a class="elsevierStyleCrossRefs" href="#bib0225"><span class="elsevierStyleSup">3,23,25–27</span></a> individual. It also has an important role in the learning of motor patterns through the observation of the action. Imitation is a cognitive function that includes observation, image and execution of the action.<a class="elsevierStyleCrossRef" href="#bib0250"><span class="elsevierStyleSup">8</span></a> Its neural substrate organises and performs those actions.<a class="elsevierStyleCrossRefs" href="#bib0345"><span class="elsevierStyleSup">27,28</span></a> Neuroimaging studies show the importance of MN in the capacity of imitation and of empathy with the others.<a class="elsevierStyleCrossRefs" href="#bib0225"><span class="elsevierStyleSup">3,8,23</span></a> Observing an action induces in the observer an implication in first person, as if they themself were performing it. The observer predicts and interprets the behaviour of others because he is capable of picturing himself in the same situation.<a class="elsevierStyleCrossRef" href="#bib0355"><span class="elsevierStyleSup">29</span></a></p><p id="par0120" class="elsevierStylePara elsevierViewall">MNS constitutes a rupture with the classical interpretation, in which cognitive functions such as observation, imitation and prediction were attributed to higher mental processes. In the new conception those functions belong to MN circuits.<a class="elsevierStyleCrossRef" href="#bib0340"><span class="elsevierStyleSup">26</span></a></p><p id="par0125" class="elsevierStylePara elsevierViewall">The MNS gives significance to the observed motor act and also to all the action in which this act is involved, for example, to take a glass to the mouth to drink.<a class="elsevierStyleCrossRefs" href="#bib0325"><span class="elsevierStyleSup">23,27</span></a> These systems, in humans, become active when observing actions performed by other people, as opposed to the monkey, they allow understand the aim of the action, whether it is performed with the help of tools or not. They also activate when observing isolated movements without a specific purpose.<a class="elsevierStyleCrossRefs" href="#bib0225"><span class="elsevierStyleSup">3,8,23,26</span></a></p><p id="par0130" class="elsevierStylePara elsevierViewall">Our motor actions are not separated from emotions. The limbic MNS allows us to understand and share others emotions (perception of pain, happiness, etc.), activating the same areas of the brain that become active when experiencing those emotions in first person. This is the prerequisite of empathic behaviour, basic to establishing healthy interpersonal relationships.<a class="elsevierStyleCrossRefs" href="#bib0225"><span class="elsevierStyleSup">3,22,23</span></a></p></span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0050">Clinical consequences</span><p id="par0135" class="elsevierStylePara elsevierViewall">The knowledge analysed contributes new expectations for clinical practice.<a class="elsevierStyleCrossRef" href="#bib0360"><span class="elsevierStyleSup">30</span></a> It is crucial to develop and to apply treatments that take this knowledge into account about movement organization, about the multiple representations and the overlapping between areas and the role of MN. To understand how different therapeutic approaches act over neural substrate will allow us to achieve better results in clinical practice.<a class="elsevierStyleCrossRefs" href="#bib0360"><span class="elsevierStyleSup">30–32</span></a></p><p id="par0140" class="elsevierStylePara elsevierViewall">Several authors<a class="elsevierStyleCrossRefs" href="#bib0375"><span class="elsevierStyleSup">33,34</span></a> have researched the neuroplasticity phenomenon, considered to be the process of continuous remodelling in the short, medium and long term to optimize the functioning of neuronal networks. Regarding rehabilitation, neuroplasticity is the mechanism that allows us to understand the effects of therapeutic interventions on the recovery of movement affectations.<a class="elsevierStyleCrossRefs" href="#bib0375"><span class="elsevierStyleSup">33,35,36</span></a></p><p id="par0145" class="elsevierStylePara elsevierViewall">Representations of cortical areas are modified according to afferent information, experiences and learning.<a class="elsevierStyleCrossRef" href="#bib0375"><span class="elsevierStyleSup">33</span></a></p><p id="par0150" class="elsevierStylePara elsevierViewall">The immobilization of the upper extremity, with the consequential loss of motor and sensory <span class="elsevierStyleItalic">inputs</span>, implies a cortical reorganization with a reduction in the thickness of the cortical grey matter in M1 and of the somatosensory cortex in the contralateral hemisphere due to the use of the healthy extremity.<a class="elsevierStyleCrossRef" href="#bib0395"><span class="elsevierStyleSup">37</span></a></p><p id="par0155" class="elsevierStylePara elsevierViewall">Considering the investigation on multiple representation<a class="elsevierStyleCrossRefs" href="#bib0240"><span class="elsevierStyleSup">6,10,16,17</span></a> that shows different areas become active according to the type of afferent information received and those studies on MNS,<a class="elsevierStyleCrossRefs" href="#bib0225"><span class="elsevierStyleSup">3,8,23,26</span></a> we can confirm the importance of providing the patient with experiences of his own body, or with the interaction with the therapist, or with different objects.</p><p id="par0160" class="elsevierStylePara elsevierViewall">The loss or the reduction of functions, such as walking or handling objects, reduces the flow of information received by the brain, and as a result of this the experiences of the patient start to impoverish.<a class="elsevierStyleCrossRef" href="#bib0400"><span class="elsevierStyleSup">38</span></a> To perform these functions in a correct and coordinated way could be useful, regarding the overlapping of the cortical representations and the existence of parieto-frontal circuits, to implement a therapy that includes tasks and rehabilitation exercises involving multi-joint movement, where several articulations cooperate simultaneously, instead of those of single-joint movement. That is to say, to promote an environment filled with motor and sensory experiences.<a class="elsevierStyleCrossRef" href="#bib0405"><span class="elsevierStyleSup">39</span></a></p><p id="par0165" class="elsevierStylePara elsevierViewall">Another option is to progressively increase the level of exercise, adjusting to the motor possibilities of the patient, but always increasing the complexity of the exercises by introducing new things to stimulate learning.<a class="elsevierStyleCrossRef" href="#bib0375"><span class="elsevierStyleSup">33</span></a> In patients with ictus, it is very important to influence the motor system, promoting plasticity through implementation of observation, image of the action and imitation,<a class="elsevierStyleCrossRef" href="#bib0250"><span class="elsevierStyleSup">8</span></a> strategies that consider perceptive, cognitive and motor aspects of the action. These three processes allow the motor learning to persist over time.<a class="elsevierStyleCrossRef" href="#bib0370"><span class="elsevierStyleSup">32</span></a></p><p id="par0170" class="elsevierStylePara elsevierViewall">Therapeutic intervention puts the patient in contact with experiences and information; if the patient is not put in contact with them for days, weeks or months, changes will occur that reflect the lack of practice and the difficulty of rehabilitation.<a class="elsevierStyleCrossRef" href="#bib0395"><span class="elsevierStyleSup">37</span></a> The systematic use of observation and movement image is possible from the acute phase of the treatment to benefit, from early stages, from the activation of motor representation produced with no need of executing the action.<a class="elsevierStyleCrossRef" href="#bib0350"><span class="elsevierStyleSup">28</span></a></p><p id="par0175" class="elsevierStylePara elsevierViewall">Several clinical studies on action observation and on motor image used as a complement to therapeutic exercises<a class="elsevierStyleCrossRefs" href="#bib0350"><span class="elsevierStyleSup">28,40–42</span></a> have valued the utility of those techniques as treatment tools to improve the movement affectations presented in patients with acute, subacute and chronic ictus. Those studies concluded that beneficial effects exist related to motor deficits: they increase the use of the affected extremity, favouring the motor learning transferring it to less trained tasks.</p></span><span id="sec0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0055">Conclusions</span><p id="par0180" class="elsevierStylePara elsevierViewall">There is no consensus on the existence or nonexistence of somatotopy between representations of the different segments of one same area of the body. There is consensus in the existence of a certain degree of overlapping between the cortical areas involved and in the existence of multiple representations. The current knowledge about motor organization confirms that motor and sensory information have a common neural substrate in the parieto-frontal circuits that enables the creation of a motor system that includes different cognitive functions, such as perception, imitation, comprehension of gestures and intentions of other actors.</p><p id="par0185" class="elsevierStylePara elsevierViewall">In contrast with the unique and differentiated organization proposed by Penfield, the complex organization would support the better recovery of functions, in the case of damage of the nervous system, and an increased learning of motor patterns, in the case of healthy subjects.</p><p id="par0190" class="elsevierStylePara elsevierViewall">Observation, image of the action, and imitation are cognitive functions based on the features of the MNS that represent a way to access and to influence the motor system without the need to perform the action.</p><p id="par0195" class="elsevierStylePara elsevierViewall">Regarding this, what is the role of the use of protocols in imagining a movement or simply observing or to imitating it? All are perceptive and cognitive actions that do not imply motor activity in the patient, yet, all the same, they generate experience and flows of afferent information similar to those produced by the performance of the actual movement. Are they a significant motor learning mechanism in the recovery of deficits caused by disease?</p><p id="par0200" class="elsevierStylePara elsevierViewall">In addition to being an original management, with no adverse effects, low-cost and easy to implement, the benefits of this management are still greater when actions are related to motor experiences prior to the disease and when combined with therapeutic exercises. Also, the improvements obtained during the treatment persist over time beyond therapy, demonstrating the involvement of learning.</p><p id="par0205" class="elsevierStylePara elsevierViewall">Finally, it is important in clinical practice to consider this knowledge to find the most appropriate way of intervening and guiding those afferences that promote plasticity. It is not only a matter of inducing reorganization but also of controlling it.</p></span><span id="sec0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0060">Funding</span><p id="par0210" class="elsevierStylePara elsevierViewall">This work has been possible with the support of the scholarship from the Societat Catalano-Balear de Fisioteràpia (SCBF), 2012, with the general subvention GIC (794/13) of the Basque Government and UFI 11/32 of the Universidad del País Vasco/Euskal Herriko Unibertsitatea.</p></span><span id="sec0045" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0065">Conflict of interests</span><p id="par0215" class="elsevierStylePara elsevierViewall">The authors declare that there are no conflicts of interest.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:15 [ 0 => array:3 [ "identificador" => "xres548887" "titulo" => "Abstract" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0005" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec566602" "titulo" => "Keywords" ] 2 => array:3 [ "identificador" => "xres548886" "titulo" => "Resumen" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0010" ] ] ] 3 => array:2 [ "identificador" => "xpalclavsec566603" "titulo" => "Palabras clave" ] 4 => array:2 [ "identificador" => "sec0005" "titulo" => "Introduction" ] 5 => array:2 [ "identificador" => "sec0010" "titulo" => "Development" ] 6 => array:2 [ "identificador" => "sec0015" "titulo" => "Contributions to the knowledge of the anatomo-functional organization" ] 7 => array:2 [ "identificador" => "sec0020" "titulo" => "Mirror-neuron systems" ] 8 => array:2 [ "identificador" => "sec0025" "titulo" => "The role of mirror neurons in the action" ] 9 => array:2 [ "identificador" => "sec0030" "titulo" => "Clinical consequences" ] 10 => array:2 [ "identificador" => "sec0035" "titulo" => "Conclusions" ] 11 => array:2 [ "identificador" => "sec0040" "titulo" => "Funding" ] 12 => array:2 [ "identificador" => "sec0045" "titulo" => "Conflict of interests" ] 13 => array:2 [ "identificador" => "xack185325" "titulo" => "Acknowledgements" ] 14 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2013-10-23" "fechaAceptado" => "2013-12-18" "PalabrasClave" => array:2 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec566602" "palabras" => array:6 [ 0 => "Homunculus" 1 => "Mirror neurons" 2 => "Motor organization" 3 => "Plasticity" 4 => "Multiple representation" 5 => "Somatotopy" ] ] ] "es" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec566603" "palabras" => array:6 [ 0 => "Homúnculo" 1 => "Neuronas espejo" 2 => "Organización motora" 3 => "Plasticidad" 4 => "Representación múltiple" 5 => "Somatotopía" ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "en" => array:2 [ "titulo" => "Abstract" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">The basic characteristics of Penfield homunculus (somatotopy and unique representation) have been questioned. The existence of a defined anatomo-functional organization within different segments of the same region is controversial. The presence of multiple motor representations in the primary motor area and in the parietal lobe interconnected by parieto-frontal circuits, which are widely overlapped, form a complex organization. Both features support the recovery of functions after brain injury. Regarding the movement organization, it is possible to yield a relevant impact through the understanding of actions and intentions of others, which is mediated by the activation of mirror-neuron systems. The implementation of cognitive functions (observation, image of the action and imitation) from the acute treatment phase allows the activation of motor representations without having to perform the action and it plays an important role in learning motor patterns.</p></span>" ] "es" => array:2 [ "titulo" => "Resumen" "resumen" => "<span id="abst0010" class="elsevierStyleSection elsevierViewall"><p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">Las características básicas del homúnculo de Penfield (somatotopía y representación única) han sido cuestionadas. La existencia de una organización anatomofuncional definida en la corteza cerebral entre segmentos de una misma región es controvertida. La presencia en el área motora primaria y en el lóbulo parietal de múltiples representaciones motoras interconectadas por circuitos parietofrontales y profusamente solapadas configuran una organización compleja. Todo ello sustenta la recuperación funcional después de un daño cerebral. En la organización del movimiento se puede incidir a través de la comprensión de las acciones y de las intenciones de los otros, lo que está mediado por la activación de los sistemas de neuronas espejo. El uso de funciones cognitivas (observación, imagen de la acción e imitación) desde la fase aguda del tratamiento permite la activación de las representaciones motoras sin necesidad de ejecutar la acción, y tiene un papel importante en el aprendizaje de patrones motores.</p></span>" ] ] "NotaPie" => array:1 [ 0 => array:2 [ "etiqueta" => "☆" "nota" => "<p class="elsevierStyleNotepara" id="npar0005">Please cite this article as: Sallés L, Gironès X, Lafuente JV. Organización motora del córtex cerebral y el papel del sistema de las neuronas espejo. Repercusiones clínicas para la rehabilitación. Med Clin (Barc). 2015;144:30–34.</p>" ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0005" "bibliografiaReferencia" => array:42 [ 0 => array:3 [ "identificador" => "bib0215" "etiqueta" => "1" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Orderly somatotopy in primary motor cortex: does it exist?" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "J.N. Sanes" 1 => "M.H. Schieber" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1006/nimg.2000.0733" "Revista" => array:6 [ "tituloSerie" => "Neuroimage" "fecha" => "2001" "volumen" => "13" "paginaInicial" => "968" "paginaFinal" => "974" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/11352603" "web" => "Medline" ] ] ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0220" "etiqueta" => "2" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The integrated nature of motor cortical function" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "C. Capaday" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1177/107385403262109" "Revista" => array:6 [ "tituloSerie" => "Neuroscientist" "fecha" => "2004" "volumen" => "10" "paginaInicial" => "207" "paginaFinal" => "220" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/15155060" "web" => "Medline" ] ] ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0225" "etiqueta" => "3" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Las neuronas espejo. Los mecanismos de la empatía emocional" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "G. Rizzolatti" 1 => "C. Sinigaglia" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "2006" "editorial" => "Paidós Ibérica" "editorialLocalizacion" => "Barcelona" ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0230" "etiqueta" => "4" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Penfield's homunculus: a note on cerebral cartography" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "G.D. Schott" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "J Neurol Neurosurg Psychiatry" "fecha" => "1993" "volumen" => "56" "paginaInicial" => "329" "paginaFinal" => "333" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/8482950" "web" => "Medline" ] ] ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0235" "etiqueta" => "5" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Shared neural substrates controlling hand movements in human motor cortex" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "J.N. Sanes" 1 => "J.P. Donoghue" 2 => "V. Thangaraj" 3 => "R.R. Edelman" 4 => "S. Warach" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Science" "fecha" => "1995" "volumen" => "268" "paginaInicial" => "1775" "paginaFinal" => "1777" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/7792606" "web" => "Medline" ] ] ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0240" "etiqueta" => "6" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The relationship of corpus callosum connections to electrical stimulation maps of motor, supplementary motor, and the frontal eye fields in owl monkeys" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "H.J. Gould" 1 => "C.G. Cusick" 2 => "T.P. Pons" 3 => "J.H. Kaas" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/cne.902470303" "Revista" => array:6 [ "tituloSerie" => "J Comp Neurol" "fecha" => "1986" "volumen" => "247" "paginaInicial" => "297" "paginaFinal" => "325" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/3722441" "web" => "Medline" ] ] ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0245" "etiqueta" => "7" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "On somatotopic representation centers for finger movements in human primary motor cortex and supplementary motor area" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "I. Indovina" 1 => "J.N. Sanes" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1006/nimg.2001.0776" "Revista" => array:6 [ "tituloSerie" => "Neuroimage" "fecha" => "2001" "volumen" => "13" "paginaInicial" => "1027" "paginaFinal" => "1034" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/11352608" "web" => "Medline" ] ] ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0250" "etiqueta" => "8" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The mirror neuron system and treatment of stroke" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "S.L. Small" 1 => "G. Buccino" 2 => "A. Solodkin" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/dev.20504" "Revista" => array:6 [ "tituloSerie" => "Dev Psychobiol" "fecha" => "2012" "volumen" => "54" "paginaInicial" => "293" "paginaFinal" => "310" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22415917" "web" => "Medline" ] ] ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0255" "etiqueta" => "9" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Constraints on somatotopic organization in the primary motor cortex" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "M.H. Schieber" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "J Neurophysiol" "fecha" => "2001" "volumen" => "86" "paginaInicial" => "2125" "paginaFinal" => "2143" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/11698506" "web" => "Medline" ] ] ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0260" "etiqueta" => "10" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Within-limb somatotopy in primary motor cortex – revealed using fMRI" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "E.B. Plow" 1 => "P. Arora" 2 => "M.A. Pline" 3 => "M.T. Binenstock" 4 => "J.R. Carey" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.cortex.2009.02.024" "Revista" => array:6 [ "tituloSerie" => "Cortex" "fecha" => "2010" "volumen" => "46" "paginaInicial" => "310" "paginaFinal" => "321" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19446804" "web" => "Medline" ] ] ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0265" "etiqueta" => "11" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "fMRI evaluation of somatotopic representation in human primary motor cortex" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "M. Lotze" 1 => "M. Erb" 2 => "H. Flor" 3 => "E. Huelsmann" 4 => "B. Godde" 5 => "W. Grodd" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1006/nimg.2000.0556" "Revista" => array:6 [ "tituloSerie" => "Neuroimage" "fecha" => "2000" "volumen" => "11" "paginaInicial" => "473" "paginaFinal" => "481" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/10806033" "web" => "Medline" ] ] ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0270" "etiqueta" => "12" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Magnetoencephalography indicates finger motor somatotopy" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "R. Beisteiner" 1 => "A. Gartus" 2 => "M. Erdler" 3 => "D. Mayer" 4 => "R. Lanzenberger" 5 => "L. Deecke" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Eur J Neurosci" "fecha" => "2004" "volumen" => "19" "paginaInicial" => "465" "paginaFinal" => "472" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/14725641" "web" => "Medline" ] ] ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0275" "etiqueta" => "13" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Possible origins of the complex topographic organization of motor cortex: reduction of a multidimensional space onto a two-dimensional array" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "T.N. Aflalo" 1 => "M.S. Graziano" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1523/JNEUROSCI.0768-06.2006" "Revista" => array:6 [ "tituloSerie" => "J Neurosci" "fecha" => "2006" "volumen" => "26" "paginaInicial" => "6288" "paginaFinal" => "6297" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16763036" "web" => "Medline" ] ] ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0280" "etiqueta" => "14" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Mapping behavioral repertoire onto the cortex" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "M.S. Graziano" 1 => "T.N. Aflalo" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.neuron.2007.09.013" "Revista" => array:6 [ "tituloSerie" => "Neuron" "fecha" => "2007" "volumen" => "56" "paginaInicial" => "239" "paginaFinal" => "251" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17964243" "web" => "Medline" ] ] ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0285" "etiqueta" => "15" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "On the functional organization and operational principles of the motor cortex" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "C. Capaday" 1 => "C. Ethier" 2 => "C. van Vreeswijk" 3 => "W.G. Darling" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3389/fncir.2013.00066" "Revista" => array:5 [ "tituloSerie" => "Front Neural Circuits" "fecha" => "2013" "volumen" => "7" "paginaInicial" => "66" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23616749" "web" => "Medline" ] ] ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0290" "etiqueta" => "16" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Two representations of the hand in area 4 of a primate. I. Motor output organization" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "P.L. Strick" 1 => "J.B. Preston" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "J Neurophysiol" "fecha" => "1982" "volumen" => "48" "paginaInicial" => "139" "paginaFinal" => "149" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/6288884" "web" => "Medline" ] ] ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0295" "etiqueta" => "17" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Two representations of the hand in area 4 of a primate. II. Somatosensory input organization" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "P.L. Strick" 1 => "J.B. Preston" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "J Neurophysiol" "fecha" => "1982" "volumen" => "48" "paginaInicial" => "150" "paginaFinal" => "159" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/7119842" "web" => "Medline" ] ] ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib0300" "etiqueta" => "18" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Parietofrontal circuits for action and space perception in the macaque monkey" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "M. Matelli" 1 => "G. Luppino" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1006/nimg.2001.0835" "Revista" => array:7 [ "tituloSerie" => "Neuroimage" "fecha" => "2001" "volumen" => "14" "numero" => "1 Pt 2" "paginaInicial" => "S27" "paginaFinal" => "S32" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/11373129" "web" => "Medline" ] ] ] ] ] ] ] ] 18 => array:3 [ "identificador" => "bib0305" "etiqueta" => "19" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Hierarchical processing of tactile shape in the human brain" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "A. Bodegard" 1 => "S. Geyer" 2 => "C. Grefkes" 3 => "K. Zilles" 4 => "P.E. Roland" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Neuron" "fecha" => "2001" "volumen" => "31" "paginaInicial" => "317" "paginaFinal" => "328" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/11502261" "web" => "Medline" ] ] ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bib0310" "etiqueta" => "20" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Neural networks active during tactile form perception: common and differential activity during macrospatial and microspatial tasks" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "M.R. Stoesz" 1 => "M. Zhang" 2 => "V.D. Weisser" 3 => "S.C. Prather" 4 => "H. Mao" 5 => "K. Sathian" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Int J Psychophysiol" "fecha" => "2003" "volumen" => "50" "paginaInicial" => "41" "paginaFinal" => "49" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/14511835" "web" => "Medline" ] ] ] ] ] ] ] ] 20 => array:3 [ "identificador" => "bib0315" "etiqueta" => "21" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Overview of neurophysiology of movement control" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "J.C. Rothwell" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.clineuro.2011.12.053" "Revista" => array:6 [ "tituloSerie" => "Clin Neurol Neurosurg" "fecha" => "2012" "volumen" => "114" "paginaInicial" => "432" "paginaFinal" => "435" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22280985" "web" => "Medline" ] ] ] ] ] ] ] ] 21 => array:3 [ "identificador" => "bib0320" "etiqueta" => "22" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Bases neuronales de la empatía" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "L. Moya-Albiol" 1 => "N. Herrero" 2 => "M.C. Bernal" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Rev Neurol" "fecha" => "2010" "volumen" => "50" "paginaInicial" => "89" "paginaFinal" => "100" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20112217" "web" => "Medline" ] ] ] ] ] ] ] ] 22 => array:3 [ "identificador" => "bib0325" "etiqueta" => "23" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The mirror neuron system: a neural substrate for methods in stroke rehabilitation" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "K.A. Garrison" 1 => "C.J. Winstein" 2 => "L. Aziz-Zadeh" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1177/1545968309354536" "Revista" => array:6 [ "tituloSerie" => "Neurorehabil Neural Repair" "fecha" => "2010" "volumen" => "24" "paginaInicial" => "404" "paginaFinal" => "412" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20207851" "web" => "Medline" ] ] ] ] ] ] ] ] 23 => array:3 [ "identificador" => "bib0330" "etiqueta" => "24" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The mirror system and its role in social cognition" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "G. Rizzolatti" 1 => "M. Fabbri-Destro" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.conb.2008.08.001" "Revista" => array:6 [ "tituloSerie" => "Curr Opin Neurobiol" "fecha" => "2008" "volumen" => "18" "paginaInicial" => "179" "paginaFinal" => "184" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18706501" "web" => "Medline" ] ] ] ] ] ] ] ] 24 => array:3 [ "identificador" => "bib0335" "etiqueta" => "25" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The mirror neuron system" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "L. Cattaneo" 1 => "G. Rizzolatti" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1001/archneurol.2009.41" "Revista" => array:6 [ "tituloSerie" => "Arch Neurol" "fecha" => "2009" "volumen" => "66" "paginaInicial" => "557" "paginaFinal" => "560" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19433654" "web" => "Medline" ] ] ] ] ] ] ] ] 25 => array:3 [ "identificador" => "bib0340" "etiqueta" => "26" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "G. Rizzolatti" 1 => "C. Sinigaglia" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Nat Rev" "fecha" => "2010" "volumen" => "11" "paginaInicial" => "264" "paginaFinal" => "274" ] ] ] ] ] ] 26 => array:3 [ "identificador" => "bib0345" "etiqueta" => "27" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Grasping the intentions of others with one's own mirror neuron system" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "M. Iacoboni" 1 => "I. Molnar-Szakacs" 2 => "V. Gallese" 3 => "G. Buccino" 4 => "J.C. Mazziotta" 5 => "G. Rizzolatti" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1371/journal.pbio.0030079" "Revista" => array:5 [ "tituloSerie" => "PLoS Biol" "fecha" => "2005" "volumen" => "3" "paginaInicial" => "e79" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/15736981" "web" => "Medline" ] ] ] ] ] ] ] ] 27 => array:3 [ "identificador" => "bib0350" "etiqueta" => "28" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Observation and execution of upper-limb movements as a tool for rehabilitation of motor deficits in paretic stroke patients: protocol of a randomized clinical trial" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "D. Ertelt" 1 => "C. Hemmelmann" 2 => "C. Dettmers" 3 => "A. Ziegler" 4 => "F. Binkofski" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1186/1471-2377-12-42" "Revista" => array:5 [ "tituloSerie" => "BMC Neurol" "fecha" => "2012" "volumen" => "12" "paginaInicial" => "42" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22708612" "web" => "Medline" ] ] ] ] ] ] ] ] 28 => array:3 [ "identificador" => "bib0355" "etiqueta" => "29" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Two-levels of mental states attribution: from automaticity to voluntariness" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "G. Coricelli" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.neuropsychologia.2004.11.015" "Revista" => array:6 [ "tituloSerie" => "Neuropsychologia" "fecha" => "2005" "volumen" => "43" "paginaInicial" => "294" "paginaFinal" => "300" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/15707913" "web" => "Medline" ] ] ] ] ] ] ] ] 29 => array:3 [ "identificador" => "bib0360" "etiqueta" => "30" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Improvement of arm movement patterns and endpoint control depends on type of feedback during practice in stroke survivors" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "M.C. Cirstea" 1 => "M.F. Levin" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1177/1545968306298414" "Revista" => array:6 [ "tituloSerie" => "Neurorehabil Neural Repair" "fecha" => "2007" "volumen" => "21" "paginaInicial" => "398" "paginaFinal" => "411" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17369514" "web" => "Medline" ] ] ] ] ] ] ] ] 30 => array:3 [ "identificador" => "bib0365" "etiqueta" => "31" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Motor imagery after stroke: relating outcome to motor network connectivity" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "N. Sharma" 1 => "J.C. Baron" 2 => "J.B. Rowe" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/ana.21810" "Revista" => array:6 [ "tituloSerie" => "Ann Neurol" "fecha" => "2009" "volumen" => "66" "paginaInicial" => "604" "paginaFinal" => "616" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19938103" "web" => "Medline" ] ] ] ] ] ] ] ] 31 => array:3 [ "identificador" => "bib0370" "etiqueta" => "32" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "What do motor “recovery” and “compensation” mean in patients following stroke?" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "M.F. Levin" 1 => "J.A. Kleim" 2 => "S.L. Wolf" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1177/1545968308328727" "Revista" => array:6 [ "tituloSerie" => "Neurorehabil Neural Repair" "fecha" => "2009" "volumen" => "23" "paginaInicial" => "313" "paginaFinal" => "319" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19118128" "web" => "Medline" ] ] ] ] ] ] ] ] 32 => array:3 [ "identificador" => "bib0375" "etiqueta" => "33" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Plasticity" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "R.J. Nudo" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.nurx.2006.07.006" "Revista" => array:6 [ "tituloSerie" => "NeuroRx" "fecha" => "2006" "volumen" => "3" "paginaInicial" => "420" "paginaFinal" => "427" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17012055" "web" => "Medline" ] ] ] ] ] ] ] ] 33 => array:3 [ "identificador" => "bib0380" "etiqueta" => "34" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Enriched and deprived sensory experience induces structural changes and rewires connectivity during the postnatal development of the brain" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "H. Bengoetxea" 1 => "N. Ortuzar" 2 => "S. Bulnes" 3 => "I. Rico-Barrio" 4 => "J.V. Lafuente" 5 => "E.G. Argandoña" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1155/2012/305693" "Revista" => array:5 [ "tituloSerie" => "Neural Plast" "fecha" => "2012" "volumen" => "2012" "paginaInicial" => "305693" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22848849" "web" => "Medline" ] ] ] ] ] ] ] ] 34 => array:3 [ "identificador" => "bib0385" "etiqueta" => "35" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Neural plasticity: the biological substrate for neurorehabilitation" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "Z. Warraich" 1 => "J.A. Kleim" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1177/2040622315587256" "Revista" => array:7 [ "tituloSerie" => "PM&R" "fecha" => "2010" "volumen" => "2" "numero" => "12 Suppl. 2" "paginaInicial" => "S208" "paginaFinal" => "S219" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/26336597" "web" => "Medline" ] ] ] ] ] ] ] ] 35 => array:3 [ "identificador" => "bib0390" "etiqueta" => "36" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Vascular endothelial growth factor and other angioglioneurins: key molecules in brain development and restoration" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "J.V. Lafuente" 1 => "N. Ortuzar" 2 => "H. Bengoetxea" 3 => "S. Bulnes" 4 => "E.G. Argandoña" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/B978-0-12-386986-9.00012-0" "Revista" => array:6 [ "tituloSerie" => "Int Rev Neurobiol" "fecha" => "2012" "volumen" => "102" "paginaInicial" => "317" "paginaFinal" => "346" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22748835" "web" => "Medline" ] ] ] ] ] ] ] ] 36 => array:3 [ "identificador" => "bib0395" "etiqueta" => "37" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effects of limb immobilization on brain plasticity" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "N. Langer" 1 => "J. Hanggi" 2 => "N.A. Muller" 3 => "H.P. Simmen" 4 => "L. Jancke" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1212/WNL.0b013e31823fcd9c" "Revista" => array:6 [ "tituloSerie" => "Neurology" "fecha" => "2012" "volumen" => "78" "paginaInicial" => "182" "paginaFinal" => "188" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22249495" "web" => "Medline" ] ] ] ] ] ] ] ] 37 => array:3 [ "identificador" => "bib0400" "etiqueta" => "38" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Neurological rehabilitation: a science struggling to come of age" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "V. Pomeroy" 1 => "R. Tallis" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Physiother Res Int" "fecha" => "2002" "volumen" => "7" "paginaInicial" => "76" "paginaFinal" => "89" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/12109237" "web" => "Medline" ] ] ] ] ] ] ] ] 38 => array:3 [ "identificador" => "bib0405" "etiqueta" => "39" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Physical exercise is required for environmental enrichment to offset the quantitative effects of dark-rearing on the S-100beta astrocytic density in the rat visual cortex" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "E.G. Argandoña" 1 => "H. Bengoetxea" 2 => "J.V. Lafuente" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/j.1469-7580.2009.01103.x" "Revista" => array:6 [ "tituloSerie" => "J Anat" "fecha" => "2009" "volumen" => "215" "paginaInicial" => "132" "paginaFinal" => "140" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19500177" "web" => "Medline" ] ] ] ] ] ] ] ] 39 => array:3 [ "identificador" => "bib0410" "etiqueta" => "40" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Mental imagery for promoting relearning for people after stroke: a randomized controlled trial" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "K.P. Liu" 1 => "C.C. Chan" 2 => "T.M. Lee" 3 => "C.W. Hui-Chan" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Arch Phys Med Rehabil" "fecha" => "2004" "volumen" => "85" "paginaInicial" => "1403" "paginaFinal" => "1408" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/15375808" "web" => "Medline" ] ] ] ] ] ] ] ] 40 => array:3 [ "identificador" => "bib0415" "etiqueta" => "41" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Mental practice in chronic stroke: results of a randomized, placebo-controlled trial" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "S.J. Page" 1 => "P. Levine" 2 => "A. Leonard" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1161/01.STR.0000260205.67348.2b" "Revista" => array:6 [ "tituloSerie" => "Stroke" "fecha" => "2007" "volumen" => "38" "paginaInicial" => "1293" "paginaFinal" => "1297" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17332444" "web" => "Medline" ] ] ] ] ] ] ] ] 41 => array:3 [ "identificador" => "bib0420" "etiqueta" => "42" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Clinical relevance of action observation in upper-limb stroke rehabilitation: a possible role in recovery of functional dexterity. A randomized clinical trial" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "M. Franceschini" 1 => "M.G. Ceravolo" 2 => "M. Agosti" 3 => "P. Cavallini" 4 => "S. Bonassi" 5 => "V. Dall’Armi" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1177/1545968311427406" "Revista" => array:6 [ "tituloSerie" => "Neurorehabil Neural Repair" "fecha" => "2012" "volumen" => "26" "paginaInicial" => "456" "paginaFinal" => "462" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22235059" "web" => "Medline" ] ] ] ] ] ] ] ] ] ] ] ] "agradecimientos" => array:1 [ 0 => array:4 [ "identificador" => "xack185325" "titulo" => "Acknowledgements" "texto" => "<p id="par0220" class="elsevierStylePara elsevierViewall">To Roberta Montecolle, for her critical revision of the manuscript; to the Societat Catalano-Balear de Fisioteràpia (SCBF, 2012); to the Basque Government (GIC 794/13), and to the Universidad del País Vasco/Euskal Herriko Unibertsitatea (UFI 11/32).</p>" "vista" => "all" ] ] ] "idiomaDefecto" => "en" "url" => "/23870206/0000014400000001/v1_201509042040/S2387020615000066/v1_201509042040/en/main.assets" "Apartado" => array:4 [ "identificador" => "43313" "tipo" => "SECCION" "en" => array:2 [ "titulo" => "Reviews" "idiomaDefecto" => true ] "idiomaDefecto" => "en" ] "PDF" => "https://static.elsevier.es/multimedia/23870206/0000014400000001/v1_201509042040/S2387020615000066/v1_201509042040/en/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2387020615000066?idApp=UINPBA00004N" ]
Journal Information
Share
Download PDF
More article options
Review
The motor organization of cerebral cortex and the role of the mirror neuron system. Clinical impact for rehabilitation
Organización motora del córtex cerebral y el papel del sistema de las neuronas espejo. Repercusiones clínicas para la rehabilitación
a Departamento de Fisioterapia, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Barcelona, Spain
b Departamento de Fisioterapia, Fundació Universitària del Bages (UAB), Barcelona, Spain
c LaNCE, Departamento de Neurociencias, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Vizcaya, Spain
d Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago de Chile, Chile