was read the article
array:25 [ "pii" => "S2173580816300815" "issn" => "21735808" "doi" => "10.1016/j.nrleng.2014.10.005" "estado" => "S300" "fechaPublicacion" => "2016-10-01" "aid" => "700" "copyright" => "Sociedad Española de Neurología" "copyrightAnyo" => "2014" "documento" => "article" "crossmark" => 1 "licencia" => "http://www.elsevier.com/open-access/userlicense/1.0/" "subdocumento" => "fla" "cita" => "Neurologia. 2016;31:516-22" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:2 [ "total" => 1501 "formatos" => array:3 [ "EPUB" => 57 "HTML" => 1192 "PDF" => 252 ] ] "Traduccion" => array:1 [ "es" => array:20 [ "pii" => "S0213485314002448" "issn" => "02134853" "doi" => "10.1016/j.nrl.2014.10.018" "estado" => "S300" "fechaPublicacion" => "2016-10-01" "aid" => "700" "copyright" => "Sociedad Española de Neurología" "documento" => "article" "crossmark" => 1 "licencia" => "http://www.elsevier.com/open-access/userlicense/1.0/" "subdocumento" => "fla" "cita" => "Neurologia. 2016;31:516-22" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 1720 "formatos" => array:3 [ "EPUB" => 53 "HTML" => 1178 "PDF" => 489 ] ] "es" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">ORIGINAL</span>" "titulo" => "Alteraciones motoras inducidas por la microinyección de linamarina en el hipocampo dorsal de la rata Wistar" "tienePdf" => "es" "tieneTextoCompleto" => "es" "tieneResumen" => array:2 [ 0 => "es" 1 => "en" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "516" "paginaFinal" => "522" ] ] "titulosAlternativos" => array:1 [ "en" => array:1 [ "titulo" => "Motor impairments induced by microinjection of linamarin in the dorsal hippocampus of Wistar rats" ] ] "contieneResumen" => array:2 [ "es" => true "en" => true ] "contieneTextoCompleto" => array:1 [ "es" => true ] "contienePdf" => array:1 [ "es" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0010" "etiqueta" => "Figura 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 1050 "Ancho" => 1638 "Tamanyo" => 92701 ] ] "descripcion" => array:1 [ "es" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">Rota-rod. Independientemente de la concentración de linamarina (Lin) microinyectada en el hipocampo dorsal, la latencia a la caída del rota-rod se acortó gradualmente a lo largo del estudio, un efecto que no ocurrió en el grupo vehículo (Veh).</p> <p id="spar0070" class="elsevierStyleSimplePara elsevierViewall"><span class="elsevierStyleBold"><span class="elsevierStyleSup">*</span></span> p < 0,05 vs. grupo vehículo en la sesión correspondiente y el día uno de cada grupo experimental. ANOVA de 2 vías para muestras repetidas, <span class="elsevierStyleItalic">post hoc</span> Student-Newman-Keuls.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "E. Rivadeneyra-Domínguez, J.F. Rodríguez-Landa" "autores" => array:2 [ 0 => array:2 [ "nombre" => "E." "apellidos" => "Rivadeneyra-Domínguez" ] 1 => array:2 [ "nombre" => "J.F." "apellidos" => "Rodríguez-Landa" ] ] ] ] ] "idiomaDefecto" => "es" "Traduccion" => array:1 [ "en" => array:9 [ "pii" => "S2173580816300815" "doi" => "10.1016/j.nrleng.2014.10.005" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173580816300815?idApp=UINPBA00004N" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0213485314002448?idApp=UINPBA00004N" "url" => "/02134853/0000003100000008/v2_201609300042/S0213485314002448/v2_201609300042/es/main.assets" ] ] "itemSiguiente" => array:20 [ "pii" => "S2173580816300797" "issn" => "21735808" "doi" => "10.1016/j.nrleng.2014.10.004" "estado" => "S300" "fechaPublicacion" => "2016-10-01" "aid" => "699" "copyright" => "Sociedad Española de Neurología" "documento" => "article" "crossmark" => 1 "licencia" => "http://www.elsevier.com/open-access/userlicense/1.0/" "subdocumento" => "fla" "cita" => "Neurologia. 2016;31:523-7" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:2 [ "total" => 1322 "formatos" => array:3 [ "EPUB" => 80 "HTML" => 969 "PDF" => 273 ] ] "en" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original article</span>" "titulo" => "Novel mutation in <span class="elsevierStyleItalic">STXBP1</span> gene in a patient with non-lesional Ohtahara syndrome" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "523" "paginaFinal" => "527" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Nueva mutación en el gen <span class="elsevierStyleItalic">STXBP1</span> en un paciente con síndrome de Ohtahara no lesional" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1867 "Ancho" => 2666 "Tamanyo" => 207126 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">Diagram of the genomic structure of the fragment (exons 11 to 16) of <span class="elsevierStyleItalic">STXBP1</span> containing the mutation c.1249<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>2T<span class="elsevierStyleHsp" style=""></span>><span class="elsevierStyleHsp" style=""></span>C (located at intron 14 and marked with an asterisk). The electropherogram shows the mutation c.1249<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>2T<span class="elsevierStyleHsp" style=""></span>><span class="elsevierStyleHsp" style=""></span>C identified in our patient and the corresponding sequence in each of his parents, which suggests that it is a de novo mutation.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "L. Ortega-Moreno, B.G. Giráldez, A. Verdú, O. García-Campos, G. Sánchez-Martín, J.M. Serratosa, R. Guerrero-López" "autores" => array:7 [ 0 => array:2 [ "nombre" => "L." "apellidos" => "Ortega-Moreno" ] 1 => array:2 [ "nombre" => "B.G." "apellidos" => "Giráldez" ] 2 => array:2 [ "nombre" => "A." "apellidos" => "Verdú" ] 3 => array:2 [ "nombre" => "O." "apellidos" => "García-Campos" ] 4 => array:2 [ "nombre" => "G." "apellidos" => "Sánchez-Martín" ] 5 => array:2 [ "nombre" => "J.M." "apellidos" => "Serratosa" ] 6 => array:2 [ "nombre" => "R." "apellidos" => "Guerrero-López" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "es" => array:9 [ "pii" => "S0213485314002436" "doi" => "10.1016/j.nrl.2014.10.017" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0213485314002436?idApp=UINPBA00004N" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173580816300797?idApp=UINPBA00004N" "url" => "/21735808/0000003100000008/v1_201609280237/S2173580816300797/v1_201609280237/en/main.assets" ] "itemAnterior" => array:20 [ "pii" => "S2173580816300906" "issn" => "21735808" "doi" => "10.1016/j.nrleng.2014.12.015" "estado" => "S300" "fechaPublicacion" => "2016-10-01" "aid" => "708" "copyright" => "Sociedad Española de Neurología" "documento" => "article" "crossmark" => 1 "licencia" => "http://www.elsevier.com/open-access/userlicense/1.0/" "subdocumento" => "fla" "cita" => "Neurologia. 2016;31:511-5" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:2 [ "total" => 1885 "formatos" => array:3 [ "EPUB" => 58 "HTML" => 1463 "PDF" => 364 ] ] "en" => array:12 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original article</span>" "titulo" => "Neuromyelitis optica: Association with paroxysmal painful tonic spasms" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "511" "paginaFinal" => "515" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Neuromielitis óptica: asociación con espasmos tónicos paroxísticos dolorosos" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "E. Carnero Contentti, F. Leguizamón, J.P. Hryb, J. Celso, J.L. Di Pace, J. Ferrari, E. Knorre, M.B. Perassolo" "autores" => array:8 [ 0 => array:2 [ "nombre" => "E." "apellidos" => "Carnero Contentti" ] 1 => array:2 [ "nombre" => "F." "apellidos" => "Leguizamón" ] 2 => array:2 [ "nombre" => "J.P." "apellidos" => "Hryb" ] 3 => array:2 [ "nombre" => "J." "apellidos" => "Celso" ] 4 => array:2 [ "nombre" => "J.L." "apellidos" => "Di Pace" ] 5 => array:2 [ "nombre" => "J." "apellidos" => "Ferrari" ] 6 => array:2 [ "nombre" => "E." "apellidos" => "Knorre" ] 7 => array:2 [ "nombre" => "M.B." "apellidos" => "Perassolo" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "es" => array:9 [ "pii" => "S0213485314002631" "doi" => "10.1016/j.nrl.2014.12.001" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0213485314002631?idApp=UINPBA00004N" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173580816300906?idApp=UINPBA00004N" "url" => "/21735808/0000003100000008/v1_201609280237/S2173580816300906/v1_201609280237/en/main.assets" ] "en" => array:21 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original article</span>" "titulo" => "Motor impairments induced by microinjection of linamarin in the dorsal hippocampus of Wistar rats" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "516" "paginaFinal" => "522" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "E. Rivadeneyra-Domínguez, J.F. Rodríguez-Landa" "autores" => array:2 [ 0 => array:4 [ "nombre" => "E." "apellidos" => "Rivadeneyra-Domínguez" "email" => array:1 [ 0 => "edrivadeneyra@uv.mx" ] "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0005" ] ] ] 1 => array:3 [ "nombre" => "J.F." "apellidos" => "Rodríguez-Landa" "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] ] ] ] "afiliaciones" => array:2 [ 0 => array:3 [ "entidad" => "Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa, Veracruz, Mexico" "etiqueta" => "a" "identificador" => "aff0005" ] 1 => array:3 [ "entidad" => "Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, Mexico" "etiqueta" => "b" "identificador" => "aff0010" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "Corresponding author." ] ] ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Alteraciones motoras inducidas por la microinyección de linamarina en el hipocampo dorsal de la rata Wistar" ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0015" "etiqueta" => "Figure 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 1284 "Ancho" => 1576 "Tamanyo" => 78491 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0055" class="elsevierStyleSimplePara elsevierViewall">Forced swimming test. Only linamarin concentrations (Lin) of 20<span class="elsevierStyleHsp" style=""></span>mM resulted in a gradual and significant increase in spinning; changes were significant from day 3. The vehicle group (Veh) showed no spinning behaviour during the study period. <span class="elsevierStyleBold"><span class="elsevierStyleSup">*</span></span><span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>.05 vs day 1 in the same group and the same day in the vehicle group. 2-way repeated measures ANOVA, post hoc Student–Newman–Keuls test.</p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0065">Introduction</span><p id="par0005" class="elsevierStylePara elsevierViewall">Manioc, also known as <span class="elsevierStyleItalic">yuca</span> or cassava (<span class="elsevierStyleItalic">Manihot esculenta</span> Crantz), is a vegetable staple food in many tropical and subtropical regions around the world. This crop is easy to grow and its roots are an important source of carbohydrates and some micronutrients essential for human nutrition.<a class="elsevierStyleCrossRef" href="#bib0195"><span class="elsevierStyleSup">1</span></a> Unfortunately, it also contains such cyanogenic glycosides as linamarin (90%) and lotaustralin (10%)<a class="elsevierStyleCrossRef" href="#bib0200"><span class="elsevierStyleSup">2</span></a>; when consumed in large quantities, these substances cause a number of neurological symptoms which mainly manifest as motor and cognitive impairment.<a class="elsevierStyleCrossRef" href="#bib0205"><span class="elsevierStyleSup">3</span></a></p><p id="par0010" class="elsevierStylePara elsevierViewall">Excessive or inappropriate cassava consumption has been associated with 2 neurological diseases: tropical ataxic neuropathy (TAN) and epidemic spastic paraparesis (konzo). TAN is a syndrome characterised by sensory polyneuropathy, sensory ataxia, bilateral optic atrophy, and bilateral deafness which has been described in Tanzania,<a class="elsevierStyleCrossRef" href="#bib0210"><span class="elsevierStyleSup">4</span></a> Sierra Leone,<a class="elsevierStyleCrossRef" href="#bib0215"><span class="elsevierStyleSup">5</span></a> Nigeria,<a class="elsevierStyleCrossRefs" href="#bib0220"><span class="elsevierStyleSup">6,7</span></a> and India.<a class="elsevierStyleCrossRef" href="#bib0230"><span class="elsevierStyleSup">8</span></a> Konzo is a neurological entity characterised by upper motor neuron damage. It initially causes irreversible, nonprogressive, and symmetrical spastic paraparesis or tetraparesis<a class="elsevierStyleCrossRef" href="#bib0235"><span class="elsevierStyleSup">9</span></a> characterised by progressive weakness and spasticity of the lower limbs, which results in poor motor coordination. These neurological alterations have also been linked to continued and improper cassava consumption.<a class="elsevierStyleCrossRef" href="#bib0240"><span class="elsevierStyleSup">10</span></a> The toxicity of the cyanogenic compounds of cassava mainly affects the brain structures involved in memory processing and integration, emotions, control of autonomic functions, smell, and motor function such as the thalamus, the piriform cortex, the hypothalamus, and the hippocampus.<a class="elsevierStyleCrossRef" href="#bib0245"><span class="elsevierStyleSup">11</span></a></p><p id="par0015" class="elsevierStylePara elsevierViewall">The hippocampus is involved in most neurodegenerative diseases; it seems to play a major role in the integration of motor responses associated with emotionally arousing events since it forms part of the emotional memory system.<a class="elsevierStyleCrossRefs" href="#bib0250"><span class="elsevierStyleSup">12,13</span></a> Multiple studies in rats have shown that consumption of the cycad <span class="elsevierStyleItalic">Dioon spinulosum</span>,<a class="elsevierStyleCrossRefs" href="#bib0260"><span class="elsevierStyleSup">14,15</span></a> or the intrahippocampal microinjection of one of its neurotoxic metabolites (methylazoxymethanol), induces motor alterations characterised by immobility and spinning in the forced swimming test.<a class="elsevierStyleCrossRefs" href="#bib0265"><span class="elsevierStyleSup">15,16</span></a> Similarly, rats receiving treatment with cassava root juice (with a linamarin concentration of 0.30<span class="elsevierStyleHsp" style=""></span>mg/2<span class="elsevierStyleHsp" style=""></span>mL) also developed such motor alterations as poor motor coordination and lateral swimming,<a class="elsevierStyleCrossRef" href="#bib0275"><span class="elsevierStyleSup">17</span></a> which seemed to be associated, al least in part, with a decrease in the number of neurons in hippocampal area CA1.<a class="elsevierStyleCrossRef" href="#bib0280"><span class="elsevierStyleSup">18</span></a> However, the effects of microinjections of linaramin into the dorsal hippocampus on motor activity and coordination are yet to be explored. This study aimed to determine the effects of intrahippocampal microinjection of linamarin on spontaneous motor activity (locomotor activity test) and motor coordination (rotarod and forced swimming tests) in Wistar rats.</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0070">Methods</span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0075">Subjects</span><p id="par0020" class="elsevierStylePara elsevierViewall">We used 32 three-month-old male Wistar rats weighing 250 to 300<span class="elsevierStyleHsp" style=""></span>g at the beginning of the study. Rats were housed at room temperature (25<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>2<span class="elsevierStyleHsp" style=""></span>°C) in transparent acrylic cages in a vivarium, with a 12:12 light–dark cycle (lights on at 7:00<span class="elsevierStyleHsp" style=""></span>am). Rats had ad libitum access to water and food. Rats were managed following the international ethical standards put forward in the <span class="elsevierStyleItalic">Guide for care and use of laboratory animals</span><a class="elsevierStyleCrossRef" href="#bib0285"><span class="elsevierStyleSup">19</span></a> and official Mexican guidelines for the care and use of laboratory animals.<a class="elsevierStyleCrossRef" href="#bib0290"><span class="elsevierStyleSup">20</span></a></p></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0080">Stereotactic surgery</span><p id="par0025" class="elsevierStylePara elsevierViewall">As described in previous studies, animals were deeply anaesthetised during the unilateral implantation of a guide cannula.<a class="elsevierStyleCrossRef" href="#bib0295"><span class="elsevierStyleSup">21</span></a> Researchers used a stereotactic apparatus (Stoelting, Wood Dale, IL, USA) to immobilise the rats’ heads before performing a longitudinal incision on the skin to expose the skull. Taking the bregma as a reference, and following the stereotactic coordinates of the rat brain atlas created by Paxinos and Watson,<a class="elsevierStyleCrossRef" href="#bib0300"><span class="elsevierStyleSup">22</span></a> researchers used a dental lab drill (Saeshin Dental Lab 35000 RPM, South Korea) to drill a hole to implant a cannula in the dorsal hippocampus (AP<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>−3.8<span class="elsevierStyleHsp" style=""></span>mm; <span class="elsevierStyleItalic">L</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>−2<span class="elsevierStyleHsp" style=""></span>mm; <span class="elsevierStyleItalic">H</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>−2<span class="elsevierStyleHsp" style=""></span>mm) in CA1. A stainless steel guide cannula (8<span class="elsevierStyleHsp" style=""></span>mm long, 0.7<span class="elsevierStyleHsp" style=""></span>mm diameter) was subsequently implanted and secured to the skull with dental acrylic (Arias Distribuidora Dental; Tlalnepantla, Mexico). Four days after cannula implantation, rats underwent intrahippocampal microinjections of either linamarin or a vehicle to assess the effects of linamarin on behaviour.</p></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0085">Experimental groups and treatment</span><p id="par0030" class="elsevierStylePara elsevierViewall">Rats were randomly assigned to 4 groups (<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>8 rats per group): one group received the vehicle (injectable solution) and the remaining 3 groups received linamarin dosed at different concentrations (10, 15, and 20<span class="elsevierStyleHsp" style=""></span>mM), calculated based on studies by Soler-Martín et al.<a class="elsevierStyleCrossRef" href="#bib0200"><span class="elsevierStyleSup">2</span></a> Microinjections of either the vehicle or linamarin were delivered every 24<span class="elsevierStyleHsp" style=""></span>hours for 7 consecutive days using a guide cannula (10<span class="elsevierStyleHsp" style=""></span>mm long, 0.7<span class="elsevierStyleHsp" style=""></span>mm in diameter) consisting of a stainless steel needle measuring 0.7<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>32<span class="elsevierStyleHsp" style=""></span>mm attached to a 10<span class="elsevierStyleHsp" style=""></span>μL Hamilton syringe by means of a polyethylene tube. An automatic infusion pump (KD Scientific, Holliston, MA, USA) was used to microinject 1<span class="elsevierStyleHsp" style=""></span>μL at a constant speed of 0.1<span class="elsevierStyleHsp" style=""></span>μL/min for 10<span class="elsevierStyleHsp" style=""></span>minutes. During this procedure rats were able to move freely. After microinjection, the injection cannula was left in place for 5 additional minutes to allow diffusion of the injected substance and prevent it from returning by capillarity. Immediately afterwards, rats underwent locomotor activity, rotarod, or forced swimming tests, as appropriate.</p></span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0090">Locomotor activity test</span><p id="par0035" class="elsevierStylePara elsevierViewall">Each rat was placed inside an opaque acrylic cage (44<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>33<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>20<span class="elsevierStyleHsp" style=""></span>cm) whose base was divided into squares measuring 11<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>11<span class="elsevierStyleHsp" style=""></span>cm. We assessed the following: (a) number of squares crossed during the 5<span class="elsevierStyleHsp" style=""></span>minutes that the test lasted (the rat was considered to have crossed a square when at least three-fourths of its body passed from one square to another); and (b) number of vertical behaviours (number of times when the rat exhibited vertical behaviour, that is, it was on its back legs). Crossed squares were an indicator of spontaneous motor activity, whereas vertical behaviour was also used to detect any potential alterations in motor coordination.</p></span><span id="sec0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0095">Rotarod test</span><p id="par0040" class="elsevierStylePara elsevierViewall">Rats were trained on a rotarod (LE 8300, LSI Letica, Panlab Scientific Instruments, Barcelona, Spain) for 5 days before microinjections at a speed of 18<span class="elsevierStyleHsp" style=""></span>rpm. After receiving the microinjections, rats were placed on the rotarod for assessment of latency to fall, that is, the time it takes the rat to fall off the rod. This variable is used to identify any alterations in motor coordination and balance.</p></span><span id="sec0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0100">Forced swimming test</span><p id="par0045" class="elsevierStylePara elsevierViewall">We placed rats in a glass tank (base: 26<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>29<span class="elsevierStyleHsp" style=""></span>cm; height: 50<span class="elsevierStyleHsp" style=""></span>cm) filled with water at a temperature of 25<span class="elsevierStyleHsp" style=""></span>°C (±1<span class="elsevierStyleHsp" style=""></span>°C). The water level was such that rats could touch the bottom of the tank with their back feet and tails. This test was used to evaluate the number of spins, that is, periods during which the rat was spinning rather than moving forward.<a class="elsevierStyleCrossRefs" href="#bib0260"><span class="elsevierStyleSup">14,16</span></a></p><p id="par0050" class="elsevierStylePara elsevierViewall">We recorded video feed from all sessions of the locomotor activity and swimming tests. Two independent observers quantified open field test variables until reaching a concordance of at least 95%. In the forced swimming test, the variable ‘number of spins’ was quantified analysing the video recordings with a software tool (ANY-maze 4.73, Stoelting, Wood Dale, IL, USA).</p></span><span id="sec0045" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0105">Verification of the microinjection site</span><p id="par0055" class="elsevierStylePara elsevierViewall">After completing the behavioural tests, rats were euthanised with pentobarbital (PiSA Agropecuaria, Guadalajara, Mexico) and transcardially perfused with 100<span class="elsevierStyleHsp" style=""></span>mL of physiological saline (NaCl 0.9%) followed by 100<span class="elsevierStyleHsp" style=""></span>mL of formaldehyde 30% (J.T. Baker, Ecatepec, Mexico). The microinjection site was marked with Evans blue. Brains were removed and cut into thick slices to analyse the site of microinjection under a light microscope and Paxinos and Watson's<a class="elsevierStyleCrossRef" href="#bib0300"><span class="elsevierStyleSup">22</span></a> rat brain atlas was used as a reference. The statistical analysis included data from only those rats in which cannulas were shown to have been implanted correctly in hippocampal CA1.</p></span><span id="sec0050" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0110">Statistical analysis</span><p id="par0060" class="elsevierStylePara elsevierViewall">Data were analysed with the 2-way repeated measures ANOVA; the 2 factors were treatment and days of treatment. For <span class="elsevierStyleItalic">P</span>-values<span class="elsevierStyleHsp" style=""></span>≤<span class="elsevierStyleHsp" style=""></span>.05, we used the post hoc Student–Newman–Keuls test. Results were expressed as means<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>SD.</p></span></span><span id="sec0055" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0115">Results</span><span id="sec0060" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0120">Locomotor activity test</span><p id="par0065" class="elsevierStylePara elsevierViewall">We found significant differences in the number of crossed squares for treatment type (<span class="elsevierStyleItalic">F</span> [3.168]<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>2.735, <span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>.010), days of treatment (<span class="elsevierStyleItalic">F</span> [6.168]<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>1.687, <span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>.050), and the interaction between factors (<span class="elsevierStyleItalic">F</span> [18.168]<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>4.835, <span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>.010). According to the post hoc test, the number of crossed squares was significantly higher by day 4 of treatment with linamarin at different concentrations compared to day 1 of linamarin and compared to day 4 in the vehicle group (<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>.05). This variable decreased significantly in the vehicle group from day 4 until the end of the study (<a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>).</p><elsevierMultimedia ident="fig0005"></elsevierMultimedia><p id="par0070" class="elsevierStylePara elsevierViewall">Analysis of the number of vertical behaviours revealed significant differences for treatment type (<span class="elsevierStyleItalic">F</span> [3.168]<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>3.618, <span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>.015), days of treatment (<span class="elsevierStyleItalic">F</span> [6.168]<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>2.367, <span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>.050), and the interaction between factors (<span class="elsevierStyleItalic">F</span> [18.168]<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>15.689, <span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>.001). The post hoc test showed that regardless of linamarin concentration, the number of vertical behaviours increased significantly (<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>.05) from day 4 of treatment compared to the vehicle group for the same day. The same was true for days 5 to 7 in the treatment group compared to day 1 in the same group. This variable decreased significantly in the vehicle group between days 4 and 7 (<a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>).</p></span><span id="sec0065" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0125">Rotarod test</span><p id="par0075" class="elsevierStylePara elsevierViewall">Latency to fall showed significant differences for treatment type (<span class="elsevierStyleItalic">F</span> [3.168]<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>28.585, <span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>.001), days of treatment (<span class="elsevierStyleItalic">F</span> [6.168]<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>3.162, <span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>.050), and the interaction between factors (<span class="elsevierStyleItalic">F</span> [18.168]<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>2735, <span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>.011). The post hoc test showed that regardless of linamarin concentration in treated rats, latency to fall decreased significantly (<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>.05) from day 3 compared to the same day in the vehicle group and also compared to day 1 of linamarin treatment. This trend became more marked as the study progressed. Latency to fall did not change significantly in the vehicle group during the study period (<a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>).</p><elsevierMultimedia ident="fig0010"></elsevierMultimedia></span><span id="sec0070" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0130">Forced swimming test</span><p id="par0080" class="elsevierStylePara elsevierViewall">We found significant differences in the spin count for treatment type (<span class="elsevierStyleItalic">F</span> [3.168]<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>2.793, <span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>.040), days of treatment (<span class="elsevierStyleItalic">F</span> [6.168]<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>12.566, <span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>.050), and the interaction between factors (<span class="elsevierStyleItalic">F</span> [18.168]<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>2.370, <span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>.025). According to the post hoc test, only the group taking linamarin at a concentration of 20<span class="elsevierStyleHsp" style=""></span>mM showed a gradual and significant increase in spin count from day 3 onward compared to all other groups on the same days, and compared to the same group on day 1 (<span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>.05). The vehicle group showed no spinning behaviour at any time throughout the study period (<a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>).</p><elsevierMultimedia ident="fig0015"></elsevierMultimedia></span></span><span id="sec0075" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0135">Discussion</span><p id="par0085" class="elsevierStylePara elsevierViewall">In the present study, intrahippocampal administration of linamarin resulted in impaired motor coordination and activity. This may serve as an experimental model of the motor alterations observed in humans with neurological disorders secondary to excessive cassava consumption. Locomotor activity is frequently used to quantify displacement, exploration, and anxiety under specific experimental circumstances.<a class="elsevierStyleCrossRefs" href="#bib0305"><span class="elsevierStyleSup">23,24</span></a> In the present study, the locomotor activity test allowed us to identify hyperactivity, characterised by an increase in the number of crossed squares and vertical behaviours. These behavioural changes were caused by linamarin microinjection into the dorsal hippocampus rather than by the procedure itself (surgery and microinjection) since the vehicle group did not show any of those alterations. Our findings are in line with those reported by previous studies.<a class="elsevierStyleCrossRefs" href="#bib0270"><span class="elsevierStyleSup">16,21</span></a> The increase in these 2 types of behaviour suggests that linamarin microinjections into the dorsal hippocampus induced neuronal damage, thereby preventing the consolidation of visuospatial memory in a process that may be linked to the apparent state of ‘locomotor hyperactivity’. This hypothesis is supported by the fact that intact experimental animals or those receiving the vehicle display a gradual decrease in locomotor activity and vertical behaviour after performing the locomotor activity test several times,<a class="elsevierStyleCrossRef" href="#bib0315"><span class="elsevierStyleSup">25</span></a> as occurred in our vehicle group. One possible explanation is that rats learn about and adapt to the conditions of the cage, which becomes familiar, resulting in a decreased need for exploration and spontaneous motor activity.<a class="elsevierStyleCrossRef" href="#bib0320"><span class="elsevierStyleSup">26</span></a> However, rats treated with linamarin show hippocampal damage, which is likely to impair learning and memory consolidation. If this is the case, rats would not recognise the conditions of the cage and would therefore explore as with any new or unknown setting. We should highlight that increased locomotor activity over repeated sessions of the locomotor activity test has also been observed in rats undergoing dorsal hippocampus microinjection of neurotoxic cycad derivatives or receiving cassava root juice orally.<a class="elsevierStyleCrossRefs" href="#bib0265"><span class="elsevierStyleSup">15–17,27</span></a> These findings in rats may coincide with clinical reports of patients who after excessive or inappropriate cassava consumption developed a neurological disorder consisting of motor alterations and learning and memory impairment.<a class="elsevierStyleCrossRefs" href="#bib0205"><span class="elsevierStyleSup">3,28</span></a></p><p id="par0090" class="elsevierStylePara elsevierViewall">As previously mentioned, patients with neuropathies secondary to cassava consumption also develop poor motor coordination among other symptoms.<a class="elsevierStyleCrossRefs" href="#bib0335"><span class="elsevierStyleSup">29,30</span></a> In the present study, the rats receiving linamarin at different concentrations showed decreased latency to fall regardless of the number of days of treatment. The rotarod test assesses motor coordination and balance. It is assumed that intact (healthy) animals are able to remain on the rod during longer periods since they have intact limb coordination and balance.<a class="elsevierStyleCrossRef" href="#bib0345"><span class="elsevierStyleSup">31</span></a> For this reason, the rotarod test is used to assess the degree of CNS damage and the effects of substances on motor coordination and balance.<a class="elsevierStyleCrossRef" href="#bib0350"><span class="elsevierStyleSup">32</span></a> Animals with CNS damage, or those treated with neurotoxic or sedative agents that affect motor activity, will show a reduced latency to fall on this test,<a class="elsevierStyleCrossRefs" href="#bib0355"><span class="elsevierStyleSup">33,34</span></a> as we observed in our study. Rats also displayed spinning behaviour in the forced swimming tests after receiving linamarine microinjections into the dorsal hippocampus. This behaviour has been proposed as an indicator of poor motor coordination: affected rats cannot control their limbs to swim correctly, but control rats can.<a class="elsevierStyleCrossRef" href="#bib0260"><span class="elsevierStyleSup">14</span></a> Spinning has also been observed after dorsal hippocampus microinjections of neurotoxic cycad derivatives, such as methylazoxymethanol.<a class="elsevierStyleCrossRefs" href="#bib0265"><span class="elsevierStyleSup">15,16</span></a> In our study, spinning during the swimming test was not linked to damage to the vestibular system: rats with vestibular damage display this type of behaviour not only in the forced swimming test but also in the locomotor activity test (they walk in circles),<a class="elsevierStyleCrossRefs" href="#bib0250"><span class="elsevierStyleSup">12,35</span></a> but this behaviour was not observed in our sample. This indicates that behavioural alterations in the swimming test were linked to damage at a motor level rather than at the vestibular level. Spinning has been associated with poor motor coordination in the back legs of rats<a class="elsevierStyleCrossRef" href="#bib0365"><span class="elsevierStyleSup">35</span></a>; the alterations observed in our sample may therefore be similar to those in patients with induced TAN and konzo, apparently due to inappropriate cassava consumption.<a class="elsevierStyleCrossRefs" href="#bib0205"><span class="elsevierStyleSup">3,10,30</span></a></p><p id="par0095" class="elsevierStylePara elsevierViewall">Although identifying the mechanisms underlying motor impairment after linamarin microinjection into the dorsal hippocampus was not among the purposes of the present study, we are able to offer a plausible explanation. Linamarin and other cyanogenic compounds have the ability to cause neuronal hyperexcitation in the hippocampus: these neurotoxic compounds hyperstimulate the hippocampus by overactivating ionotropic NMDA receptors, which leads to excitotoxicity and neuronal death. This may partially explain the alterations seen in humans with TAN or konzo.<a class="elsevierStyleCrossRefs" href="#bib0370"><span class="elsevierStyleSup">36–38</span></a> Our results offer a new perspective for future studies aiming to identify the neuronal mechanisms underlying neurological changes caused by the neurotoxic compounds in cassava and cassava derivatives.</p></span><span id="sec0080" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0140">Conflict of interest</span><p id="par0100" class="elsevierStylePara elsevierViewall">The authors have no conflict of interest to declare.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:11 [ 0 => array:3 [ "identificador" => "xres735086" "titulo" => "Abstract" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0005" "titulo" => "Introduction" ] 1 => array:2 [ "identificador" => "abst0010" "titulo" => "Method" ] 2 => array:2 [ "identificador" => "abst0015" "titulo" => "Results" ] 3 => array:2 [ "identificador" => "abst0020" "titulo" => "Conclusions" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec738824" "titulo" => "Keywords" ] 2 => array:3 [ "identificador" => "xres735085" "titulo" => "Resumen" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0025" "titulo" => "Introducción" ] 1 => array:2 [ "identificador" => "abst0030" "titulo" => "Método" ] 2 => array:2 [ "identificador" => "abst0035" "titulo" => "Resultados" ] 3 => array:2 [ "identificador" => "abst0040" "titulo" => "Conclusión" ] ] ] 3 => array:2 [ "identificador" => "xpalclavsec738823" "titulo" => "Palabras clave" ] 4 => array:2 [ "identificador" => "sec0005" "titulo" => "Introduction" ] 5 => array:3 [ "identificador" => "sec0010" "titulo" => "Methods" "secciones" => array:8 [ 0 => array:2 [ "identificador" => "sec0015" "titulo" => "Subjects" ] 1 => array:2 [ "identificador" => "sec0020" "titulo" => "Stereotactic surgery" ] 2 => array:2 [ "identificador" => "sec0025" "titulo" => "Experimental groups and treatment" ] 3 => array:2 [ "identificador" => "sec0030" "titulo" => "Locomotor activity test" ] 4 => array:2 [ "identificador" => "sec0035" "titulo" => "Rotarod test" ] 5 => array:2 [ "identificador" => "sec0040" "titulo" => "Forced swimming test" ] 6 => array:2 [ "identificador" => "sec0045" "titulo" => "Verification of the microinjection site" ] 7 => array:2 [ "identificador" => "sec0050" "titulo" => "Statistical analysis" ] ] ] 6 => array:3 [ "identificador" => "sec0055" "titulo" => "Results" "secciones" => array:3 [ 0 => array:2 [ "identificador" => "sec0060" "titulo" => "Locomotor activity test" ] 1 => array:2 [ "identificador" => "sec0065" "titulo" => "Rotarod test" ] 2 => array:2 [ "identificador" => "sec0070" "titulo" => "Forced swimming test" ] ] ] 7 => array:2 [ "identificador" => "sec0075" "titulo" => "Discussion" ] 8 => array:2 [ "identificador" => "sec0080" "titulo" => "Conflict of interest" ] 9 => array:2 [ "identificador" => "xack244397" "titulo" => "Acknowledgements" ] 10 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2014-10-19" "fechaAceptado" => "2014-10-27" "PalabrasClave" => array:2 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec738824" "palabras" => array:6 [ 0 => "Cassava" 1 => "Linamarin" 2 => "Tropical ataxic neuropathy" 3 => "Konzo" 4 => "Lateral swimming" 5 => "Motor impairment" ] ] ] "es" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec738823" "palabras" => array:6 [ 0 => "Yuca" 1 => "Linamarina" 2 => "Neuropatía atáxica tropical" 3 => "Konzo" 4 => "Nado lateral" 5 => "Incoordinación motriz" ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "en" => array:3 [ "titulo" => "Abstract" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0010">Introduction</span><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">Cassava, also known as <span class="elsevierStyleItalic">yuca</span> or manioc <span class="elsevierStyleItalic">(Manihot esculenta</span> Crantz), is a staple food in tropical and subtropical regions since it is an important source of carbohydrates. Nevertheless, it contains cyanogenic compounds including lotaustralin and linamarin, which have been shown by experimental models to affect brain structures such as the thalamus, the piriform cortex, the hippocampus, and others. These findings may explain the presence of such neurological diseases as konzo and tropical ataxic neuropathy. However, hippocampal involvement in the neurological alterations associated with the chemical compounds in cassava has yet to be explored.</p></span> <span id="abst0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0015">Method</span><p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">Male Wistar rats (3 months old), were assigned to 4 groups (<span class="elsevierStyleItalic">n</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>8 per group) as follows: a vehicle-control group (receiving injectable solution 1<span class="elsevierStyleHsp" style=""></span>μl) and three groups receiving linamarin (10, 15, and 20<span class="elsevierStyleHsp" style=""></span>mM). The substances were microinjected intrahippocampally (CA1) every 24<span class="elsevierStyleHsp" style=""></span>hours for 7 consecutive days, and their effects on locomotor activity, rotarod, and swim tests were assessed daily.</p></span> <span id="abst0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0020">Results</span><p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Linamarin microinjected into the dorsal hippocampus produced hyperactivity and loss of motor coordination which became more evident as treatment time increased. In the swim test, rats treated with linamarin displayed lateral rotation beginning on the fourth day of microinjection.</p></span> <span id="abst0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0025">Conclusions</span><p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">Microinjection of linamarin into the dorsal hippocampus of the rat is associated with impaired motor coordination, suggesting that the dorsal hippocampus, among other brain structures, may be affected by the neurological changes associated with inappropriate consumption of cassava in humans.</p></span>" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0005" "titulo" => "Introduction" ] 1 => array:2 [ "identificador" => "abst0010" "titulo" => "Method" ] 2 => array:2 [ "identificador" => "abst0015" "titulo" => "Results" ] 3 => array:2 [ "identificador" => "abst0020" "titulo" => "Conclusions" ] ] ] "es" => array:3 [ "titulo" => "Resumen" "resumen" => "<span id="abst0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0035">Introducción</span><p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">La yuca, <span class="elsevierStyleItalic">cassava</span> o mandioca <span class="elsevierStyleItalic">(Manihot esculenta</span> Crantz) constituye uno de los alimentos básicos en regiones tropicales y subtropicales, por ser fuente importante de hidratos de carbono. No obstante, contiene compuestos cianogénicos, como linamarina y lotaustralina, que a nivel experimental se ha encontrado que afectan a estructuras cerebrales como el tálamo, la corteza piriforme y el hipocampo, entre otras, lo cual podría explicar algunas enfermedades neurológicas, como el konzo y la neuropatía atáxica tropical. Sin embargo, la participación del hipocampo en las alteraciones neurológicas asociadas a los componentes químicos de la yuca aún no ha sido identificada.</p></span> <span id="abst0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Método</span><p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">Se incluyeron ratas macho de 3 meses de edad (cepa Wistar), distribuidas en 4 grupos (n<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>8 cada grupo): un grupo vehículo (1<span class="elsevierStyleHsp" style=""></span>μl de solución inyectable) y 3 grupos con linamarina (10, 15 y 20<span class="elsevierStyleHsp" style=""></span>mM). Las sustancias fueron microinyectadas intrahipocampalmente (CA1) durante siete días consecutivos (cada 24<span class="elsevierStyleHsp" style=""></span>h) y los efectos fueron evaluados diariamente en las pruebas de actividad locomotora, rota-rod y nado.</p></span> <span id="abst0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0045">Resultados</span><p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">La microinyección de linamarina en el hipocampo dorsal produjo hiperactividad e incoordinación motora que fue acentuándose con los días de tratamiento. En la prueba de nado desplegaron la conducta de giro sobre su propio eje, a partir del cuarto día de microinyección.</p></span> <span id="abst0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0050">Conclusión</span><p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">La microinyección de linamarina en el hipocampo dorsal de la rata se asocia a alteraciones en la coordinación motora, lo cual indica la participación del hipocampo dorsal, entre otras estructuras cerebrales, en las alteraciones neurológicas asociadas al consumo inapropiado de la yuca en el ser humano.</p></span>" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0025" "titulo" => "Introducción" ] 1 => array:2 [ "identificador" => "abst0030" "titulo" => "Método" ] 2 => array:2 [ "identificador" => "abst0035" "titulo" => "Resultados" ] 3 => array:2 [ "identificador" => "abst0040" "titulo" => "Conclusión" ] ] ] ] "NotaPie" => array:1 [ 0 => array:2 [ "etiqueta" => "☆" "nota" => "<p class="elsevierStyleNotepara" id="npar0005">Please cite this article as: Rivadeneyra-Domínguez E, Rodríguez-Landa JF. Alteraciones motoras inducidas por la microinyección de linamarina en el hipocampo dorsal de la rata Wistar. Neurología. 2016;31:516–522.</p>" ] ] "multimedia" => array:3 [ 0 => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 2248 "Ancho" => 1619 "Tamanyo" => 163824 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">Locomotor activity test. Regardless of linamarin concentration (Lin), the number of crossed squares (a) and vertical behaviours (b) increased beginning on day 4. The opposite effect was observed in the vehicle group (Veh). <span class="elsevierStyleBold"><span class="elsevierStyleSup">*</span></span><span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>.05 vs day 1 of treatment in the same group. <span class="elsevierStyleBold"><span class="elsevierStyleSup">**</span></span><span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>.05 vs the same day in the vehicle group. 2-way repeated measures ANOVA, post hoc Student–Newman–Keuls test.</p>" ] ] 1 => array:7 [ "identificador" => "fig0010" "etiqueta" => "Figure 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 1050 "Ancho" => 1639 "Tamanyo" => 89137 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">Rotarod test. Regardless of linamarin concentration (Lin), latency to fall decreased gradually over the study period, a trend that was not seen in the vehicle group (Veh). <span class="elsevierStyleBold"><span class="elsevierStyleSup">*</span></span><span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>.05 vs the same day in vehicle group and day 1 in each experimental group. 2-way repeated measures ANOVA, post hoc Student–Newman–Keuls test.</p>" ] ] 2 => array:7 [ "identificador" => "fig0015" "etiqueta" => "Figure 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 1284 "Ancho" => 1576 "Tamanyo" => 78491 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0055" class="elsevierStyleSimplePara elsevierViewall">Forced swimming test. Only linamarin concentrations (Lin) of 20<span class="elsevierStyleHsp" style=""></span>mM resulted in a gradual and significant increase in spinning; changes were significant from day 3. The vehicle group (Veh) showed no spinning behaviour during the study period. <span class="elsevierStyleBold"><span class="elsevierStyleSup">*</span></span><span class="elsevierStyleItalic">P</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>.05 vs day 1 in the same group and the same day in the vehicle group. 2-way repeated measures ANOVA, post hoc Student–Newman–Keuls test.</p>" ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0005" "bibliografiaReferencia" => array:38 [ 0 => array:3 [ "identificador" => "bib0195" "etiqueta" => "1" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Cassava: a basic energy source in the tropics" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "J.H. Cock" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Science" "fecha" => "1984" "volumen" => "4575" "paginaInicial" => "755" "paginaFinal" => "762" ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0200" "etiqueta" => "2" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The targets of acetone cyanohydrin neurotoxicity in the rat are not the ones expected in an animal model Konzo" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "C. Soler-Martin" 1 => "J. Riera" 2 => "A. Seoane" 3 => "B. Cutillas" 4 => "S. Ambrosio" 5 => "P. Boadas-Vaello" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Neurotoxicol Teratol" "fecha" => "2010" "volumen" => "2" "paginaInicial" => "289" "paginaFinal" => "294" ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0205" "etiqueta" => "3" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Neurological disorders associated with cassava diet: a review of putative etiological mechanisms" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "B. Adamolekum" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s11011-011-9237-y" "Revista" => array:6 [ "tituloSerie" => "Metab Brain Dis" "fecha" => "2011" "volumen" => "26" "paginaInicial" => "79" "paginaFinal" => "85" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/21327546" "web" => "Medline" ] ] ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0210" "etiqueta" => "4" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Ataxic neurological syndrome found in Tangayika" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "D.R. Haddock" 1 => "G.J. Ebrahim" 2 => "B. Kapur" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Br Med J" "fecha" => "1962" "volumen" => "2" "paginaInicial" => "1442" "paginaFinal" => "1443" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/519511" "web" => "Medline" ] ] ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0215" "etiqueta" => "5" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Neuropathy in Sierra Leone" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "H. Rowland" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "J Trop Med Hyg" "fecha" => "1963" "volumen" => "66" "paginaInicial" => "181" "paginaFinal" => "187" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/13982827" "web" => "Medline" ] ] ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0220" "etiqueta" => "6" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Clinical epidemiological observations on an ataxic syndrome in Western Nigeria" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "G.L. Monekosso" 1 => "W.G. Annan" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Trop Geogr Med" "fecha" => "1964" "volumen" => "4" "paginaInicial" => "316" "paginaFinal" => "323" ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0225" "etiqueta" => "7" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "An ataxic neuropathy in Nigeria: a clinical, biochemical and electrophysiological study" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "B.O. Osuntokun" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Brain" "fecha" => "1968" "volumen" => "91" "paginaInicial" => "215" "paginaFinal" => "248" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/5721927" "web" => "Medline" ] ] ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0230" "etiqueta" => "8" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Clinical and etiological profile of tropical ataxic neuropathy in Kerala, South India" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "M. Madhusudanam" 1 => "M.K. Menon" 2 => "K. Ummer" 3 => "K. Radhakrishnanan" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1159/000127975" "Revista" => array:6 [ "tituloSerie" => "Eur Neurol" "fecha" => "2008" "volumen" => "60" "paginaInicial" => "21" "paginaFinal" => "26" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18437044" "web" => "Medline" ] ] ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0235" "etiqueta" => "9" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Konzo: from poverty, cassava and cyanogen intake to toxico-nutritional neurological disease" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "H. Nzwalo" 1 => "J. Cliff" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "PLoS Negl Trop Dis" "fecha" => "2011" "volumen" => "5" "paginaInicial" => "1051" "paginaFinal" => "1071" ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0240" "etiqueta" => "10" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Konzo: a distinct disease entity with selective upper motor neuron damage" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "T. Tylleskär" 1 => "W.P. Howlett" 2 => "H.T. Rwiza" 3 => "S.M. Aquilonius" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:7 [ "tituloSerie" => "J Neurol Neurosurg Psychiatr" "fecha" => "1993" "volumen" => "56" "paginaInicial" => "638" "paginaFinal" => "643" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/8509777" "web" => "Medline" ] ] "itemHostRev" => array:3 [ "pii" => "S0302283807011451" "estado" => "S300" "issn" => "03022838" ] ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0245" "etiqueta" => "11" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Behavioral and pathological effects in the rat define two groups of neurotoxic nitriles" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "P. Boadas-Vaello" 1 => "J. Riera" 2 => "J. Llorens" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1093/toxsci/kfi314" "Revista" => array:6 [ "tituloSerie" => "Toxicol Sci" "fecha" => "2005" "volumen" => "88" "paginaInicial" => "456" "paginaFinal" => "466" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16150883" "web" => "Medline" ] ] ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0250" "etiqueta" => "12" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Emotional tagging of memory formation in the search for neural mechanisms" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "G. Richter-Levin" 1 => "I. Akirav" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Brain Res Rev" "fecha" => "2003" "volumen" => "43" "paginaInicial" => "247" "paginaFinal" => "256" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/14629927" "web" => "Medline" ] ] ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0255" "etiqueta" => "13" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Efectos de la inyección intrahipocampal de escopolamina sobre el comportamiento en el laberinto en cruz elevado" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "A.M. García-Becerra" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Suma Psicol" "fecha" => "2009" "volumen" => "16" "paginaInicial" => "19" "paginaFinal" => "29" ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0260" "etiqueta" => "14" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "El tratamiento con progesterona previene las alteraciones motoras inducidas por la intoxicación con semillas de cícada (<span class="elsevierStyleItalic">Dioon spinulosum</span>) en la rata macho" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "E. Rivadeneyra-Domínguez" 1 => "M. Saavedra" 2 => "J.F. Rodríguez-Landa" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Rev Toxicol" "fecha" => "2009" "volumen" => "26" "paginaInicial" => "36" "paginaFinal" => "40" ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0265" "etiqueta" => "15" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Las cícadas y su relación con algunas enfermedades neurodegenerativas" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "E. Rivadeneyra-Domínguez" 1 => "J.F. Rodríguez-Landa" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.nrl.2013.03.005" "Revista" => array:6 [ "tituloSerie" => "Neurología" "fecha" => "2013" "volumen" => "29" "paginaInicial" => "517" "paginaFinal" => "522" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23725821" "web" => "Medline" ] ] ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0270" "etiqueta" => "16" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Alteraciones motoras inducidas por la microinyección intrahipocampal de metilazoximetanol en ratas macho forzadas a nadar" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "M. Saavedra" 1 => "E. Rivadeneyra-Domínguez" 2 => "J.F. Rodríguez-Landa" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Arch Neurocien (Méx)" "fecha" => "2011" "volumen" => "16" "paginaInicial" => "186" "paginaFinal" => "192" ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0275" "etiqueta" => "17" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Neurotoxic effect of linamarin in rats associated with cassava (<span class="elsevierStyleItalic">Manihot esculenta</span> Crantz) consumption" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "E. Rivadeneyra-Domínguez" 1 => "A. Vázquez-Luna" 2 => "J.F. Rodríguez-Landa" 3 => "R. Díaz-Sobac" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.fct.2013.06.004" "Revista" => array:6 [ "tituloSerie" => "Food Chem Toxicol" "fecha" => "2013" "volumen" => "59" "paginaInicial" => "230" "paginaFinal" => "235" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23778051" "web" => "Medline" ] ] ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib0280" "etiqueta" => "18" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A standardized extract of <span class="elsevierStyleItalic">Ginkgo biloba</span> prevents locomotion impairment induced by cassava juice in Wistar rats" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "E. Rivadeneyra-Domínguez" 1 => "A. Vázquez-Luna" 2 => "J.F. Rodríguez-Landa" 3 => "R. Díaz-Sobac" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3389/fphar.2014.00213" "Revista" => array:5 [ "tituloSerie" => "Front Pharmacol" "fecha" => "2014" "volumen" => "5" "paginaInicial" => "213" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25309441" "web" => "Medline" ] ] ] ] ] ] ] ] 18 => array:3 [ "identificador" => "bib0285" "etiqueta" => "19" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "titulo" => "National Research Council Guide for the Care and Use of Laboratory Animals: A report of the Institute of Laboratory Animal Resource Committee on the care and Use of Laboratory Animals. NIH Publication No. 85-23" ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "1996" "editorial" => "U.S. Department of Health and Human Services" "editorialLocalizacion" => "Washington, DC" ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bib0290" "etiqueta" => "20" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "Norma Oficial Mexicana NOM-062-ZOO-1999" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "1999" "editorial" => "Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación" "editorialLocalizacion" => "México D.F." ] ] ] ] ] ] 20 => array:3 [ "identificador" => "bib0295" "etiqueta" => "21" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Allopregnanolone microinjected into the lateral septum or dorsal hippocampus reduces immobility in the forced swim test: participation of the GABA<span class="elsevierStyleInf">A</span> receptor" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "J.F. Rodríguez-Landa" 1 => "C.M. Contreras" 2 => "R.I. García-Ríos" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1097/FBP.0b013e328331b9f2" "Revista" => array:6 [ "tituloSerie" => "Behav Pharmacol" "fecha" => "2009" "volumen" => "20" "paginaInicial" => "614" "paginaFinal" => "622" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19752723" "web" => "Medline" ] ] ] ] ] ] ] ] 21 => array:3 [ "identificador" => "bib0300" "etiqueta" => "22" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The rat brain in stereotaxic coordinates" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "G. Paxinos" 1 => "C. Watson" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "1998" "editorial" => "Academic Press" "editorialLocalizacion" => "San Diego" ] ] ] ] ] ] 22 => array:3 [ "identificador" => "bib0305" "etiqueta" => "23" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Open-field behavior of house mice selectively bred for high voluntary wheel-running" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "A.M. Bronikowski" 1 => "P.A. Carter" 2 => "J.G. Swallow" 3 => "I.A. Girard" 4 => "J.S. Rhodes" 5 => "T. Garland" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Behav Genet" "fecha" => "2001" "volumen" => "31" "paginaInicial" => "309" "paginaFinal" => "316" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/11699603" "web" => "Medline" ] ] ] ] ] ] ] ] 23 => array:3 [ "identificador" => "bib0310" "etiqueta" => "24" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The effects of chloroquine on the open field locomotion in adult Wistar rats" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "J.O. Adjene" 1 => "E.B. Ezenwanne" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Afr Sci" "fecha" => "2008" "volumen" => "9" "paginaInicial" => "25" "paginaFinal" => "30" ] ] ] ] ] ] 24 => array:3 [ "identificador" => "bib0315" "etiqueta" => "25" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Neurogenesis may relate to some but not all types of hippocampal dependent learning" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "T.J. Shors" 1 => "D.A. Towsend" 2 => "M. Zhao" 3 => "Y. Kozorovitskiy" 4 => "E. Gould" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Behav Neurosci" "fecha" => "2001" "volumen" => "115" "paginaInicial" => "1175" "paginaFinal" => "1187" ] ] ] ] ] ] 25 => array:3 [ "identificador" => "bib0320" "etiqueta" => "26" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Open-field behavior in rats with frontomedial cortical, neostriatal or hippocampal lesions" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "A. Markowska" 1 => "I. Lukaszewska" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Acta Neurobiol Exp" "fecha" => "1981" "volumen" => "41" "paginaInicial" => "197" "paginaFinal" => "210" ] ] ] ] ] ] 26 => array:3 [ "identificador" => "bib0325" "etiqueta" => "27" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Open-field behavior withstands drastic changes in arena size" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "D. Eilam" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Behav Brain Res" "fecha" => "2003" "volumen" => "142" "paginaInicial" => "53" "paginaFinal" => "62" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/12798265" "web" => "Medline" ] ] ] ] ] ] ] ] 27 => array:3 [ "identificador" => "bib0330" "etiqueta" => "28" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Etiology on Konzo, epidemic spastic paraparesis associated with cyanogenic glycosides in cassava: role of thiamine deficiency" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "B. Adamolekun" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jns.2010.06.016" "Revista" => array:6 [ "tituloSerie" => "J Neurol Sci" "fecha" => "2010" "volumen" => "296" "paginaInicial" => "30" "paginaFinal" => "33" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20619859" "web" => "Medline" ] ] ] ] ] ] ] ] 28 => array:3 [ "identificador" => "bib0335" "etiqueta" => "29" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Persistent konzo and cyanide toxicity from cassava in northern Mozambique" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "M. Ernesto" 1 => "A.P. Cardoso" 2 => "D. Nicala" 3 => "E. Mirione" 4 => "F. Massaza" 5 => "J. Cliff" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Acta Trop" "fecha" => "2002" "volumen" => "82" "paginaInicial" => "357" "paginaFinal" => "362" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/12039675" "web" => "Medline" ] ] ] ] ] ] ] ] 29 => array:3 [ "identificador" => "bib0340" "etiqueta" => "30" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Enfermedades neurológicas asociadas al consumo de variedades de mandioca con alto contenido en gluconitrilos" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "J. Llorens" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Endocrinol Nutr" "fecha" => "2004" "volumen" => "51" "paginaInicial" => "418" "paginaFinal" => "425" ] ] ] ] ] ] 30 => array:3 [ "identificador" => "bib0345" "etiqueta" => "31" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Motor coordination and balance in rodents" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "R.J. Carter" 1 => "J. Morton" 2 => "S.B. Dunnet" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/0471142301.ns0808s04" "Revista" => array:6 [ "tituloSerie" => "Curr Protoc Neurosci" "fecha" => "2001" "volumen" => "8" "paginaInicial" => "8" "paginaFinal" => "12" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18428549" "web" => "Medline" ] ] ] ] ] ] ] ] 31 => array:3 [ "identificador" => "bib0350" "etiqueta" => "32" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Terapia celular para el tratamiento del daño cerebral traumático: utilidad de diferentes escalas de valoración funcional" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "C. Bonilla" 1 => "L. Otero" 2 => "C. Aguayo" 3 => "A. Rodríguez" 4 => "M. Zurita" 5 => "J. Vaquero" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "Rev Trauma" "fecha" => "2009" "volumen" => "20" "paginaInicial" => "4" ] ] ] ] ] ] 32 => array:3 [ "identificador" => "bib0355" "etiqueta" => "33" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Measuring motor coordination in mice" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "M.J. Deacon Robert" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3791/2609" "Revista" => array:5 [ "tituloSerie" => "J Vis Exp" "fecha" => "2013" "volumen" => "75" "paginaInicial" => "e2609" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23748408" "web" => "Medline" ] ] ] ] ] ] ] ] 33 => array:3 [ "identificador" => "bib0360" "etiqueta" => "34" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Assessment of motor function, sensory motor gating and recognition memory in a novel BACHD transgenic rat model for Huntington disease" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "Y.K. Abada" 1 => "H.P. Nguyen" 2 => "R. Schreiber" 3 => "B. Ellenbroek" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1371/journal.pone.0068584" "Revista" => array:6 [ "tituloSerie" => "PLOS ONE" "fecha" => "2013" "volumen" => "8" "paginaInicial" => "e68584" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23874679" "web" => "Medline" ] ] "itemHostRev" => array:3 [ "pii" => "S0302283809007131" "estado" => "S300" "issn" => "03022838" ] ] ] ] ] ] ] 34 => array:3 [ "identificador" => "bib0365" "etiqueta" => "35" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Inmunohistochemical and neurochemical studies on nigral and striatal functions in the circling (ci) rat, a genetic animal model with spontaneous rotational behavior" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "A. Ritcher" 1 => "U. Ebert" 2 => "J.N. Nobrega" 3 => "J.J. Vallbacka" 4 => "M. Fedrowitz" 5 => "W. Loscher" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Neuroscience" "fecha" => "1999" "volumen" => "89" "paginaInicial" => "461" "paginaFinal" => "471" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/10077328" "web" => "Medline" ] ] ] ] ] ] ] ] 35 => array:3 [ "identificador" => "bib0370" "etiqueta" => "36" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Excitotoxic models for neurodegenerative disorders" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "R. Schwarez" 1 => "A.C. Foster" 2 => "E.D. French" 3 => "C. Whetsell" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Life Sci" "fecha" => "1984" "volumen" => "35" "paginaInicial" => "19" "paginaFinal" => "32" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/6234446" "web" => "Medline" ] ] ] ] ] ] ] ] 36 => array:3 [ "identificador" => "bib0375" "etiqueta" => "37" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Seizures and neurodegeneration induced by 4-aminopyridine in rat hippocampus in vivo; role of glutamate and GABA mediated neurotransmission and of ion channels" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "F. Peña" 1 => "R. Tapia" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Neuroscience" "fecha" => "2003" "volumen" => "101" "paginaInicial" => "547" "paginaFinal" => "561" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/11113304" "web" => "Medline" ] ] ] ] ] ] ] ] 37 => array:3 [ "identificador" => "bib0380" "etiqueta" => "38" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Expression of heat shock protein 70 induced by 4-aminopyridine through glutamate-mediated excitotoxic stress in rat hippocampus <span class="elsevierStyleItalic">in vivo</span>" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "G.X. Ayala" 1 => "R. Tapia" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Neuropharmacology" "fecha" => "2003" "volumen" => "45" "paginaInicial" => "649" "paginaFinal" => "660" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/12941378" "web" => "Medline" ] ] ] ] ] ] ] ] ] ] ] ] "agradecimientos" => array:1 [ 0 => array:4 [ "identificador" => "xack244397" "titulo" => "Acknowledgements" "texto" => "<p id="par0105" class="elsevierStylePara elsevierViewall">This study was partially supported by the study group for the biology, chemistry, and molecular functionality of vegetable metabolites (UV-GC-235) at Universidad Veracruzana.</p>" "vista" => "all" ] ] ] "idiomaDefecto" => "en" "url" => "/21735808/0000003100000008/v1_201609280237/S2173580816300815/v1_201609280237/en/main.assets" "Apartado" => array:4 [ "identificador" => "9491" "tipo" => "SECCION" "en" => array:2 [ "titulo" => "Original Articles" "idiomaDefecto" => true ] "idiomaDefecto" => "en" ] "PDF" => "https://static.elsevier.es/multimedia/21735808/0000003100000008/v1_201609280237/S2173580816300815/v1_201609280237/en/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173580816300815?idApp=UINPBA00004N" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 6 | 1 | 7 |
2024 October | 10 | 9 | 19 |
2024 September | 20 | 7 | 27 |
2024 August | 28 | 3 | 31 |
2024 July | 17 | 6 | 23 |
2024 June | 12 | 5 | 17 |
2024 May | 22 | 3 | 25 |
2024 April | 49 | 2 | 51 |
2024 March | 28 | 7 | 35 |
2024 February | 39 | 5 | 44 |
2024 January | 108 | 6 | 114 |
2023 December | 39 | 13 | 52 |
2023 November | 20 | 10 | 30 |
2023 October | 27 | 14 | 41 |
2023 September | 11 | 2 | 13 |
2023 August | 15 | 11 | 26 |
2023 July | 9 | 3 | 12 |
2023 June | 8 | 6 | 14 |
2023 May | 44 | 12 | 56 |
2023 April | 42 | 4 | 46 |
2023 March | 31 | 8 | 39 |
2023 February | 6 | 4 | 10 |
2023 January | 25 | 18 | 43 |
2022 December | 29 | 6 | 35 |
2022 November | 36 | 20 | 56 |
2022 October | 26 | 24 | 50 |
2022 September | 53 | 12 | 65 |
2022 August | 24 | 10 | 34 |
2022 July | 17 | 14 | 31 |
2022 June | 21 | 13 | 34 |
2022 May | 33 | 15 | 48 |
2022 April | 28 | 14 | 42 |
2022 March | 38 | 17 | 55 |
2022 February | 41 | 4 | 45 |
2022 January | 86 | 10 | 96 |
2021 December | 16 | 10 | 26 |
2021 November | 23 | 11 | 34 |
2021 October | 71 | 20 | 91 |
2021 September | 43 | 16 | 59 |
2021 August | 58 | 10 | 68 |
2021 July | 46 | 7 | 53 |
2021 June | 31 | 8 | 39 |
2021 May | 25 | 14 | 39 |
2021 April | 30 | 9 | 39 |
2021 March | 23 | 15 | 38 |
2021 February | 26 | 12 | 38 |
2021 January | 44 | 20 | 64 |
2020 December | 30 | 15 | 45 |
2020 November | 22 | 11 | 33 |
2020 October | 38 | 8 | 46 |
2020 September | 20 | 17 | 37 |
2020 August | 34 | 21 | 55 |
2020 July | 18 | 10 | 28 |
2020 June | 25 | 16 | 41 |
2020 May | 25 | 18 | 43 |
2020 April | 27 | 8 | 35 |
2020 March | 28 | 10 | 38 |
2020 February | 32 | 12 | 44 |
2020 January | 45 | 6 | 51 |
2019 December | 33 | 9 | 42 |
2019 November | 24 | 8 | 32 |
2019 October | 17 | 8 | 25 |
2019 September | 19 | 5 | 24 |
2019 August | 36 | 10 | 46 |
2019 July | 15 | 12 | 27 |
2019 June | 32 | 17 | 49 |
2019 May | 101 | 20 | 121 |
2019 April | 54 | 6 | 60 |
2019 March | 12 | 1 | 13 |
2019 February | 17 | 4 | 21 |
2019 January | 17 | 3 | 20 |
2018 December | 17 | 2 | 19 |
2018 November | 20 | 4 | 24 |
2018 October | 26 | 10 | 36 |
2018 September | 21 | 3 | 24 |
2018 August | 26 | 2 | 28 |
2018 July | 6 | 2 | 8 |
2018 June | 10 | 1 | 11 |
2018 May | 16 | 1 | 17 |
2018 April | 22 | 0 | 22 |
2018 March | 7 | 1 | 8 |
2018 February | 92 | 2 | 94 |
2018 January | 40 | 2 | 42 |
2017 December | 89 | 0 | 89 |
2017 November | 33 | 4 | 37 |
2017 October | 9 | 2 | 11 |
2017 September | 5 | 7 | 12 |
2017 August | 23 | 5 | 28 |
2017 July | 17 | 2 | 19 |
2017 June | 12 | 6 | 18 |
2017 May | 20 | 4 | 24 |
2017 April | 16 | 4 | 20 |
2017 March | 8 | 24 | 32 |
2017 February | 13 | 10 | 23 |
2017 January | 17 | 2 | 19 |
2016 December | 23 | 5 | 28 |
2016 November | 44 | 10 | 54 |
2016 October | 98 | 14 | 112 |
2016 September | 20 | 8 | 28 |
2016 August | 1 | 1 | 2 |