was read the article
array:23 [ "pii" => "S260392492300023X" "issn" => "26039249" "doi" => "10.1016/j.mcpsp.2023.100385" "estado" => "S300" "fechaPublicacion" => "2023-10-01" "aid" => "100385" "copyright" => "The Author(s)" "copyrightAnyo" => "2023" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Med Clin Pract. 2023;6:" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "itemSiguiente" => array:18 [ "pii" => "S2603924923000101" "issn" => "26039249" "doi" => "10.1016/j.mcpsp.2023.100372" "estado" => "S300" "fechaPublicacion" => "2023-10-01" "aid" => "100372" "copyright" => "The Authors" "documento" => "article" "crossmark" => 1 "subdocumento" => "crp" "cita" => "Med Clin Pract. 2023;6:" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "en" => array:12 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Clinical report</span>" "titulo" => "Retroperitoneal perivascular epithelioid cell tumor in a 47-years old woman" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Tumor retroperitoneal perivascular de células epitelioides en una mujer de 47 años de edad" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:8 [ "identificador" => "f0015" "etiqueta" => "Fig. 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 511 "Ancho" => 709 "Tamanyo" => 41823 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "al0015" "detalle" => "Fig. " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="sp0015" class="elsevierStyleSimplePara elsevierViewall">A CT scan at 3 months after sirolimus showed a decrease in the size of the retroperitoneal lymphadenopathy previously described.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Minguez Ojeda César, Lorca Álvaro Javier, López-Rodríguez Mónica A., Andreu Arnanz Ana, Tagalos Muñoz Ana Cristina, Gómez Dos Santos Victoria, Burgos Revilla Francisco Javier" "autores" => array:7 [ 0 => array:2 [ "nombre" => "Minguez Ojeda" "apellidos" => "César" ] 1 => array:2 [ "nombre" => "Lorca Álvaro" "apellidos" => "Javier" ] 2 => array:2 [ "nombre" => "López-Rodríguez" "apellidos" => "Mónica A." ] 3 => array:2 [ "nombre" => "Andreu Arnanz" "apellidos" => "Ana" ] 4 => array:2 [ "nombre" => "Tagalos Muñoz" "apellidos" => "Ana Cristina" ] 5 => array:2 [ "nombre" => "Gómez Dos Santos" "apellidos" => "Victoria" ] 6 => array:2 [ "nombre" => "Burgos Revilla" "apellidos" => "Francisco Javier" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2603924923000101?idApp=UINPBA00004N" "url" => "/26039249/0000000600000004/v1_202310232153/S2603924923000101/v1_202310232153/en/main.assets" ] "itemAnterior" => array:17 [ "pii" => "S2603924923000356" "issn" => "26039249" "doi" => "10.1016/j.mcpsp.2023.100397" "estado" => "S300" "fechaPublicacion" => "2023-10-01" "aid" => "100397" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Med Clin Pract. 2023;6:" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "en" => array:11 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original article</span>" "titulo" => "The relationship between personality traits and labor pain intensity and type of delivery among multiparous and nulliparous women" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "La relación entre los rasgos de personalidad y la intensidad del dolor de parto y el tipo de parto en mujeres multíparas y nulíparas" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Sahar Parvizi, Zahra Yazdanpanahi, Fatemeh Rahmanian, Naeimeh Tayebi, Marzieh Akbarzadeh" "autores" => array:5 [ 0 => array:2 [ "nombre" => "Sahar" "apellidos" => "Parvizi" ] 1 => array:2 [ "nombre" => "Zahra" "apellidos" => "Yazdanpanahi" ] 2 => array:2 [ "nombre" => "Fatemeh" "apellidos" => "Rahmanian" ] 3 => array:2 [ "nombre" => "Naeimeh" "apellidos" => "Tayebi" ] 4 => array:2 [ "nombre" => "Marzieh" "apellidos" => "Akbarzadeh" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2603924923000356?idApp=UINPBA00004N" "url" => "/26039249/0000000600000004/v1_202310232153/S2603924923000356/v1_202310232153/en/main.assets" ] "en" => array:18 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original article</span>" "titulo" => "Brain natriuretic peptide as a prognostic factor in COVID-19" "tieneTextoCompleto" => true "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "Irving Elliot Ortiz y Cruz, Valeria Juárez García, Israel Nayensei Gil Velázquez, Pedro José Curi Curi" "autores" => array:4 [ 0 => array:3 [ "nombre" => "Irving Elliot" "apellidos" => "Ortiz y Cruz" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "af0010" ] ] ] 1 => array:4 [ "nombre" => "Valeria Juárez" "apellidos" => "García" "email" => array:1 [ 0 => "wonejiitha@comunidad.unam.mx" ] "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "af0015" ] ] ] 2 => array:3 [ "nombre" => "Israel Nayensei Gil" "apellidos" => "Velázquez" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "af0010" ] ] ] 3 => array:4 [ "nombre" => "Pedro José Curi" "apellidos" => "Curi" "email" => array:1 [ 0 => "pcuri@hraei.gob.mx" ] "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "af0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cr0005" ] ] ] ] "afiliaciones" => array:3 [ 0 => array:3 [ "entidad" => "Dirección de Planeación, Enseñanza e Investigación, Hospital Regional de Alta Especialidad Ixtapaluca, Estado de México, México" "etiqueta" => "a" "identificador" => "af0005" ] 1 => array:3 [ "entidad" => "Servicio de Medicina Interna, Hospital Regional de Alta Especialidad Ixtapaluca, Estado de México, México" "etiqueta" => "b" "identificador" => "af0010" ] 2 => array:3 [ "entidad" => "Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, México" "etiqueta" => "c" "identificador" => "af0015" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cr0005" "etiqueta" => "⁎" "correspondencia" => "Corresponding author." ] ] ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Péptido cerebral natriurético como factor pronóstico en COVID-19" ] ] "resumenGrafico" => array:2 [ "original" => 1 "multimedia" => array:6 [ "identificador" => "f0020" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => false "mostrarDisplay" => true "figura" => array:1 [ 0 => array:4 [ "imagen" => "ga1.jpeg" "Alto" => 877 "Ancho" => 1333 "Tamanyo" => 176125 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "al0035" "detalle" => "Unlabelled Imag" "rol" => "short" ] ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="s0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0070">Abreviaturas</span><p id="p0005" class="elsevierStylePara elsevierViewall"><elsevierMultimedia ident="t0020"></elsevierMultimedia></p></span><span id="s0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0075">Introduction</span><p id="p0010" class="elsevierStylePara elsevierViewall">Currently, coronavirus type 2 (SARS-CoV-2) has been implicated as the etiological agent of Coronavirus Disease 2019 (COVID-19). The infectious clinical spectrum of SARS-CoV-2 goes from an asymptomatic process to a severe respiratory failure that can lead to death. Effects of SARS-CoV-2 virus is due to its property to bind with the human angiotensin I converting enzyme 2 (ACE2) receptor. Infections with this virus can lead to multiple organ failure because ACE2 receptor is expressed in almost all organs of the human body.<a class="elsevierStyleCrossRef" href="#bb0005"><span class="elsevierStyleSup">1</span></a></p><p id="p0015" class="elsevierStylePara elsevierViewall">Brain natriuretic peptide (BNP) is a hormone mainly produced at the heart ventricles.<a class="elsevierStyleCrossRef" href="#bb0010"><span class="elsevierStyleSup">2</span></a> Its synthesis and release is secondary to heart wall distension, ventricular dilation and/or increased pressure in the cardiac chambers. BNP elevated blood levels promote vasodilation, increased diuresis, and produces suppression of the renin-angiotensin-aldosterone system in order to decrease heart preload.<a class="elsevierStyleCrossRef" href="#bb0015"><span class="elsevierStyleSup">3</span></a></p><p id="p0020" class="elsevierStylePara elsevierViewall">BNP, which is a recognized heart failure biomarker, has also been used as a prognostic factor in patients with sepsis and septic shock, regardless of their previous cardiovascular condition. This study aims to determine if BNP can be also used as a prognostic factor in patients with SARS-CoV-2 infection.</p></span><span id="s0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0080">Methodology</span><p id="p0025" class="elsevierStylePara elsevierViewall">A retrospective, observational, analytical, and cross-sectional case-control clinical study was designed, in which all patients over 18 years with a diagnosis of COVID-19 confirmed by reverse transcriptase polymerase chain reaction (PCR-RT) were included. Patients were admitted to the internal medicine service of a third level hospital in a one month period during the 2020 pandemia. Those with a previous diagnosis of chronic heart failure, chronic kidney disease, hyperthyroidism, chronic liver disease, malignancy, and a history of subarachnoid hemorrhage in the last 3 months were excluded. Chronic kidney disease during hospital stay, serum creatinine levels ><span class="elsevierStyleHsp" style=""></span>1.5 mg/dl or blood glucose ><span class="elsevierStyleHsp" style=""></span>250 mg/dl were considered as elimination criteria for this study.</p><p id="p0030" class="elsevierStylePara elsevierViewall">Patients were divided in two groups: the ones who were discharged home due to clinical improvement (controls), and those who died during their hospital stay (cases). Clinical background records were collected, specially those referred to comorbidities and medication intake, as well as vital signs and anthropometric measurements to determine body mass index (BMI). Laboratory studies such as hematic biometrics, blood chemistry, liver function tests, ultrasensitive C-reactive protein, procalcitonin, ferritin, and blood BNP levels were considered.</p><p id="p0035" class="elsevierStylePara elsevierViewall">Clinical and laboratory data were collected from clinical records within the first 24 hours of hospital admission. This information was recorded into an Excel spreadsheet for further analysis using SPSS version 21 software. Quantitative variables are expressed as mean ± standard deviation and categorical variables are expressed as frequency and percentage in relation to the population at risk. BNP values <span class="elsevierStyleHsp" style=""></span>were analyzed using the ROC curve and then Odds ratio (OR) values <span class="elsevierStyleHsp" style=""></span>were calculated.</p></span><span id="s0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0085">Results</span><p id="p0040" class="elsevierStylePara elsevierViewall">A sample of 100 patients was obtained out of total of 204 clinical récords studied. Fifty patients were randomly assigned to each study group (cases and controls) using an Urna Software.</p><p id="p0045" class="elsevierStylePara elsevierViewall"><a class="elsevierStyleCrossRef" href="#t0005">Table 1</a> shows sociodemographic variables, somatometry and vital signs. Male gender was predominantly observed at the problem group, which were eight years older in relation to the control group. Despite the fact that there were no significant differences in comorbidities and somatometry, the most frequent comorbidities in both groups were obesity, arterial hypertension and type 2 diabetes mellitus. There were no differences in vital signs, diastolic blood pressure, heart rate, respiratory rate and temperature at both studied groups. However, systolic blood pressure was higher in the problem group and oxygen saturation (SaO<span class="elsevierStyleInf">2</span>) was higher in the control group. In <a class="elsevierStyleCrossRef" href="#t0010">Table 2</a> laboratory values are shown, and we can see higher levels in the problem group related to hemoglobin, leukocytes and absolute neutrophils, as well as blood urea nitrogen (BUN), levels of lactic dehydrogenase (LDH) and C-reactive protein.</p><elsevierMultimedia ident="t0005"></elsevierMultimedia><elsevierMultimedia ident="t0010"></elsevierMultimedia><p id="p0050" class="elsevierStylePara elsevierViewall"><a class="elsevierStyleCrossRef" href="#f0005">Fig. 1</a> shows a ROC curve for BNP values <span class="elsevierStyleHsp" style=""></span>of the problem group. It was found that the cut-off point for serum BNP was 32 pg/ml, which represented the highest sensibility and specificity for the end point of death in patients with COVID-19. Therefore, a patient who died showed a 60% probability of having a serum BNP level > 32 pg/mL at admission. A patient who was discharged from hospital showed a 90% probability of having an initial BNP serum level < 32 pg/ml. It was determined that the positive predictive value of BNP for intrahospital mortality from COVID-19 is 0.85 and the negative predictive value is 0.69. The area under the curve (AUC) of the BNP as a prognostic tool for in-hospital mortality due to COVID-19 was 0.751. Since the confidence interval does not include the value of 0.50, we can affirm that the AUC of the BNP concentration is different from non-discrimination.</p><elsevierMultimedia ident="f0005"></elsevierMultimedia><p id="p0055" class="elsevierStylePara elsevierViewall"><a class="elsevierStyleCrossRef" href="#t0015">Table 3</a> shows the number of patients in both groups who presented both higher and lower BNP values <span class="elsevierStyleHsp" style=""></span>on admission, taking 32 pg/ml as the cut-off point. The calculated OR was 13.5, so that patients with COVID-19 and BNP ≥ 32 pg/mL are 13 times more likely to die during their hospital stay compared to those patients with a BNP level below this cut-off point. In turn, the 95% confidence interval was between 4.6 and 39.9.</p><elsevierMultimedia ident="t0015"></elsevierMultimedia><p id="p0060" class="elsevierStylePara elsevierViewall"><a class="elsevierStyleCrossRef" href="#f0010">Fig. 2</a> shows that most of the patients in the problem group had BNP concentrations ≥ 32 pg/ml compared to the control group. Positive and negative odds ratios were calculated. The positive likelihood ratio (CPP) resulted in 6, while the negative likelihood ratio (CPN) was obtained in 0.44. <a class="elsevierStyleCrossRef" href="#f0015">Fig. 3</a> shows the Fagan nomogram. The first line shows the pre-test probability, which is represented by intra-hospital mortality in patients with COVID-19. Starting from the prevalence value, which in this study is 50, a line was drawn that intersects the values <span class="elsevierStyleHsp" style=""></span>of the probability ratios, both positive and negative, and finally extends to the post-test probability axis. A positive post-test probability value of 86% was obtained. The negative post-test probability value was 31%. Therefore, in a clinical scenario with the prevalence of our study, a patient with COVID-19 and BNP on admission greater than 32 pg/ml has an 86% probability of dying and, conversely, if the BNP result is less than this cut-off value, the patient has a 31% probability of being discharged at home.</p><elsevierMultimedia ident="f0010"></elsevierMultimedia><elsevierMultimedia ident="f0015"></elsevierMultimedia></span><span id="s0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0090">Discussion</span><p id="p0065" class="elsevierStylePara elsevierViewall">Morbidity and mortality due to COVID-19 disease increased significantly all worldwide. Therefore, it was necessary to develop scales and search for prognostic factors that would allow the identification of patients with the highest risk for complications and death. BNP is a biomarker that has been used as a prognostic factor in patients with sepsis and septic shock, because its short term elevation is a mortality predictor.<a class="elsevierStyleCrossRef" href="#bb0020"><span class="elsevierStyleSup">4</span></a> Currently, there are few researches related to the prognostic value of BNP as a biomarker in COVID-19, since the N-terminal prohormone of brain natriuretic peptide (NT-proBNP) has mostly been used as a prognostic biomarker. Elevated NT-proBNP concentrations at admission in COVID-19 patients have been shown to be associated with higher rates of mechanical ventilation, intensive care unit (ICU) admissions, and a twice probability risk of in-hospital mortality, regardless of a clinical background of a previous heart failure.<a class="elsevierStyleCrossRef" href="#bb0025"><span class="elsevierStyleSup">5</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bb0030"><span class="elsevierStyleSup">6</span></a> It has been stated that the NT-proBNP cut-off point to predict mortality in patients with COVID-19 is 88.64 pg/mL, with a 100% sensibility and a 66.67% sensitivity. Patients with NT-proBNP blood concentrations greater than that value have a lower cumulative survival rate compared to those with lower levels.<a class="elsevierStyleCrossRef" href="#bb0035"><span class="elsevierStyleSup">7</span></a> In the present study, BNP was used as a mortality predictor biomarker that showed a relationship between elevated levels and in-hospital mortality in patients with COVID-19, with a 32 pg/ml as a cut-off point. The elevation of BNP/NT-pro-NBP has not yet been studied, but it is thought to be multifactorial.<a class="elsevierStyleCrossRef" href="#bb0040"><span class="elsevierStyleSup">8</span></a> Currently, viral RNA has been associated with direct damage of the virus at the myocardial tissue. This tropism is associated with the expression of the angiotensin-converting enzyme receptor 2 (ACE2) in cardiac cells, which allows SARS-CoV-2 to infect and replicate within cardiomyocytes, leading to infiltration of monocytes, lymphocytes and plasma cells, and developing myocarditis due to COVID-19 with increased cardiac biomarkers.<a class="elsevierStyleCrossRef" href="#bb0045"><span class="elsevierStyleSup">9</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bb0050"><span class="elsevierStyleSup">10</span></a></p><p id="p0070" class="elsevierStylePara elsevierViewall">In addition to the direct cytopathic effect of SARS-CoV-2 on cardiomyocytes, it has also been proposed that myocardial damage is mediated by the uncontrolled release of cytokines. Cytokine storm is the main cause of severity and death in patients with COVID-19. It is the consequence of an excessive immune response that can be fatal. There is an imbalance in the cellular response of T helper 1 lymphocytes, excessive production of proinflammatory cytokines (Interleukin-6, tumor necrosis factor-α) and chemical mediators, that are capable of damaging the myocardium and causing cardiac dysfunction.<a class="elsevierStyleCrossRef" href="#bb0050"><span class="elsevierStyleSup">10</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bb0055"><span class="elsevierStyleSup">11</span></a> In the problem group, the numbers of leukocytes, absolute neutrophils, and ultrasensitive C-reactive protein levels were significantly higher, which is associated with a great inflammatory response induced by SARS-CoV-2 infection. These data also show that myocardial injury and the consequent elevation of B-type natriuretic peptide are strongly associated with an inflammatory pathogenic substrate. Leukocytes are attracted by inflammatory signals to cardiac tissue, producing numerous reactive oxygen species at the site of injury and increased oxidative stress, which leads to cardiomyocyte deterioration associated with modification of contractile proteins and dysregulation of cellular redox states. These changes promote apoptosis of cardiomyocytes and determine a state of reparative fibrosis.<a class="elsevierStyleCrossRef" href="#bb0060"><span class="elsevierStyleSup">12</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bb0065"><span class="elsevierStyleSup">13</span></a></p><p id="p0075" class="elsevierStylePara elsevierViewall">In this study, no statistically significant difference was documented in lymphocyte count between both groups. Our data differ from most published studies in which lymphopenia is a typical profile in patients with COVID-19.<a class="elsevierStyleCrossRef" href="#bb0070"><span class="elsevierStyleSup">14</span></a> Lymphopenia represents an independent risk factor for mortality and has even become part of some indices or scores that try to predict the progression of COVID-19 towards severe forms, such as the CALL score or the COVID-gram score.<a class="elsevierStyleCrossRef" href="#bb0075"><span class="elsevierStyleSup">15</span></a></p><p id="p0080" class="elsevierStylePara elsevierViewall">Multiple risk factors leading to severe COVID-19 disease have currently been identified. Advanced age (>65 years), male gender, chronic degenerative diseases (diabetes, arterial hypertension, obesity, and cardiovascular diseases) are significant risk factors for disease severity, complications, and poor prognosis. Since the beginning of the pandemic, it has been determined that older people have a more severe presentation of the disease from COVID-19 and a higher mortality. The processes of aging and cellular senescence of the immune system are factors that leave the elderly patient in a vulnerable state.<a class="elsevierStyleCrossRef" href="#bb0085"><span class="elsevierStyleSup">17</span></a> In this study it was observed that in the problem group most of the patients were in the fifth decade of life and although they were not older than 60 years, it is corroborated that age is a prognostic factor for the outcome of COVID-19. Age has a directly proportional relationship with the increase in mortality. This is evident in patients ≥ 60 years, where the highest mortality occurs in patients ≥ 80 years in whom the risk of death is six times higher compared to young patients.<a class="elsevierStyleCrossRef" href="#bb0090"><span class="elsevierStyleSup">18</span></a> Similarly, it has been shown that the male gender predicts a higher mortality rate compared to the female gender.<a class="elsevierStyleCrossRef" href="#bb0095"><span class="elsevierStyleSup">19</span></a> In the problem group, the number of men was significantly higher compared to the control group, which supports that the male gender is a predictor of increased risk of death in adults with COVID-19. Sex hormones are involved in the immune response to SARS-CoV-2 infection. In women, estrogens are a protective factor and in infectious disease promote the proliferation of T cells and therefore a stronger immune response. In men, androgens, such as testosterone and dihydrotestosterone, increase the count and function of the main cells responsible for cytokine storm syndrome, the neutrophils. Therefore, there is a greater predisposition to develope an exaggerated immune response and greater complications. In general, male sex hormones facilitate the entry of the virus into tissues, since they increase the activity of the ACE2 receptor and favor the expression of the transmembrane protease serine 2 (TMPRSS2).<a class="elsevierStyleCrossRef" href="#bb0100"><span class="elsevierStyleSup">20</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bb0105"><span class="elsevierStyleSup">21</span></a></p><p id="p0085" class="elsevierStylePara elsevierViewall">Regarding vital signs, the problem group presented significantly lower SaO<span class="elsevierStyleInf">2</span>. Hypoxemia occurs when the oxygen content in arterial blood is decreased. Hypoxemia in patients with COVID-19 is a consequence of alterations between ventilation/perfusion (V/Q) caused by the presence of pulmonary edema and loss of alveolar elasticity, which produces alveolar collapse and therefore alterations in hematosis.<a class="elsevierStyleCrossRef" href="#bb0110"><span class="elsevierStyleSup">22</span></a> In patients with COVID-19, the severity of hypoxemia is an independent predictor of mortality, respiratory complications, and use of mechanical ventilation. In the presence of hypoxia, various compensatory mechanisms occur, such as the increase in the red blood cell count. Under hypoxic conditions, the juxtaglomerular cells of the kidney are stimulated by factor 1-alpha to favor the secretion of erythropoietin, which in the bone marrow favors the production of red blood cells, of which main component is hemoglobin (23). This explains why the patients in the problem group with considerably low oxygen saturation have significantly higher hemoglobin levels compared to the control group.</p><p id="p0090" class="elsevierStylePara elsevierViewall">This study becomes important as no articles have been published that relate B-type natriuretic peptide with in-hospital mortality in COVID-19 population. It suggests, as well, a new low-cost and useful prognostic factor for SARS-CoV-2 infection.</p></span><span id="s9030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st9095">Conflicts of interest</span><p id="p9105" class="elsevierStylePara elsevierViewall">The authors have no conflicts of interest to declare.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:13 [ 0 => array:3 [ "identificador" => "xres1995718" "titulo" => "Abstract" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "as0005" "titulo" => "Introduction" ] 1 => array:2 [ "identificador" => "as0010" "titulo" => "Materials and methods" ] 2 => array:2 [ "identificador" => "as0015" "titulo" => "Results" ] 3 => array:2 [ "identificador" => "as0020" "titulo" => "Discussion" ] ] ] 1 => array:3 [ "identificador" => "xres1995717" "titulo" => "Graphical abstract" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "as0040" ] ] ] 2 => array:2 [ "identificador" => "xpalclavsec1712288" "titulo" => "Keywords" ] 3 => array:2 [ "identificador" => "xpalclavsec1712287" "titulo" => "Abbreviations" ] 4 => array:3 [ "identificador" => "xres1995719" "titulo" => "Resumen" "secciones" => array:3 [ 0 => array:2 [ "identificador" => "as0025" "titulo" => "Introducción" ] 1 => array:2 [ "identificador" => "as0030" "titulo" => "Materiales y métodos" ] 2 => array:2 [ "identificador" => "as0035" "titulo" => "Resultados y conclusiones" ] ] ] 5 => array:2 [ "identificador" => "xpalclavsec1712289" "titulo" => "Palabras clave" ] 6 => array:2 [ "identificador" => "s0005" "titulo" => "Abreviaturas" ] 7 => array:2 [ "identificador" => "s0010" "titulo" => "Introduction" ] 8 => array:2 [ "identificador" => "s0015" "titulo" => "Methodology" ] 9 => array:2 [ "identificador" => "s0020" "titulo" => "Results" ] 10 => array:2 [ "identificador" => "s0025" "titulo" => "Discussion" ] 11 => array:2 [ "identificador" => "s9030" "titulo" => "Conflicts of interest" ] 12 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2023-04-03" "fechaAceptado" => "2023-05-03" "PalabrasClave" => array:2 [ "en" => array:2 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec1712288" "palabras" => array:3 [ 0 => "Brain natriuretic peptide" 1 => "COVID-19* / mortality" 2 => "Prognosis" ] ] 1 => array:4 [ "clase" => "abr" "titulo" => "Abbreviations" "identificador" => "xpalclavsec1712287" "palabras" => array:5 [ 0 => "BNP" 1 => "COVID-19" 2 => "NT-proBNP" 3 => "SaO<span class="elsevierStyleInf">2</span>" 4 => "SARS-CoV-2" ] ] ] "es" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec1712289" "palabras" => array:3 [ 0 => "Péptido natriurético cerebral" 1 => "COVID-19* / mortalidad" 2 => "Pronóstico" ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "en" => array:3 [ "titulo" => "Graphical abstract" "resumen" => "<span id="as0040" class="elsevierStyleSection elsevierViewall"><p id="sp0095" class="elsevierStyleSimplePara elsevierViewall"><elsevierMultimedia ident="f0020"></elsevierMultimedia></p></span>" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "as0005" "titulo" => "Introduction" ] 1 => array:2 [ "identificador" => "as0010" "titulo" => "Materials and methods" ] 2 => array:2 [ "identificador" => "as0015" "titulo" => "Results" ] 3 => array:2 [ "identificador" => "as0020" "titulo" => "Discussion" ] ] ] "es" => array:3 [ "titulo" => "Resumen" "resumen" => "<span id="as0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0035">Introducción</span><p id="sp0075" class="elsevierStyleSimplePara elsevierViewall">Actualmente la infección por SARS-CoV-2 ha provocado la muerte de 6.5 millones de personas a nivel mundial. La COVID-19 es una enfermedad que afecta primordialmente al sistema respiratorio y puede llegar a provocar falla multiorgánica. Debido a la mortalidad que ha generado se han generado diferentes índices pronósticos para determinar que pacientes son más propensos a complicarse y fallecer. En BNP es una hormona peptídica sintetizada en los ventrículos del corazón y se ha usado como indicativo de insuficiencia cardiaca y como factor pronostico en pacientes con choque séptico. Por lo tanto, se ha planteado su uso como factor pronóstico en pacientes que presentan COVID-19.</p></span> <span id="as0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0040">Materiales y métodos</span><p id="sp0080" class="elsevierStyleSimplePara elsevierViewall">Se llevó a cabo estudio retrospectivo de casos y controles que incluyó a 100 pacientes confirmados con infección por SARS-CoV-2 por PCR-RT, los cuales fueron egresados a domicilio o fallecido hasta el 30 de mayo de 2020. Utilizando el expediente clínico electrónico de estos pacientes, se obtuvieron datos demográficos, clínicos y bioquímicos para realizar la comparación entre los sobrevivientes y los pacientes que fallecieron. Se realizó análisis estadístico con curva ROC para determinar el nivel de BNP al ingreso, que se asoció con mayor mortalidad intrahospitalaria.</p></span> <span id="as0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0045">Resultados y conclusiones</span><p id="sp0085" class="elsevierStyleSimplePara elsevierViewall">De los 100 pacientes incluidos, 50 fueron egresados a domicilio y 50 fallecieron durante su estancia intrahospitalaria. El 87% de los pacientes presentaba al menos una comorbilidad, siendo la obesidad la más frecuente (38 pacientes, 38%), seguido de hipertensión (25 pacientes, 25%). Existió diferencia estadísticamente significativa entre ambos grupos en las siguientes características: edad, género masculino, saturación de oxígeno por pulsioximetría, conteo de leucocitos, recuento de neutrófilos, deshidrogenasa láctica y proteína C reactiva. Respecto al BNP, se encontró que un punto de corte mayor a 32 pg/ml puede utilizarse como factor predictor de mortalidad intrahospitalaria (AUC 0.751) con una sensibilidad de 60% y especificidad de 90%; así como odds ratio de 13.5 (IC 95%; 4.6–39.9).</p><p id="sp0090" class="elsevierStyleSimplePara elsevierViewall">Un nivel de BNP, al ingreso, mayor de 32 pg/ml se asocia con mayor mortalidad intrahospitalaria en pacientes con COVID-19.</p></span>" "secciones" => array:3 [ 0 => array:2 [ "identificador" => "as0025" "titulo" => "Introducción" ] 1 => array:2 [ "identificador" => "as0030" "titulo" => "Materiales y métodos" ] 2 => array:2 [ "identificador" => "as0035" "titulo" => "Resultados y conclusiones" ] ] ] ] "multimedia" => array:8 [ 0 => array:8 [ "identificador" => "f0005" "etiqueta" => "Fig. 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 980 "Ancho" => 1022 "Tamanyo" => 61234 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "al0005" "detalle" => "Fig. " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="sp0005" class="elsevierStyleSimplePara elsevierViewall">ROC curve for BNP values in the group of deceased patients</p> <p id="sp0010" class="elsevierStyleSimplePara elsevierViewall">Abbreviations: ROC<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>Receiver Operating Characteristic, AUC<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>area under the curve, CI<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>confidence Interval.</p>" ] ] 1 => array:8 [ "identificador" => "f0010" "etiqueta" => "Fig. 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 986 "Ancho" => 1016 "Tamanyo" => 57193 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "al0010" "detalle" => "Fig. " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="sp0015" class="elsevierStyleSimplePara elsevierViewall">Grouped bar chart and its comparison with the BNP values at the cut-off point established by the ROC curve.</p>" ] ] 2 => array:8 [ "identificador" => "f0015" "etiqueta" => "Fig. 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 1360 "Ancho" => 1772 "Tamanyo" => 136121 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "al0015" "detalle" => "Fig. " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="sp0020" class="elsevierStyleSimplePara elsevierViewall">Fagan nomogram summarizing the characteristics of BNP as a prognostic study of in-hospital mortality in patients with COVID-19.</p>" ] ] 3 => array:8 [ "identificador" => "t0005" "etiqueta" => "Table 1" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "al0020" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:2 [ "leyenda" => "<p id="sp0030" class="elsevierStyleSimplePara elsevierViewall">Abbreviations: SAH<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>systemic arterial hypertension, DM2<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>type 2 diabetes mellitus, Kg<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>kilograms, m<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>meters, BMI<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>body mass index, BP<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>blood pressure, HR<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>heart rate, min<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>minutes, FR<span class="elsevierStyleHsp" style=""></span>= respiratory rate, °C<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>Celsius degrees and O<span class="elsevierStyleInf">2</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>oxygen</p>" "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td-with-role" title="\n \t\t\t\t\ttable-head\n \t\t\t\t ; entry_with_role_rowgroup " rowspan="2" align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Variables</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">CONTROL group \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">PROBLEM group \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " rowspan="2" align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col">p</th></tr><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">n (%) /Mean ± SD (Min - Max) \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">n (%) /Mean ± SD (Min - Max) \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Age (years) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">45<span class="elsevierStyleHsp" style=""></span>± 12 (19–64) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">53 ± 9 (26–65) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleBold">0.0003</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Gender \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Male \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">24 (24%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">35 (35%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowgroup " rowspan="2" align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleBold">0.042</span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Feminine \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">26 (26%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">15 (15%) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Comorbidity \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>SAH \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">11 (11%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">14 (14%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NS \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>DM2 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">10 (10%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">14 (14%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NS \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Obesity \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">21 (21%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">17 (17%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NS \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Smoking \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3 (3%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4 (4%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NS \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Other \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4 (4%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4 (4%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NS \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Somatometry \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Weight (kg) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">81 ± 23 (56–129) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">84 ± 19 (54–150) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NS \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Height (m) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.62 ± 0.33 (1.46–1.80) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.63 ± 0.10 (1.42–1.75) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NS \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>BMI \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">31 ± 8 (20–50) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">32 ± 16 (22–55) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NS \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Vital signs \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Systolic BP \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">114 ± 16 (90–160) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">122 ± 16 (90–157) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleBold">0.0141</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Diastolic BP \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">72 ± 11 (56–100) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">75 ± 10 (60–100) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NS \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>HR (beats/min) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">107 ± 20 (63–189) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">105 ± 17 (62–157) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NS \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>RR (breaths/min) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">27 ± 7 (18–48) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">29 ± 6 (20–48) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NS \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Temperature (°C) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">37.5 ± 1 (35.6–41) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">37.2 ± 0.8 (35.6–38.8) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NS \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>O<span class="elsevierStyleInf">2</span> saturation (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">79 ± 16 (36–98) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">66 ± 16 (21–91) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleBold">0.0001</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab3316579.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="sp0025" class="elsevierStyleSimplePara elsevierViewall">Comparison of the sociodemographic variables, somatometry and vital signs of the studied groups.</p>" ] ] 4 => array:8 [ "identificador" => "t0010" "etiqueta" => "Table 2" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "al0025" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:2 [ "leyenda" => "<p id="sp0040" class="elsevierStyleSimplePara elsevierViewall">Abbreviations: MCV<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>mean corpuscular volume, MCH<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>mean corpuscular hemoglobin; Leu<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>leukocytes, Neu<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>absolute neutrophils, Lymph<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>absolute lymphocytes, Plaq<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>platelets, BUN<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>blood urea nitrogen, Alb<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>albumin, GOT<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>glutamic-oxaloacetic transaminase, GGT<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>glutamic–pyruvic transaminase, ALP<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>alkaline phosphatase, GGT<span class="elsevierStyleHsp" style=""></span>= gamma- glutamyl transpeptidase, LDH<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>lactic dehydrogenase, Proca<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>procalcitonin, ESR<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>erythrocyte sedimentation rate, CRP<span class="elsevierStyleHsp" style=""></span>= c-reactive protein, g<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>grams, dl<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>deciliter, mm<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>millimeters, mg<span class="elsevierStyleHsp" style=""></span>= milligrams, IU<span class="elsevierStyleHsp" style=""></span>= international units, L<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>liters, ng<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>nanograms, h<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>hour</p>" "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td-with-role" title="\n \t\t\t\t\ttable-head\n \t\t\t\t ; entry_with_role_rowgroup " rowspan="2" align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Variables</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">CONTROL group \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">PROBLEM group \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col"> \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Mean ± SD (Min - Max) \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Mean ± SD (Min - Max) \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">p \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Blood count \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Hemoglobin (g/dl) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">14.3 ± 2 (8.7–17.7) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">15.1 ± 1.8 (8.1–18.5) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleBold">0.0381</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Hematocrit (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">42.4 ± 6.2 (25.2–57.5) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">44.4 ± 5.2 (25.4–56) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NS \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>MCV \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">88.5 ± 3.7 (77.3–98.9) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">89.4 ± 5 (73.3–100.4) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NS \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>MCH \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">30 ± 1.7 (23.8–33.9) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">30.3 ± 1.9 (23.8–34.2) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NS \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Leu (cell/mm<span class="elsevierStyleSup">3</span>) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">8,838 ± 3,795 (14–19,800) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">11,648 ± 5,150 (4,200–27,600) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleBold">0.0025</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Neu (cell/mm<span class="elsevierStyleSup">3</span>) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">7,366 ± 3,507 (6–17,030) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">10,134 ± 4,826 (2,410–25,780) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleBold">0.0014</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Lymph (cell/mm<span class="elsevierStyleSup">3</span>) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,158 ± 1,331 (170–9,680) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">906 ± 492 (90–2,430) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NS \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Plaq (cell/mm<span class="elsevierStyleSup">3</span>) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">270,300 ± 125,597 (48,000–812,000) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">265,240 ± 112,629 (60,000–677,000) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NS \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Blood chemistry \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Glucose (mg/dl) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">116 ± 51 (55–250) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">164 ± 95 (73–250) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NS \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>BUN (mg/dl) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">13.9 ± 6 (5.7–33.3) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">18.9 ± 8 (6.4–45.3) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleBold">0.0006</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Creatinine (mg/dl) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.8 ± 0.2 (0.4–1.1) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.9 ± 0.3 (0.5–1.4) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NS \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_colgroup " colspan="4" align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Liver function tests</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Alb (g/dl) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3.5 ± 0.5 (2.2–4.3) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3.5 ± 0.4 (2.4–4.4) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NS \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>GOT (IU/L) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">43 ± 22 (8–115) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">63 ± 111 (16–787) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NS \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>TGP (IU/L) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">42 ± 26 (3–141) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">51 ± 53 (12–358) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NS \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>ALP (mg/dl) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">109 ± 53 (53–238) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">129 ± 81 (58–454) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NS \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>GGT (IU/L) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">145 ± 164 (12–728) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">134 ± 133 (28–711) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NS \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>DHL (IU/L) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">384 ± 103 (173–597) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">489 ± 244 (208–1,794) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleBold">0.0061</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Proca (ng/ml) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.63 ± 1.14 (0.05–7.35) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.93 ± 1.48 (0.06–7.05) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NS \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MGV (mm/h) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">36 ± 17 (1–61) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">31 ± 15 (1–65) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NS \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">PCR (mg/l) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">175.1 ± 106.19 (5.07–437.4) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">237.5 ± 102.74 (34.95–478.46) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleBold">0.0036</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Ferritin (ng/ml) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">854.22 ± 856.78 (41.39–3,429.84) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2,051.85 ± 5,411.35 (60.94–38,746) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NS \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab3316577.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="sp0035" class="elsevierStyleSimplePara elsevierViewall">Laboratory variables of the study groups.</p>" ] ] 5 => array:8 [ "identificador" => "t0015" "etiqueta" => "Table 3" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "al0030" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:2 [ "leyenda" => "<p id="sp0050" class="elsevierStyleSimplePara elsevierViewall">Abbreviations: pg<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>picograms, ml<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>milliliters, OR<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>odds ratio, CI<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>confidence interval</p>" "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">BNP \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Problem \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Control \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">p \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">OR (95% CI) \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">≥32 pg/ml \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">30 (30%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5 (5%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowgroup " rowspan="2" align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleBold">< 0.0001</span></td><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowgroup " rowspan="2" align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">13.5 (4.6–39.9)</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><32 pg/ml \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">20 (20%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">45 (45%) \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab3316576.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="sp0045" class="elsevierStyleSimplePara elsevierViewall">Contingency table of the frequency of BNP values at the cut-off point established by the ROC curve in both study groups.</p>" ] ] 6 => array:6 [ "identificador" => "f0020" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => false "mostrarDisplay" => true "figura" => array:1 [ 0 => array:4 [ "imagen" => "ga1.jpeg" "Alto" => 877 "Ancho" => 1333 "Tamanyo" => 176125 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "al0035" "detalle" => "Unlabelled Imag" "rol" => "short" ] ] ] 7 => array:6 [ "identificador" => "t0020" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => false "mostrarDisplay" => true "detalles" => array:1 [ 0 => array:3 [ "identificador" => "al0040" "detalle" => "Unlabelled Tabl" "rol" => "short" ] ] "tabla" => array:1 [ "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><tbody title="tbody"><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">BNP \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Péptido natriurético cerebral \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">COVID-19 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Enfermedad por coronavirus 2019 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NT-proBNP \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">prohormona N-terminal del péptido natriurético cerebral \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">SaO<span class="elsevierStyleInf">2</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">saturación de oxígeno \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">SARS-CoV-2 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Coronavirus tipo 2 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab3316578.png" ] ] ] ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bs0005" "bibliografiaReferencia" => array:21 [ 0 => array:3 [ "identificador" => "bb0005" "etiqueta" => "1." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "ACE2 receptor polymorphism: Susceptibility to SARS-CoV-2, hypertension, multi-organ failure, and COVID-19 disease outcome" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "C.A. Devaux" 1 => "J.M. Rolain" 2 => "D. Raoult" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jmii.2020.04.015" "Revista" => array:6 [ "tituloSerie" => "J Microbiol Immunol Infect" "fecha" => "2020" "volumen" => "53" "paginaInicial" => "425" "paginaFinal" => "435" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/32414646" "web" => "Medline" ] ] ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bb0010" "etiqueta" => "2." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Association of N-terminal pro-brain natriuretic peptide level with adverse outcomes in patients with acute myocardial infarction: a meta-analysis" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "S. Shen" 1 => "J. Ye" 2 => "X. Wu" 3 => "X. Li" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.hrtlng.2021.07.007" "Revista" => array:7 [ "tituloSerie" => "Heart Lung" "fecha" => "2021" "volumen" => "50" "paginaInicial" => "863" "paginaFinal" => "869" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/34340134" "web" => "Medline" ] ] "itemHostRev" => array:3 [ "pii" => "S0022399907003649" "estado" => "S300" "issn" => "00223999" ] ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bb0015" "etiqueta" => "3." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Atrial and brain natriuretic peptides: Hormones secreted from the heart" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "Y. Nakagawa" 1 => "T. Nishikimi" 2 => "K. Kuwahara" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.peptides.2018.05.012" "Revista" => array:6 [ "tituloSerie" => "Peptides" "fecha" => "2019" "volumen" => "111" "paginaInicial" => "18" "paginaFinal" => "25" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/29859763" "web" => "Medline" ] ] ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bb0020" "etiqueta" => "4." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Natriuretic peptides to predict short-term mortality in patients with sepsis: a systematic review and meta-analysis" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "S. Vallabhajosyula" 1 => "Z. Wang" 2 => "M.H. Murad" 3 => "S. Vallabhajosyula" 4 => "P.R. Sundaragiri" 5 => "K. Kashani" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.mayocpiqo.2019.10.008" "Revista" => array:7 [ "tituloSerie" => "Mayo Clin Proc Innov Qual Outcomes" "fecha" => "2020 Feb" "volumen" => "4" "numero" => "1" "paginaInicial" => "50" "paginaFinal" => "64" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/32055771" "web" => "Medline" ] ] ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bb0025" "etiqueta" => "5." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "N-terminal Pro-B-type natriuretic peptide as a biomarker for the severity and outcomes With COVID-19 in a nationwide hospitalized cohort" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "C. O’donnell" 1 => "M.D. Ashland" 2 => "E.C. Vasti" 3 => "Y. Lu" 4 => "A.Y. Chang" 5 => "P. Wang" ] ] ] ] ] "host" => array:2 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "J Am Heart Assoc [Internet]" "fecha" => "2021" "volumen" => "10" "paginaInicial" => "22913" ] ] 1 => array:1 [ "WWW" => array:1 [ "link" => "https://www.ahajo" ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bb0030" "etiqueta" => "6." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Elevated N-terminal pro-brain natriuretic peptide is associated with increased mortality in patients with COVID-19: systematic review and meta-analysis" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "R. Pranata" 1 => "I. Huang" 2 => "A.A. Lukito" 3 => "S.B. Raharjo" ] ] ] ] ] "host" => array:2 [ 0 => array:2 [ "doi" => "10.1136/postgradmedj-2020-137884" "Revista" => array:6 [ "tituloSerie" => "Postgrad Med J [Internet]" "fecha" => "2020" "volumen" => "96" "paginaInicial" => "387" "paginaFinal" => "391" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/32434874" "web" => "Medline" ] ] ] ] 1 => array:2 [ "doi" => "10.1136/postgradmedj-2020-137884" "WWW" => array:1 [ "link" => "http://pmj.bmj.com/" ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bb0035" "etiqueta" => "7." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Prognostic value of NT-proBNP in patients with severe COVID-19" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:7 [ 0 => "L. Gao" 1 => "D. Jiang" 2 => "X. Wen" 3 => "Song" 4 => "X. Cheng" 5 => "M. Sun" 6 => "B. He" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1186/s12931-020-01352-w" "Libro" => array:1 [ "fecha" => "2023" ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bb0040" "etiqueta" => "8." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Prognostic value of troponin-t and b-type natriuretic peptide in patients hospitalized for covid-19" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "De Junior GLG" 1 => "F. Braga" 2 => "J.K. Jorge" 3 => "G.F. Nobre" 4 => "M. Kalichsztein" 5 => "M.P. De Faria" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.36660/abc.20200385" "Revista" => array:7 [ "tituloSerie" => "Arq Bras Cardiol" "fecha" => "2020 Oct 1" "volumen" => "115" "numero" => "4" "paginaInicial" => "660" "paginaFinal" => "666" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/33111866" "web" => "Medline" ] ] ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bb0045" "etiqueta" => "9." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "SARS-CoV-2 infects human engineered heart tissues and models COVID-19 myocarditis" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "A.L. Bailey" 1 => "O. Dmytrenko" 2 => "L. Greenberg" 3 => "A.L. Bredemeyer" 4 => "P. Ma" 5 => "J. Liu" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jacbts.2021.01.002" "Revista" => array:7 [ "tituloSerie" => "JACC Basic Transl Sci" "fecha" => "2021 Apr 1" "volumen" => "6" "numero" => "4" "paginaInicial" => "331" "paginaFinal" => "345" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/33681537" "web" => "Medline" ] ] ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bb0050" "etiqueta" => "10." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Myocardial localization of coronavirus in COVID-19 cardiogenic shock" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "G. Tavazzi" 1 => "C. Pellegrini" 2 => "M. Maurelli" 3 => "M. Belliato" 4 => "F. Sciutti" 5 => "A. Bottazzi" ] ] ] ] ] "host" => array:2 [ 0 => array:2 [ "doi" => "10.1002/ejhf.1828" "Revista" => array:6 [ "tituloSerie" => "Eur J Heart Fail [Internet]" "fecha" => "2020" "volumen" => "22" "paginaInicial" => "911" "paginaFinal" => "915" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/32275347" "web" => "Medline" ] ] ] ] 1 => array:2 [ "doi" => "10.1002/ejhf.1828" "WWW" => array:1 [ "link" => "https://onlinelibrary.wiley.com/doi/10.1002/ejhf.1828" ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bb0055" "etiqueta" => "11." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The cytokine storm and COVID-19" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "B. Hu" 1 => "S. Huang" 2 => "Yin | Lianghong" ] ] ] ] ] "host" => array:2 [ 0 => array:2 [ "doi" => "10.1002/jmv.26232" "Revista" => array:6 [ "tituloSerie" => "J Med Virol [Internet]" "fecha" => "2021" "volumen" => "93" "paginaInicial" => "250" "paginaFinal" => "256" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/32592501" "web" => "Medline" ] ] ] ] 1 => array:2 [ "doi" => "10.1002/jmv.26232" "WWW" => array:1 [ "link" => "https://onlinelibrary.wiley.com/doi/10.1002/jmv.26232" ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bb0060" "etiqueta" => "12." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "SARS-CoV-2 infects human cardiomyocytes promoted by inflammation and oxidative stress" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "M. Tangos" 1 => "H. Budde" 2 => "D. Kolijn" 3 => "M. Sieme" 4 => "S. Zhazykbayeva" 5 => "M. Lódi" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Int J Cardiol" "fecha" => "2022 Sep 1" "numero" => "362" "paginaInicial" => "196" "paginaFinal" => "205" ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bb0065" "etiqueta" => "13." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Recognizing COVID-19–related myocarditis: the possible pathophysiology and proposed guideline for diagnosis and management" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "B. Siripanthong" 1 => "S. Nazarian" 2 => "D. Muser" 3 => "R. Deo" 4 => "P. Santangeli" 5 => "M.Y. Khanji" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.hrthm.2020.05.001" "Revista" => array:7 [ "tituloSerie" => "Heart Rhythm" "fecha" => "2020 Sep 1" "volumen" => "17" "numero" => "9" "paginaInicial" => "1463" "paginaFinal" => "1471" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/32387246" "web" => "Medline" ] ] ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bb0070" "etiqueta" => "14." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "T cell immunobiology and cytokine storm of COVID-19" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "X.H. Luo" 1 => "Y. Zhu" 2 => "J. Mao" 3 => "R.C. Du" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/sji.12989" "Revista" => array:4 [ "tituloSerie" => "Scand J Immunol." "fecha" => "2021 Mar" "volumen" => "93" "numero" => "3" ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bb0075" "etiqueta" => "15." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Prediction for Progression Risk in Patients With COVID-19 Pneumonia: The CALL Score" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:13 [ 0 => "D. Ji" 1 => "D. Zhang" 2 => "J. Xu" 3 => "Z. Chen" 4 => "T. Yang" 5 => "P. Zhao" 6 => "G. Chen" 7 => "G. Cheng" 8 => "Y. Wang" 9 => "J. Bi" 10 => "L. Tan" 11 => "G. Lau" 12 => "E. Qin" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1093/cid/ciaa414" "Revista" => array:7 [ "tituloSerie" => "Clin Infect Dis." "fecha" => "2020 Sep 12" "volumen" => "71" "numero" => "6" "paginaInicial" => "1393" "paginaFinal" => "1399" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/32271369" "web" => "Medline" ] ] ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bb0085" "etiqueta" => "17." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Gerontologie<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>Geriatrie Übersichten COVID-19 im Alter-Die geriatrische Perspektive Einleitung" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "R. Wirth" 1 => "C. Becker" 2 => "M. Djukic" 3 => "C. Drebenstedt" 4 => "H.J. Heppner" 5 => "A.H. Jacobs" ] ] ] ] ] "host" => array:2 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Z Gerontol Geriat [Internet]" "fecha" => "2021" "volumen" => "54" "paginaInicial" => "152" "paginaFinal" => "160" ] ] 1 => array:1 [ "WWW" => array:1 [ "link" => "https://doi.org/10.1007/s00391-021-01864-0" ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bb0090" "etiqueta" => "18." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The effect of age on mortality in patients with COVID-19: a meta-analysis with 611,583 subjects" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "C. Bonanad" 1 => "S. García-Blas" 2 => "F. Tarazona-Santabalbina" 3 => "J. Sanchis" 4 => "V. Bertomeu-González" 5 => "L. Fácila" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jamda.2020.05.045" "Revista" => array:7 [ "tituloSerie" => "J Am Med Dir Assoc" "fecha" => "2020 Jul 1" "volumen" => "21" "numero" => "7" "paginaInicial" => "915" "paginaFinal" => "918" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/32674819" "web" => "Medline" ] ] ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bb0095" "etiqueta" => "19." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Male gender is a predictor of higher mortality in hospitalized adults with COVID-19" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "N.T. Nguyen" 1 => "J. Chinnid" 2 => "M. de Ferrante" 3 => "K.A. Kirbyid" 4 => "S.F. Hohmann" 5 => "A. Amin" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1371/journal.pone.0254066" "Libro" => array:1 [ "fecha" => "2021" ] ] ] ] ] ] 18 => array:3 [ "identificador" => "bb0100" "etiqueta" => "20." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The role of androgens in COVID-19" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "F. Moradi" 1 => "B. Enjezab" 2 => "A. Ghadiri-Anari" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "LibroEditado" => array:5 [ "titulo" => "Diabetes and Metabolic Syndrome: Clinical Research and Reviews" "paginaInicial" => "2003" "paginaFinal" => "2006" "serieVolumen" => "14" "serieFecha" => "2020" ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bb0105" "etiqueta" => "21." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Androgen sensitivity gateway to COVID-19 disease severity" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "C.G. Wambier" 1 => "A. Goren" 2 => "S. Vaño-Galván" 3 => "Paulo" 4 => "M. Ramos" 5 => "A. Ossimetha" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "WWW" => array:2 [ "link" => "https://onlinelibrary.wiley.com/doi/10.1002/ddr.21688" "fecha" => "2020" ] ] ] ] ] ] 20 => array:3 [ "identificador" => "bb0110" "etiqueta" => "22." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Conceptions of the pathophysiology of happy hypoxemia in COVID-19" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "S. Dhont" 1 => "E. Derom" 2 => "E. van Braeckel" 3 => "P. Depuydt" 4 => "B.N. Lambrecht" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:3 [ "tituloSerie" => "Respir Res" "fecha" => "2021" "volumen" => "22" ] ] ] ] ] ] ] ] ] ] ] "idiomaDefecto" => "en" "url" => "/26039249/0000000600000004/v1_202310232153/S260392492300023X/v1_202310232153/en/main.assets" "Apartado" => array:4 [ "identificador" => "77860" "tipo" => "SECCION" "en" => array:2 [ "titulo" => "Original" "idiomaDefecto" => true ] "idiomaDefecto" => "en" ] "PDF" => "https://static.elsevier.es/multimedia/26039249/0000000600000004/v1_202310232153/S260392492300023X/v1_202310232153/en/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S260392492300023X?idApp=UINPBA00004N" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 3 | 0 | 3 |
2024 October | 28 | 11 | 39 |
2024 September | 60 | 16 | 76 |
2024 August | 54 | 11 | 65 |
2024 July | 32 | 6 | 38 |
2024 June | 59 | 6 | 65 |
2024 May | 54 | 8 | 62 |
2024 April | 41 | 13 | 54 |
2024 March | 52 | 4 | 56 |
2024 February | 76 | 15 | 91 |
2024 January | 98 | 9 | 107 |
2023 December | 83 | 10 | 93 |
2023 November | 41 | 7 | 48 |
2023 October | 60 | 11 | 71 |
2023 September | 32 | 9 | 41 |
2023 August | 28 | 15 | 43 |