was read the article
array:24 [ "pii" => "S032575411500125X" "issn" => "03257541" "doi" => "10.1016/j.ram.2015.09.004" "estado" => "S300" "fechaPublicacion" => "2015-10-01" "aid" => "65" "copyright" => "Asociación Argentina de Microbiología" "copyrightAnyo" => "2015" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Rev Argent Microbiol. 2015;47:335-43" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 1983 "formatos" => array:3 [ "EPUB" => 35 "HTML" => 1391 "PDF" => 557 ] ] "itemSiguiente" => array:19 [ "pii" => "S0325754115001224" "issn" => "03257541" "doi" => "10.1016/j.ram.2015.09.003" "estado" => "S300" "fechaPublicacion" => "2015-10-01" "aid" => "62" "copyright" => "Asociación Argentina de Microbiología" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Rev Argent Microbiol. 2015;47:344-9" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 2191 "formatos" => array:3 [ "EPUB" => 41 "HTML" => 1637 "PDF" => 513 ] ] "en" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original article</span>" "titulo" => "Control of agitation and aeration rates in the production of surfactin in foam overflowing fed-batch culture with industrial fermentation" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "344" "paginaFinal" => "349" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Control de las tasas de aireación y agitación en la producción de surfactina en un cultivo alimentado <span class="elsevierStyleItalic">(fed-batch)</span> en espuma desbordante con fermentación industrial" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0015" "etiqueta" => "Figure 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 1884 "Ancho" => 3259 "Tamanyo" => 281994 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">Effect of agitation and aeration rate on foam overflowing flow rate (up) and surfactin concentration in the overflowing foam (down) at 15<span class="elsevierStyleHsp" style=""></span>h (A and D), 21<span class="elsevierStyleHsp" style=""></span>h (B and E), and 33<span class="elsevierStyleHsp" style=""></span>h (C and F) by <span class="elsevierStyleItalic">Bacillus amyloliquefaciens</span> fmb50 in batch culture.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Shulin Yao, Shengming Zhao, Zhaoxin Lu, Yuqi Gao, Fengxia Lv, Xiaomei Bie" "autores" => array:6 [ 0 => array:2 [ "nombre" => "Shulin" "apellidos" => "Yao" ] 1 => array:2 [ "nombre" => "Shengming" "apellidos" => "Zhao" ] 2 => array:2 [ "nombre" => "Zhaoxin" "apellidos" => "Lu" ] 3 => array:2 [ "nombre" => "Yuqi" "apellidos" => "Gao" ] 4 => array:2 [ "nombre" => "Fengxia" "apellidos" => "Lv" ] 5 => array:2 [ "nombre" => "Xiaomei" "apellidos" => "Bie" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0325754115001224?idApp=UINPBA00004N" "url" => "/03257541/0000004700000004/v2_201602050024/S0325754115001224/v2_201602050024/en/main.assets" ] "itemAnterior" => array:19 [ "pii" => "S0325754115001121" "issn" => "03257541" "doi" => "10.1016/j.ram.2015.07.004" "estado" => "S300" "fechaPublicacion" => "2015-10-01" "aid" => "54" "copyright" => "Asociación Argentina de Microbiología" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Rev Argent Microbiol. 2015;47:331-4" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 2701 "formatos" => array:3 [ "EPUB" => 32 "HTML" => 2215 "PDF" => 454 ] ] "es" => array:12 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">INFORME BREVE</span>" "titulo" => "Especies de levaduras aisladas en muestras de orina en un hospital regional de España" "tienePdf" => "es" "tieneTextoCompleto" => "es" "tieneResumen" => array:2 [ 0 => "es" 1 => "en" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "331" "paginaFinal" => "334" ] ] "titulosAlternativos" => array:1 [ "en" => array:1 [ "titulo" => "Isolated yeast species in urine samples in a Spanish regional hospital" ] ] "contieneResumen" => array:2 [ "es" => true "en" => true ] "contieneTextoCompleto" => array:1 [ "es" => true ] "contienePdf" => array:1 [ "es" => true ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Victor Heras-Cañas, Luis Ros, Antonio Sorlózano, Blanca Gutiérrez-Soto, José María Navarro-Marí, José Gutiérrez-Fernández" "autores" => array:6 [ 0 => array:2 [ "nombre" => "Victor" "apellidos" => "Heras-Cañas" ] 1 => array:2 [ "nombre" => "Luis" "apellidos" => "Ros" ] 2 => array:2 [ "nombre" => "Antonio" "apellidos" => "Sorlózano" ] 3 => array:2 [ "nombre" => "Blanca" "apellidos" => "Gutiérrez-Soto" ] 4 => array:2 [ "nombre" => "José María" "apellidos" => "Navarro-Marí" ] 5 => array:2 [ "nombre" => "José" "apellidos" => "Gutiérrez-Fernández" ] ] ] ] ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0325754115001121?idApp=UINPBA00004N" "url" => "/03257541/0000004700000004/v2_201602050024/S0325754115001121/v2_201602050024/es/main.assets" ] "en" => array:20 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original article</span>" "titulo" => "The decrease in the population of <span class="elsevierStyleItalic">Gluconacetobacter diazotrophicus</span> in sugarcane after nitrogen fertilization is related to plant physiology in split root experiments" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "335" "paginaFinal" => "343" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "Osvaldo Rodríguez-Andrade, Luis E. Fuentes-Ramírez, Yolanda E. Morales-García, Dalia Molina-Romero, María R. Bustillos-Cristales, Rebeca D. Martínez-Contreras, Jesús Muñoz-Rojas" "autores" => array:7 [ 0 => array:2 [ "nombre" => "Osvaldo" "apellidos" => "Rodríguez-Andrade" ] 1 => array:2 [ "nombre" => "Luis E." "apellidos" => "Fuentes-Ramírez" ] 2 => array:2 [ "nombre" => "Yolanda E." "apellidos" => "Morales-García" ] 3 => array:2 [ "nombre" => "Dalia" "apellidos" => "Molina-Romero" ] 4 => array:2 [ "nombre" => "María R." "apellidos" => "Bustillos-Cristales" ] 5 => array:2 [ "nombre" => "Rebeca D." "apellidos" => "Martínez-Contreras" ] 6 => array:4 [ "nombre" => "Jesús" "apellidos" => "Muñoz-Rojas" "email" => array:1 [ 0 => "joymerre@yahoo.com.mx" ] "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0005" ] ] ] ] "afiliaciones" => array:1 [ 0 => array:2 [ "entidad" => "Laboratorio Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas (CICM)-Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, México" "identificador" => "aff0005" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "Corresponding author." ] ] ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "La disminución de la población de <span class="elsevierStyleItalic">Gluconacetobacter diazotrophicus</span> en caña de azúcar, después de la fertilización nitrogenada, está relacionada con la fisiología de las plantas en experimentos de raíz dividida" ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0015" "etiqueta" => "Figure 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 3411 "Ancho" => 2383 "Tamanyo" => 255487 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">Bacterial population inside roots in split root experiments. Each value represents the media of data for five independent plants (Log of cell number/g root) with the respective standard deviation. Mean values with equal letters are not statistically different at <span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span>≤<span class="elsevierStyleHsp" style=""></span>0.05, using the <span class="elsevierStyleItalic">t</span>-Student test. dpi: days post inoculation; dpf: days post fertilization; ND: not detected; N+: addition of 180<span class="elsevierStyleHsp" style=""></span>mg of nitrogen/plant.</p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0025">Introduction</span><p id="par0005" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleItalic">Gluconacetobacter diazotrophicus</span> is a gram-negative bacterium, initially isolated as endophyte from Brazilian sugarcane plants<a class="elsevierStyleCrossRef" href="#bib0250"><span class="elsevierStyleSup">8</span></a> and subsequently from sugarcane plants in other countries<a class="elsevierStyleCrossRefs" href="#bib0240"><span class="elsevierStyleSup">6,34</span></a>. In addition, <span class="elsevierStyleItalic">G. diazotrophicus</span> has also been isolated from the inner tissue of diverse hosts<a class="elsevierStyleCrossRef" href="#bib0275"><span class="elsevierStyleSup">13</span></a>, such as <span class="elsevierStyleItalic">Ipomoea batatas</span>, <span class="elsevierStyleItalic">Pennisetum purpureum</span><a class="elsevierStyleCrossRef" href="#bib0270"><span class="elsevierStyleSup">12</span></a>, <span class="elsevierStyleItalic">Saccharococcus sachari</span><a class="elsevierStyleCrossRefs" href="#bib0225"><span class="elsevierStyleSup">3,31</span></a>, <span class="elsevierStyleItalic">Eleusine coracana</span><a class="elsevierStyleCrossRef" href="#bib0300"><span class="elsevierStyleSup">18</span></a>, pineapple<a class="elsevierStyleCrossRef" href="#bib0395"><span class="elsevierStyleSup">37</span></a>, and also from the rhizosphere of <span class="elsevierStyleItalic">Coffea arabica</span><a class="elsevierStyleCrossRef" href="#bib0295"><span class="elsevierStyleSup">17</span></a>. More recently this bacterium was isolated from wetland rice<a class="elsevierStyleCrossRef" href="#bib0345"><span class="elsevierStyleSup">27</span></a>, carrot, raddish and beetroot<a class="elsevierStyleCrossRef" href="#bib0305"><span class="elsevierStyleSup">19</span></a> and was related to a dominant phylotype detected as endophyte from needles of <span class="elsevierStyleItalic">Pinus flexilis</span> and <span class="elsevierStyleItalic">Picea engelmannii</span> using 16S rRNA pyrosequencing<a class="elsevierStyleCrossRef" href="#bib0255"><span class="elsevierStyleSup">9</span></a>.</p><p id="par0010" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleItalic">G. diazotrophicus</span> is a nitrogen fixing bacterium that produces phytohormones, such as indol acetic acid<a class="elsevierStyleCrossRefs" href="#bib0285"><span class="elsevierStyleSup">15,32,33</span></a> and gibberellins<a class="elsevierStyleCrossRef" href="#bib0230"><span class="elsevierStyleSup">4</span></a>. This bacterial species is able to stimulate the growth of sugarcane after its inoculation<a class="elsevierStyleCrossRefs" href="#bib0335"><span class="elsevierStyleSup">25,35,36,40</span></a>. The principal mechanism for stimulating plant growth occurs through the auxinic via<a class="elsevierStyleCrossRefs" href="#bib0370"><span class="elsevierStyleSup">32,35</span></a> and depends on the sugarcane variety and the genotype of <span class="elsevierStyleItalic">G. diazotrophicus</span><a class="elsevierStyleCrossRef" href="#bib0335"><span class="elsevierStyleSup">25</span></a>.</p><p id="par0015" class="elsevierStylePara elsevierViewall">Isolation of <span class="elsevierStyleItalic">G. diazotrophicus</span> from sugarcane plants depends on the amount of nitrogen fertilization applied to the crops: the higher the level of nitrogen applied to the crops, the lower the probability to isolate <span class="elsevierStyleItalic">G. diazotrophicus</span><a class="elsevierStyleCrossRefs" href="#bib0280"><span class="elsevierStyleSup">14,28,31</span></a>. In addition, seven genotypes of <span class="elsevierStyleItalic">G. diazotrophicus</span> associated with sugarcane plants fertilized with low levels of nitrogen were identified in Brazilian fields and the diversity between them seemed to be affected by the high levels of nitrogen applied to sugarcane crops<a class="elsevierStyleCrossRef" href="#bib0245"><span class="elsevierStyleSup">7</span></a> while only one genotype was detected in sugarcane plants fertilized with high levels of nitrogen in Mexican fields. Moreover, <span class="elsevierStyleItalic">G. diazotrophicus</span> colonization is reduced in plants fertilized with high doses of nitrogen<a class="elsevierStyleCrossRefs" href="#bib0280"><span class="elsevierStyleSup">14,22,25</span></a>.</p><p id="par0020" class="elsevierStylePara elsevierViewall">The decrease in the population of <span class="elsevierStyleItalic">G. diazotrophicus</span> associated with sugarcane plants could be due to pleomorphic changes that occur while culturing bacteria in the presence of high nitrogen concentrations<a class="elsevierStyleCrossRef" href="#bib0355"><span class="elsevierStyleSup">29</span></a>. Additionally, it has been proposed that the decrease in the population of <span class="elsevierStyleItalic">G. diazotrophicus</span> associated with sugarcane could be due to physiological changes that the plant suffers in the presence of high nitrogen fertilization<a class="elsevierStyleCrossRefs" href="#bib0245"><span class="elsevierStyleSup">7,14</span></a>.</p><p id="par0025" class="elsevierStylePara elsevierViewall">Split root experiments have been developed to evaluate the systemic effect of a specific substance on plants, when this substance is supplied only on one end of the plant, while the other end could be used as control<a class="elsevierStyleCrossRef" href="#bib0420"><span class="elsevierStyleSup">42</span></a>, but also to evaluate the systemic effect on plant pathogens due to the action of the induced systemic resistance produced by rhizobacteria<a class="elsevierStyleCrossRef" href="#bib0215"><span class="elsevierStyleSup">1</span></a>.</p><p id="par0030" class="elsevierStylePara elsevierViewall">In this work we show a statistical analysis of the behavior of the population of <span class="elsevierStyleItalic">G. diazotrophicus</span> present inside the roots and in the rhizosphere using split root experiments, both at high or low nitrogen levels in the form of NH<span class="elsevierStyleInf">4</span>NO<span class="elsevierStyleInf">3</span>. In accordance with our results, the negative effect of nitrogen on the population of <span class="elsevierStyleItalic">G. diazotrophicus</span> is influenced by the plant.</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0030">Materials and methods</span><p id="par0035" class="elsevierStylePara elsevierViewall">Bacterial strains used for <span class="elsevierStyleItalic">in vitro</span> studies were <span class="elsevierStyleItalic">G. diazotrophicus</span> PAl 5<span class="elsevierStyleSup">T</span>, PAl 3 and UAP 5560, each one corresponding to a different genotype. PAl 5<span class="elsevierStyleSup">T</span> represents the predominant genotype isolated from different Brazilian sugarcane varieties (ET 3), PAl 3 corresponds to a rare genotype not frequently isolated (ET 5) and UAP 5560 is the predominant genotype isolated from different Mexican sugarcane varieties (ET1)<a class="elsevierStyleCrossRef" href="#bib0245"><span class="elsevierStyleSup">7</span></a>.</p><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0035">Experiment 1. <span class="elsevierStyleItalic">In vitro</span> assays</span><p id="par0040" class="elsevierStylePara elsevierViewall">The ability of <span class="elsevierStyleItalic">G. diazotrophicus</span> strains to grow at different nitrogen concentrations was explored in two <span class="elsevierStyleItalic">in vitro</span> conditions: one using LGI solid Plates<a class="elsevierStyleCrossRef" href="#bib0250"><span class="elsevierStyleSup">8</span></a> supplemented with different concentrations of NH<span class="elsevierStyleInf">4</span>NO<span class="elsevierStyleInf">3</span> and the other using semisolid LGI medium<a class="elsevierStyleCrossRef" href="#bib0250"><span class="elsevierStyleSup">8</span></a> supplemented with different concentrations of NH<span class="elsevierStyleInf">4</span>NO<span class="elsevierStyleInf">3</span> (Sigma–Aldrich A3795). In the first case, bacteria were grown until stationary phase (five independent growth tubes by strain) in MESMA liquid medium<a class="elsevierStyleCrossRef" href="#bib0280"><span class="elsevierStyleSup">14</span></a> for 48<span class="elsevierStyleHsp" style=""></span>h at 30<span class="elsevierStyleHsp" style=""></span>°C and 200<span class="elsevierStyleHsp" style=""></span>rpm. Cells were washed twice by centrifugation and resuspended in MgSO<span class="elsevierStyleInf">4</span> 10<span class="elsevierStyleHsp" style=""></span>mM (Sigma–Aldrich M7506). Each bacterial suspension was serially diluted (factor 1:10) and dilutions were placed in plates at different NH<span class="elsevierStyleInf">4</span>NO<span class="elsevierStyleInf">3</span> concentrations. Bacterial population was quantified by the DPSM method<a class="elsevierStyleCrossRef" href="#bib0260"><span class="elsevierStyleSup">10</span></a>. For the second condition, bacterial strains were grown until stationary phase (five independent growth tubes by strain), in 150<span class="elsevierStyleHsp" style=""></span>ml of MESMA liquid medium, for 48<span class="elsevierStyleHsp" style=""></span>h at 30<span class="elsevierStyleHsp" style=""></span>°C and 200<span class="elsevierStyleHsp" style=""></span>rpm. Each washed bacterial suspension was serially diluted (factor 1:10) and 100<span class="elsevierStyleHsp" style=""></span>μl of each dilution were placed in series of semisolid LGI tubes in triplicate<a class="elsevierStyleCrossRef" href="#bib0335"><span class="elsevierStyleSup">25</span></a> containing the amount of NH<span class="elsevierStyleInf">4</span>NO<span class="elsevierStyleInf">3</span> assessed (data observed in <a class="elsevierStyleCrossRefs" href="#tbl0005">Tables 1 and 2</a>). Quantification was carried out by the most probable number method (MPN) using a McCrady table with three replicate vials for each dilution.</p><elsevierMultimedia ident="tbl0005"></elsevierMultimedia><elsevierMultimedia ident="tbl0010"></elsevierMultimedia></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Experiment 2. Plant assays</span><p id="par0045" class="elsevierStylePara elsevierViewall">The effect of NH<span class="elsevierStyleInf">4</span>NO<span class="elsevierStyleInf">3</span> on bacterial association with sugarcane was assessed with the use of split root experiments. For this purpose, sugarcane plantlets variety MEX 57-473 were obtained by micropropagation as described previously<a class="elsevierStyleCrossRef" href="#bib0335"><span class="elsevierStyleSup">25</span></a>. Micropropagated plantlets were free from bacteria. Forty plantlets were inoculated with <span class="elsevierStyleItalic">G. diazotrophicus</span> PAl 5<span class="elsevierStyleSup">T</span> strain by immersion of roots for 1<span class="elsevierStyleHsp" style=""></span>h in the bacterial suspension (5<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>10<span class="elsevierStyleSup">8</span><span class="elsevierStyleHsp" style=""></span>UFC/ml). Forty plantlets were used as non-inoculated controls and were only immersed in distilled sterile water. To obtain the bacterial suspension, <span class="elsevierStyleItalic">G. diazotrophicus</span> PAl 5<span class="elsevierStyleSup">T</span> was grown in 10 flasks containing 35<span class="elsevierStyleHsp" style=""></span>ml of TESMA medium until stationary phase, cells were washed by centrifugation twice; after, the pellet was resuspended in 35<span class="elsevierStyleHsp" style=""></span>ml of MgSO<span class="elsevierStyleInf">4</span> (10<span class="elsevierStyleHsp" style=""></span>mM) and mixed to obtain 350<span class="elsevierStyleHsp" style=""></span>ml of bacterial suspension. Ten milliliters of this suspension were dispensed in tubes of 25<span class="elsevierStyleHsp" style=""></span>cm<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>2.5<span class="elsevierStyleHsp" style=""></span>cm and a single tube was used to inoculate each sugarcane plantlet.</p><p id="par0050" class="elsevierStylePara elsevierViewall">After inoculation, both inoculated and non-inoculated plantlets were placed in sterile split root systems (<a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>), each consisting of two pots joined by the upper part. Each pot had 500<span class="elsevierStyleHsp" style=""></span>ml capacity and contained sterile vermiculite. For each plant, half of the roots were placed in pot 1 and the other half in pot 2, approximately 3 roots in each pot. The split root systems were watered in both pots with enough water and low doses of NH<span class="elsevierStyleInf">4</span>NO<span class="elsevierStyleInf">3</span> (10<span class="elsevierStyleHsp" style=""></span>mg<span class="elsevierStyleHsp" style=""></span>N/plant equivalent to 0.35<span class="elsevierStyleHsp" style=""></span>mM) and mineral salts, according to Muñoz-Rojas and Caballero-Mellado<a class="elsevierStyleCrossRef" href="#bib0335"><span class="elsevierStyleSup">25</span></a>. The pots were covered with aluminum foil, and the zone where the plants emerged was protected with sterile cotton. The plantlets were maintained under greenhouse conditions with controlled temperature (26–30<span class="elsevierStyleHsp" style=""></span>°C) with a light/dark photoperiod of 16/8<span class="elsevierStyleHsp" style=""></span>h. Twenty days after inoculation (dpi) the bacterial number was determined for five plants both in their rhizospheres and inside the roots. At 20<span class="elsevierStyleHsp" style=""></span>dpi, 15 plants of each treatment (inoculated and non-inoculated) were supplemented with a high dose of NH<span class="elsevierStyleInf">4</span>NO<span class="elsevierStyleInf">3</span> in one of the pots (180<span class="elsevierStyleHsp" style=""></span>mg of N/plant equivalent to 6.3<span class="elsevierStyleHsp" style=""></span>mM) (<a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>) under sterile conditions. Plants were again maintained under greenhouse conditions and watered periodically with distilled sterile water. Rhizospheric and endophytic bacteria were recovered from the two pots for each plant system and the population was determined at 35, 55 and 100<span class="elsevierStyleHsp" style=""></span>dpi, equivalent to 15, 35 and 80 days post fertilization (dpf). Bacterial number was determined as described previously by the most probable number method using a McCrady table with three replicate vials for each dilution<a class="elsevierStyleCrossRef" href="#bib0335"><span class="elsevierStyleSup">25</span></a>. For this purpose, five independent plants or systems for each treatment (inoculated and non-inoculated) and treatments at different nitrogen levels were analyzed in each time. The plants were carefully removed from the vermiculite, each side of the root system was placed in an independent sterile container, and the root was shaken to discard vermiculite that was not adhered. The resultant root-vermiculite was submerged in enough sterile water (covering the root) and vortexed to maximal velocity for 40<span class="elsevierStyleHsp" style=""></span>s: the suspension was used to perform rhizospheric bacterial quantification. Vermiculite weight was obtained by drying samples without the roots. Furthermore, for endophytic bacteria quantification, each root was placed in a sterile bottle, washed to discard vermiculite and disinfected with 70% ethanol for 30<span class="elsevierStyleHsp" style=""></span>s. Then the roots were rinsed with distilled water and the surface was sterilized with a 1.5<span class="elsevierStyleHsp" style=""></span>% sodium hypochlorite solution (Sigma–Aldrich 425044) for 20<span class="elsevierStyleHsp" style=""></span>min. Later, the roots were rinsed six times with sterile distilled water under sterile conditions. Fresh roots were macerated in water in 1:10 (w/v) proportion. Each sample used for bacterial quantification was diluted (factor 1:10) until dilution 1:1,000,000 and after, 100<span class="elsevierStyleHsp" style=""></span>μl of each dilution were placed in a tube containing semisolid LGI medium (without nitrogen for the growth of diazotrophic bacteria), three tubes were dispensed. After bacterial growth, positive and negative tubes were registered; the presence of a yellow pellicle at the top of the LGI semisolid medium, was recorded as a positive tube<a class="elsevierStyleCrossRefs" href="#bib0250"><span class="elsevierStyleSup">8,25,27</span></a>. In addition, acidification of the media was observed with color changes from green to yellow, which is characteristic of <span class="elsevierStyleItalic">G. diazotrophic</span> growth; furthermore, after 7 days the yellow color was absorbed by bacteria<a class="elsevierStyleCrossRef" href="#bib0250"><span class="elsevierStyleSup">8</span></a>. The estimation of the bacterial number of each sample was carried out by the most probable number method using a McCrady table with three replicate vials for each dilution (with a confidence limit of 95<span class="elsevierStyleHsp" style=""></span>%). For rhizospheric bacteria quantification, the value obtained from the McCrady table was multiplied per 10 and the dilution factor was considered in order to obtain the number of bacterial cells/ml of liquid suspension (sample). This value was multiplied per the initial water volume where the root was vortexed and divided by the amount in grams (g) of vermiculite (V) present in the suspension (considered as the adhered soil to the roots)<a class="elsevierStyleCrossRef" href="#bib0335"><span class="elsevierStyleSup">25</span></a>. The final quantified values obtained were stated as the number of cells/g<span class="elsevierStyleHsp" style=""></span>V. To assess endophytic bacteria quantification, the value obtained from the McCrady table, was multiplied by 10 and the dilution factor was considered in order to obtain the number of bacterial cells/ml of liquid suspension (sample); later this value was multiplied by 10 due to initial dilution (w/v) of fresh roots for each side of the root systems. Each bacterial number value obtained was transformed to logarithmic form for statistical purposes. All treatments explored in the present work had five bacterial number values which were used to calculate the standard deviation and the statistical analysis. To ensure that quantified bacteria corresponded to <span class="elsevierStyleItalic">G. diazotrophicus</span> PAl 5<span class="elsevierStyleSup">T</span>, its ability to inhibit a sensitive strain (PAl 3) was checked and electrophoretic mobility patterns of 12 metabolic enzymes were compared with a reference strain<a class="elsevierStyleCrossRefs" href="#bib0240"><span class="elsevierStyleSup">6,7,17</span></a>. To achieve this goal, some positive tubes of semisolid LGI media with characteristic growth of <span class="elsevierStyleItalic">G. diazortrophicus</span>, were used to streak the bacteria pellicle on solid plates of LGI media and selected colonies were assessed for their ability to inhibit a sensitive strain by the double agar layer method<a class="elsevierStyleCrossRefs" href="#bib0310"><span class="elsevierStyleSup">20,26</span></a>. All selected isolates were able to inhibit the growth of <span class="elsevierStyleItalic">G. diazotrophicus</span> PAl 3 (an antagonistic characteristic of strain PAl 5<span class="elsevierStyleSup">T</span>), and they also had the same pattern of electrophoretic mobility of the metabolic enzymes explored, as the reference strain <span class="elsevierStyleItalic">G. diazotrophicus</span> PAl 5<span class="elsevierStyleSup">T</span> (data not shown).</p><elsevierMultimedia ident="fig0005"></elsevierMultimedia></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0045">Statistical analysis</span><p id="par0055" class="elsevierStylePara elsevierViewall">Data corresponding to each treatment for the different experiments were statistically compared in pairs with the <span class="elsevierStyleItalic">t</span>-Student test, using Sigma Plot of the Jandel Scientific Software. Results of comparison were used to generate a matrix of differences and similarities between treatments for assignment of letters (data not shown).</p></span></span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0050">Results</span><span id="sec0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0055">Effect of NH<span class="elsevierStyleInf">4</span>NO<span class="elsevierStyleInf">3</span> on <span class="elsevierStyleItalic">G. diazotrophicus</span> strains <span class="elsevierStyleItalic">in vitro</span></span><p id="par0060" class="elsevierStylePara elsevierViewall">The three strains of <span class="elsevierStyleItalic">G. diazotrophicus</span> explored (PAl 5<span class="elsevierStyleSup">T</span>, PAl 3 and UAP 5560) were able to grow in solid media until 22.4<span class="elsevierStyleHsp" style=""></span>mM of NH<span class="elsevierStyleInf">4</span>NO<span class="elsevierStyleInf">3</span> (<a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a>), which is a high nitrogen level and corresponds to 640<span class="elsevierStyleHsp" style=""></span>mg of N/plant. The statistical analysis showed no differences between bacteria grown in the presence of 22.4<span class="elsevierStyleHsp" style=""></span>mM of NH<span class="elsevierStyleInf">4</span>NO<span class="elsevierStyleInf">3</span> in comparison with normal LGI. <span class="elsevierStyleItalic">G. diazotrophicus</span> UAP 5560 tolerated a concentration of 89.6<span class="elsevierStyleHsp" style=""></span>mM in solid LGI, but the bacterial number was reduced from 10<span class="elsevierStyleSup">8</span> to 10<span class="elsevierStyleSup">5</span><span class="elsevierStyleHsp" style=""></span>CFU/ml (<a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a>). In semisolid LGI medium it was also observed that the three strains of <span class="elsevierStyleItalic">G. diazotrophicus</span> explored were able to grow until 22.4<span class="elsevierStyleHsp" style=""></span>mM of NH<span class="elsevierStyleInf">4</span>NO<span class="elsevierStyleInf">3</span> (<a class="elsevierStyleCrossRef" href="#tbl0010">Table 2</a>); the growth of the strains was affected at 44.8<span class="elsevierStyleHsp" style=""></span>mM in the order of 10<span class="elsevierStyleSup">2</span><span class="elsevierStyleHsp" style=""></span>cells/ml and the growth of UAP 5560 also tolerated better than others the presence of high levels of NH<span class="elsevierStyleInf">4</span>NO<span class="elsevierStyleInf">3</span> (89.6<span class="elsevierStyleHsp" style=""></span>mM); however, under this condition bacterial numbers diminished in the order of 10<span class="elsevierStyleSup">1</span><span class="elsevierStyleHsp" style=""></span>cells/ml.</p></span><span id="sec0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0060">Effect of NH<span class="elsevierStyleInf">4</span>NO<span class="elsevierStyleInf">3</span> on the colonization of sugarcane testing <span class="elsevierStyleItalic">G. diazotrophicus</span> PAl 5<span class="elsevierStyleSup">T</span> in split root experiments</span><p id="par0065" class="elsevierStylePara elsevierViewall">The analysis of the population of <span class="elsevierStyleItalic">G. diazotrophicus</span> strain PAl 5<span class="elsevierStyleSup">T</span> was carried out using the sugarcane variety MEX-57473 with split root experiments both in rhizospheres as endophytically. Bacteria were not detected in non-inoculated control plants. Rhizospheric population was similar in both sides of the root systems at 20<span class="elsevierStyleHsp" style=""></span>dpi, about 1<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>10<span class="elsevierStyleSup">7</span><span class="elsevierStyleHsp" style=""></span>cells/g vermiculite (V) when basal levels of NH<span class="elsevierStyleInf">4</span>NO<span class="elsevierStyleInf">3</span> were present. No statistical differences were observed at 35<span class="elsevierStyleHsp" style=""></span>dpi (15<span class="elsevierStyleHsp" style=""></span>dpf) in the rhizospheric population between both sides of the system, neither between treatments fertilized with high levels of NH<span class="elsevierStyleInf">4</span>NO<span class="elsevierStyleInf">3</span> in comparison to those fertilized with basal levels. Furthermore, there were no differences when comparing the same treatments 20<span class="elsevierStyleHsp" style=""></span>dpi (<a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>). In accordance with our data, bacterial rhizospheric population decreased at 55<span class="elsevierStyleHsp" style=""></span>dpi (35<span class="elsevierStyleHsp" style=""></span>dpf) in plants fertilized with high levels of NH<span class="elsevierStyleInf">4</span>NO<span class="elsevierStyleInf">3</span> when compared to the initial population observed in plants at 20<span class="elsevierStyleHsp" style=""></span>dpi. However, no differences were observed between the bacterial numbers recovered from each side of the split root systems neither for the plants fertilized with high levels of NH<span class="elsevierStyleInf">4</span>NO<span class="elsevierStyleInf">3</span> nor for the plants treated with basal levels. Interestingly, at 100<span class="elsevierStyleHsp" style=""></span>dpi (80<span class="elsevierStyleHsp" style=""></span>dpf), fertilized plants with high levels of nitrogen had differences in rhizospheric population, detecting low bacterial numbers (around 1<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>10<span class="elsevierStyleSup">4</span><span class="elsevierStyleHsp" style=""></span>cells/g<span class="elsevierStyleHsp" style=""></span>V) in the pot fertilized with basal nitrogen in comparison with the bacterial numbers detected in the other pot of the system and also when compared to the bacterial numbers of both pots from plants fertilized with low levels of nitrogen, in the order of 10<span class="elsevierStyleSup">5</span><span class="elsevierStyleHsp" style=""></span>cells/g<span class="elsevierStyleHsp" style=""></span>V (<a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>).</p><elsevierMultimedia ident="fig0010"></elsevierMultimedia><p id="par0070" class="elsevierStylePara elsevierViewall">The effect of nitrogen on the endophytic population of <span class="elsevierStyleItalic">G. diazotrophicus</span> PAl 5<span class="elsevierStyleSup">T</span> was more evident (<a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>). Inside the roots, the population of <span class="elsevierStyleItalic">G. diazotrophicus</span> was detected in the order of 10<span class="elsevierStyleSup">3</span><span class="elsevierStyleHsp" style=""></span>cells/g of root at 20<span class="elsevierStyleHsp" style=""></span>dpi. After the addition of high levels of NH<span class="elsevierStyleInf">4</span>NO<span class="elsevierStyleInf">3</span> in one pot of the split root systems corresponding to the treated plants containing high levels of nitrogen, no changes were observed in the bacterial population measured 35<span class="elsevierStyleHsp" style=""></span>dpi (15<span class="elsevierStyleHsp" style=""></span>dpf) when comparing pots of the same system or systems with basal nitrogen. However, 55<span class="elsevierStyleHsp" style=""></span>dpi (35<span class="elsevierStyleHsp" style=""></span>dpf), the bacterial population of roots from pots with basal nitrogen showed a decrease (around 50<span class="elsevierStyleHsp" style=""></span>cells/g of root) in comparison with the bacterial population of roots from pots added with high level of NH<span class="elsevierStyleInf">4</span>NO<span class="elsevierStyleInf">3</span> (around 6<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>10<span class="elsevierStyleSup">2</span><span class="elsevierStyleHsp" style=""></span>cells/g of root) of the same plant system, and also when compared to the bacterial numbers observed in roots from plants fertilized with low levels of nitrogen (<a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>). Similar results were observed 100<span class="elsevierStyleHsp" style=""></span>dpi (80<span class="elsevierStyleHsp" style=""></span>dpf) in plants fertilized with high levels of nitrogen. In this case, the population of <span class="elsevierStyleItalic">G. diazotrophicus</span> was not detected inside the roots from pots fertilized with basal levels of NH<span class="elsevierStyleInf">4</span>NO<span class="elsevierStyleInf">3</span>, but bacteria were detected in roots from pots fertilized with high levels of nitrogen (around 10<span class="elsevierStyleHsp" style=""></span>cells/g of root) of the same split root system. These fertilized pots are statistically similar to the bacterial numbers detected in pots from plants fertilized with basal levels of nitrogen (around 40<span class="elsevierStyleHsp" style=""></span>cells/g of root) (<a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>).</p><elsevierMultimedia ident="fig0015"></elsevierMultimedia></span></span><span id="sec0045" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0065">Discussion</span><p id="par0075" class="elsevierStylePara elsevierViewall">Plants require nitrogen for their development. The addition of this component produces key molecules that increase plant growth or the accumulation of metabolic compounds<a class="elsevierStyleCrossRefs" href="#bib0220"><span class="elsevierStyleSup">2,5,11</span></a>. Rhizospheric bacteria population could be modified in response to nitrogen fertilization. It has been shown that ammonium nutrition increased root colonization by <span class="elsevierStyleItalic">Pseudomonas fluorescens</span> 2-79RLI at the root tip and in the lateral root zone when the pH of the nutrient solution was allowed to change according to the nitrogen form provided<a class="elsevierStyleCrossRef" href="#bib0315"><span class="elsevierStyleSup">21</span></a>. In contrast, the population of <span class="elsevierStyleItalic">G. diazotrophicus</span> associated with sugar cane diminishes after nitrogen fertilization<a class="elsevierStyleCrossRefs" href="#bib0280"><span class="elsevierStyleSup">14,25</span></a>, regardless of the form of nitrogen supplemented<a class="elsevierStyleCrossRef" href="#bib0320"><span class="elsevierStyleSup">22</span></a>. This decrease could be explained by pleomorphic changes observed in <span class="elsevierStyleItalic">G. diazotrophic</span> cells when they grow in the presence of high levels of NH<span class="elsevierStyleInf">4</span>NO<span class="elsevierStyleInf">3</span> (25<span class="elsevierStyleHsp" style=""></span>mM)<a class="elsevierStyleCrossRef" href="#bib0355"><span class="elsevierStyleSup">29</span></a>. However, in accordance with this study, bacterial cells survive under this nitrogen concentration in culture media. On the other hand, it has also been suggested that the reduction in the number of bacterial cells associated with sugarcane occurs by stimulating changes in plant physiology after nitrogen fertilization<a class="elsevierStyleCrossRefs" href="#bib0280"><span class="elsevierStyleSup">14,31</span></a>; however, this hypothesis has not been confirmed yet. In this work, the survival of <span class="elsevierStyleItalic">G. diazotrophicus</span> was influenced by 44.8<span class="elsevierStyleHsp" style=""></span>mM of NH<span class="elsevierStyleInf">4</span>NO<span class="elsevierStyleInf">3</span> (equivalent to 640<span class="elsevierStyleHsp" style=""></span>mg<span class="elsevierStyleHsp" style=""></span>N/plant) irrespective of the genotype of <span class="elsevierStyleItalic">G. diazotrophicus</span> used (<span class="elsevierStyleItalic">in vitro</span> experiments). However, strain UAP5560 was more tolerant to nitrogen concentrations, showing survival with a decreased number of cells. Nitrogen concentration affecting bacterial survival (44.8<span class="elsevierStyleHsp" style=""></span>mM) was higher than the level of nitrogen that affects the population associated with sugarcane (6.3<span class="elsevierStyleHsp" style=""></span>mM equivalents to 180<span class="elsevierStyleHsp" style=""></span>mg<span class="elsevierStyleHsp" style=""></span>N/plant). Based on the results presented in this work and data previously published<a class="elsevierStyleCrossRef" href="#bib0335"><span class="elsevierStyleSup">25</span></a>, it was reasonable to propose that nitrogen fertilization induces changes in the physiology of plants that prevent <span class="elsevierStyleItalic">G. diazotrophicus</span> colonization. To verify this hypothesis, we carried out split root experiments to evaluate the effect of high levels of NH<span class="elsevierStyleInf">4</span>NO<span class="elsevierStyleInf">3</span> when applied on one side of system, while the population of <span class="elsevierStyleItalic">G. diazotrophicus</span> was measured on the other side. For this experiment, strain UAP5560 was applied to the sugarcane variety MEX 57-473, given that this interaction is very stable according to previous data<a class="elsevierStyleCrossRef" href="#bib0335"><span class="elsevierStyleSup">25</span></a>. As we had expected, <span class="elsevierStyleItalic">G. diazotrophicus</span> population diminished in the plants fertilized with high levels of NH<span class="elsevierStyleInf">4</span>NO<span class="elsevierStyleInf">3</span>. This decrease was more evident inside the roots exposed to basal levels of nitrogen, in comparison with the roots fertilized with high nitrogen levels, both in the same plant system. Moreover, this decrease in bacterial population was also evident in plant systems fertilized with low levels in both pots. These observations suggest that the effect of NH<span class="elsevierStyleInf">4</span>NO<span class="elsevierStyleInf">3</span> on the population of <span class="elsevierStyleItalic">G. diazotrophicus</span> occurs through systemic changes in the plant, affecting the establishment of <span class="elsevierStyleItalic">G. diazotrophicus</span> in the roots on the other side. This observation was more evident 100<span class="elsevierStyleHsp" style=""></span>dpi or 80<span class="elsevierStyleHsp" style=""></span>dpf, when a decrease in the population of <span class="elsevierStyleItalic">G. diazotrophicus</span> was observed, due to the age of the plant<a class="elsevierStyleCrossRef" href="#bib0335"><span class="elsevierStyleSup">25</span></a>. Supplementing high levels of NH<span class="elsevierStyleInf">4</span>NO<span class="elsevierStyleInf">3</span> to sugarcane plants induce a decrease in the sucrose content in stalks in early growth<a class="elsevierStyleCrossRef" href="#bib0330"><span class="elsevierStyleSup">24</span></a> and sucrose has been proposed as the principal carbon source to <span class="elsevierStyleItalic">G. diazotrophicus</span><a class="elsevierStyleCrossRef" href="#bib0270"><span class="elsevierStyleSup">12</span></a>. Furthermore, NH<span class="elsevierStyleInf">4</span>NO<span class="elsevierStyleInf">3</span> produces changes in the components of the apoplastic sap of sugarcane plants, including aminoacids, proteins, and sugars<a class="elsevierStyleCrossRef" href="#bib0400"><span class="elsevierStyleSup">38</span></a>. Those changes could increase during plant growth and could be related to bacterial diminution. Moreover, exopolysaccharide production is required for biofilm formation and plant colonization by <span class="elsevierStyleItalic">G. diazotrophicus</span><a class="elsevierStyleCrossRef" href="#bib0325"><span class="elsevierStyleSup">23</span></a>, and the changes occurring in the plant could inhibit biofilm formation and bacteria establishment. Finally, some chemical compounds are responsible for inducing a resistance to disease in plants<a class="elsevierStyleCrossRef" href="#bib0360"><span class="elsevierStyleSup">30</span></a>, but could also induce a systemic resistance (ISR) similar to that produced by rhizobacteria<a class="elsevierStyleCrossRefs" href="#bib0405"><span class="elsevierStyleSup">39,41</span></a>, making it conceivable that NH<span class="elsevierStyleInf">4</span>NO<span class="elsevierStyleInf">3</span> could elicit ISR and prevent the colonization of <span class="elsevierStyleItalic">G. diazotrophicus</span> in sugarcane<a class="elsevierStyleCrossRef" href="#bib0290"><span class="elsevierStyleSup">16</span></a>. The nitrogen effect over the population of <span class="elsevierStyleItalic">G. diazotrophicus</span> is more evident inside the plant than in the rhizosphere (<a class="elsevierStyleCrossRefs" href="#fig0010">Figs. 2 and 3</a>). This could be due to physiological changes occurring inside the plant and directly affecting the bacterial population; however, in the rhizosphere, firstly the metabolites have to be exported to provoke changes in the environment.</p><p id="par0080" class="elsevierStylePara elsevierViewall">Taken together, the results in this study show that the decrease of <span class="elsevierStyleItalic">G. diazotrophicus</span> associated with sugarcane occurs due to changes in the physiology of the plant rather than by the direct effect that NH<span class="elsevierStyleInf">4</span>NO<span class="elsevierStyleInf">3</span> could exert on bacterial cells.</p></span><span id="sec0050" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0070">Ethical disclosures</span><span id="sec0055" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0075">Protection of human and animal subjects</span><p id="par0085" class="elsevierStylePara elsevierViewall">The authors declare that no experiments were performed on humans or animals for this study.</p></span><span id="sec0060" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0080">Confidentiality of data</span><p id="par0090" class="elsevierStylePara elsevierViewall">The authors declare that no patient data appear in this article.</p></span><span id="sec0065" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0085">Right to privacy and informed consent</span><p id="par0095" class="elsevierStylePara elsevierViewall">The authors declare that no patient data appear in this article.</p></span></span><span id="sec0070" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0090">Conflict of interest</span><p id="par0100" class="elsevierStylePara elsevierViewall">The authors declare that they have no conflicts of interest.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:12 [ 0 => array:3 [ "identificador" => "xres602693" "titulo" => "Abstract" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0005" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec616747" "titulo" => "Keywords" ] 2 => array:3 [ "identificador" => "xres602692" "titulo" => "Resumen" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0010" ] ] ] 3 => array:2 [ "identificador" => "xpalclavsec616748" "titulo" => "Palabras clave" ] 4 => array:2 [ "identificador" => "sec0005" "titulo" => "Introduction" ] 5 => array:3 [ "identificador" => "sec0010" "titulo" => "Materials and methods" "secciones" => array:3 [ 0 => array:2 [ "identificador" => "sec0015" "titulo" => "Experiment 1. In vitro assays" ] 1 => array:2 [ "identificador" => "sec0020" "titulo" => "Experiment 2. Plant assays" ] 2 => array:2 [ "identificador" => "sec0025" "titulo" => "Statistical analysis" ] ] ] 6 => array:3 [ "identificador" => "sec0030" "titulo" => "Results" "secciones" => array:2 [ 0 => array:2 [ "identificador" => "sec0035" "titulo" => "Effect of NHNO on G. diazotrophicus strains in vitro" ] 1 => array:2 [ "identificador" => "sec0040" "titulo" => "Effect of NHNO on the colonization of sugarcane testing G. diazotrophicus PAl 5 in split root experiments" ] ] ] 7 => array:2 [ "identificador" => "sec0045" "titulo" => "Discussion" ] 8 => array:3 [ "identificador" => "sec0050" "titulo" => "Ethical disclosures" "secciones" => array:3 [ 0 => array:2 [ "identificador" => "sec0055" "titulo" => "Protection of human and animal subjects" ] 1 => array:2 [ "identificador" => "sec0060" "titulo" => "Confidentiality of data" ] 2 => array:2 [ "identificador" => "sec0065" "titulo" => "Right to privacy and informed consent" ] ] ] 9 => array:2 [ "identificador" => "sec0070" "titulo" => "Conflict of interest" ] 10 => array:2 [ "identificador" => "xack202831" "titulo" => "Acknowledgments" ] 11 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2014-10-16" "fechaAceptado" => "2015-09-29" "PalabrasClave" => array:2 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec616747" "palabras" => array:5 [ 0 => "Nitrogen fertilization" 1 => "Bacterial population" 2 => "<span class="elsevierStyleItalic">G. diazotrophicus</span>" 3 => "Sugarcane" 4 => "Plant growth promoting bacteria" ] ] ] "es" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec616748" "palabras" => array:5 [ 0 => "Fertilización nitrogenada" 1 => "Población bacteriana" 2 => "<span class="elsevierStyleItalic">G. diazotrophicus</span>" 3 => "Caña de azúcar" 4 => "Bacterias promotoras del crecimiento de plantas" ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "en" => array:2 [ "titulo" => "Abstract" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">It has been established that a decrease in the population of <span class="elsevierStyleItalic">Gluconacetobacter diazotrophicus</span> associated with sugarcane occurs after nitrogen fertilization. This fact could be due to a direct influence of NH<span class="elsevierStyleInf">4</span>NO<span class="elsevierStyleInf">3</span> on bacterial cells or to changes in plant physiology after fertilizer addition, affecting bacterial establishment. In this work, we observed that survival of <span class="elsevierStyleItalic">G. diazotrophicus</span> was directly influenced when 44.8<span class="elsevierStyleHsp" style=""></span>mM of NH<span class="elsevierStyleInf">4</span>NO<span class="elsevierStyleInf">3</span> (640<span class="elsevierStyleHsp" style=""></span>mg<span class="elsevierStyleHsp" style=""></span>N/plant) was used for <span class="elsevierStyleItalic">in vitro</span> experiments. Furthermore, micropropagated sugarcane plantlets were inoculated with <span class="elsevierStyleItalic">G. diazotrophicus</span> and used for split root experiments, in which both ends of the system were fertilized with a basal level of NH<span class="elsevierStyleInf">4</span>NO<span class="elsevierStyleInf">3</span> (0.35<span class="elsevierStyleHsp" style=""></span>mM; 10<span class="elsevierStyleHsp" style=""></span>mg<span class="elsevierStyleHsp" style=""></span>N/plant). Twenty days post inoculation (dpi) one half of the plants were fertilized with a high dose of NH<span class="elsevierStyleInf">4</span>NO<span class="elsevierStyleInf">3</span> (6.3<span class="elsevierStyleHsp" style=""></span>mM; 180<span class="elsevierStyleHsp" style=""></span>mg<span class="elsevierStyleHsp" style=""></span>N/plant) on one end of the system. This nitrogen level was lower than that directly affecting <span class="elsevierStyleItalic">G. diazotrophicus</span> cells; however, it caused a decrease in the bacterial population in comparison with control plants fertilized with basal nitrogen levels. The decrease in the population of <span class="elsevierStyleItalic">G. diazotrophicus</span> was higher in pots fertilized with a basal nitrogen level when compared with the corresponding end supplied with high levels of NH<span class="elsevierStyleInf">4</span>NO<span class="elsevierStyleInf">3</span> (100<span class="elsevierStyleHsp" style=""></span>dpi; 80 days post fertilization) of the same plant system. These observations suggest that the high nitrogen level added to the plants induce systemic physiological changes that affect the establishment of <span class="elsevierStyleItalic">G. diazotrophicus</span>.</p></span>" ] "es" => array:2 [ "titulo" => "Resumen" "resumen" => "<span id="abst0010" class="elsevierStyleSection elsevierViewall"><p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">La población de <span class="elsevierStyleItalic">Gluconacetobacter diazotrophicus</span> asociada a la caña de azúcar disminuye después de la fertilización nitrogenada, lo cual podría ocurrir por la influencia directa del NH<span class="elsevierStyleInf">4</span>NO<span class="elsevierStyleInf">3</span> sobre la supervivencia bacteriana, o por cambios en la fisiología de las plantas, que impiden el establecimiento bacteriano. En el presente trabajo se observó que en experimentos <span class="elsevierStyleItalic">in vitro</span> la supervivencia de <span class="elsevierStyleItalic">G. diazotrophicus</span> fue influenciada por 44,8<span class="elsevierStyleHsp" style=""></span>mM de NH<span class="elsevierStyleInf">4</span>NO<span class="elsevierStyleInf">3</span> (640<span class="elsevierStyleHsp" style=""></span>mg<span class="elsevierStyleHsp" style=""></span>N/plant). Además, <span class="elsevierStyleItalic">G. diazotrophicus</span> fue inoculado en plántulas micropropagadas de caña de azúcar, que fueron usadas para realizar experimentos de raíz dividida, en las que ambos extremos de los sistemas se fertilizaron con un nivel basal de NH<span class="elsevierStyleInf">4</span>NO<span class="elsevierStyleInf">3</span> (0,35<span class="elsevierStyleHsp" style=""></span>mM; 10<span class="elsevierStyleHsp" style=""></span>mg<span class="elsevierStyleHsp" style=""></span>N/planta). A los 20 días posteriores a la inoculación (dpi), la mitad de plantas fueron fertilizadas en uno de sus extremos con una dosis elevada de NH<span class="elsevierStyleInf">4</span>NO<span class="elsevierStyleInf">3</span> (6,3<span class="elsevierStyleHsp" style=""></span>mM; 180<span class="elsevierStyleHsp" style=""></span>mg of N/plant). Este nivel fue menor al que afectó directamente a las células de <span class="elsevierStyleItalic">G. diazotrophicus</span>; sin embargo, provocó una disminución de la población bacteriana en comparación con plantas testigo fertilizadas con niveles basales de nitrógeno. La disminución de la población fue mayor para raíces fertilizadas con un nivel basal de nitrógeno en comparación con las raíces fertilizadas con altos niveles del mismo sistema de plantas (100<span class="elsevierStyleHsp" style=""></span>dpi; 80<span class="elsevierStyleHsp" style=""></span>días posfertilización). Estas observaciones indican que el alto nivel de nitrógeno añadido a las plantas inducen cambios fisiológicos sistémicos que afectan el establecimiento de <span class="elsevierStyleItalic">G. diazotrophicus</span>.</p></span>" ] ] "multimedia" => array:5 [ 0 => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 870 "Ancho" => 1817 "Tamanyo" => 250023 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Scheme representing the system used for the split root experiments (A). After <span class="elsevierStyleItalic">G. diazotrophicus</span> inoculation, the root of each plant was divided and placed in 2 pots. At 20<span class="elsevierStyleHsp" style=""></span>dpi half of the plants were supplemented with high doses of NH<span class="elsevierStyleInf">4</span>NO<span class="elsevierStyleInf">3</span> on one side of the system. Images from plants in the split root experiment (B), in the greenhouse (C) and one plant at 35<span class="elsevierStyleHsp" style=""></span>dpi before the bacterial count (D).</p>" ] ] 1 => array:7 [ "identificador" => "fig0010" "etiqueta" => "Figure 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 3357 "Ancho" => 2389 "Tamanyo" => 262364 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">Rhizospheric bacterial populations in split root experiments. Each value represents the media of data for five independent plants (Log of cell number/g<span class="elsevierStyleHsp" style=""></span>V) with the respective standard deviation. Mean values with equal letters are not statistically different at <span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span>≤<span class="elsevierStyleHsp" style=""></span>0.05, using the <span class="elsevierStyleItalic">t</span>-Student test. dpi: days post inoculation; dpf: days post fertilization; N+: addition of 180<span class="elsevierStyleHsp" style=""></span>mg of nitrogen/plant.</p>" ] ] 2 => array:7 [ "identificador" => "fig0015" "etiqueta" => "Figure 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 3411 "Ancho" => 2383 "Tamanyo" => 255487 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">Bacterial population inside roots in split root experiments. Each value represents the media of data for five independent plants (Log of cell number/g root) with the respective standard deviation. Mean values with equal letters are not statistically different at <span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span>≤<span class="elsevierStyleHsp" style=""></span>0.05, using the <span class="elsevierStyleItalic">t</span>-Student test. dpi: days post inoculation; dpf: days post fertilization; ND: not detected; N+: addition of 180<span class="elsevierStyleHsp" style=""></span>mg of nitrogen/plant.</p>" ] ] 3 => array:7 [ "identificador" => "tbl0005" "etiqueta" => "Table 1" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "tabla" => array:2 [ "leyenda" => "<p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">Values correspond to the media of five independent samples determined by the DPSM method. Mean values with equal letters are not statistically different at <span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span>≤<span class="elsevierStyleHsp" style=""></span>0.05, using the <span class="elsevierStyleItalic">t</span>-Student test. SD: standard deviation.</p>" "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td-with-role" title="table-head ; entry_with_role_rowhead " align="left" valign="top" scope="col">[NH<span class="elsevierStyleInf">4</span>NO<span class="elsevierStyleInf">3</span>] mM \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " colspan="3" align="center" valign="top" scope="col" style="border-bottom: 2px solid black">Log CFU/ml (SD)</th></tr><tr title="table-row"><th class="td" title="table-head " align="" valign="top" scope="col" style="border-bottom: 2px solid black"> \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">PAl 5T \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">PAl 3 \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">UAP 5560 \t\t\t\t\t\t\n \t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="table-entry " align="char" valign="top">0 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">8.43 (±0.63)<span class="elsevierStyleBold">A</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">9.00 (±0.62)<span class="elsevierStyleBold">A</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">9.09 (±0.30)<span class="elsevierStyleBold">A</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="char" valign="top">0.35 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">8.79 (±0.17)<span class="elsevierStyleBold">A</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">9.09 (±0.35)<span class="elsevierStyleBold">A</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">9.16 (±0.15)<span class="elsevierStyleBold">A</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="char" valign="top">0.7 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">9.05 (±0.31)<span class="elsevierStyleBold">A</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">9.09 (±0.36)<span class="elsevierStyleBold">A</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">8.79 (±0.17)<span class="elsevierStyleBold">A</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="char" valign="top">1.4 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">9.31 (±0.15)<span class="elsevierStyleBold">A</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">9.44 (±0.08)<span class="elsevierStyleBold">A</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">8.89 (±0.17)<span class="elsevierStyleBold">A</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="char" valign="top">2.8 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">9.01 (±0.27)<span class="elsevierStyleBold">A</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">9.20 (±0.17)<span class="elsevierStyleBold">A</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">9.16 (±0.27)<span class="elsevierStyleBold">A</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="char" valign="top">5.6 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">8.95 (±0.24)<span class="elsevierStyleBold">A</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">9.31 (±0.28)<span class="elsevierStyleBold">A</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">8.95 (±0.24)<span class="elsevierStyleBold">A</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="char" valign="top">11.2 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">9.29 (±0.35)<span class="elsevierStyleBold">A</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">9.33 (±0.05)<span class="elsevierStyleBold">A</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">9.05 (±0.35)<span class="elsevierStyleBold">A</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="char" valign="top">22.4 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">8.72 (±0.30)<span class="elsevierStyleBold">A</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">9.41 (±0.12)<span class="elsevierStyleBold">A</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">8.85 (±0.11)<span class="elsevierStyleBold">A</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="char" valign="top">44.8 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0 <span class="elsevierStyleBold">C</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0 <span class="elsevierStyleBold">C</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">5.02 (±0.25)<span class="elsevierStyleBold">B</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="char" valign="top">89.6 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0 <span class="elsevierStyleBold">C</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0 <span class="elsevierStyleBold">C</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">5.07 (±0.05)<span class="elsevierStyleBold">B</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="char" valign="top">179.2 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0 <span class="elsevierStyleBold">C</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0 <span class="elsevierStyleBold">C</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0 <span class="elsevierStyleBold">C</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab986775.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">Bacterial number of three strains of <span class="elsevierStyleItalic">G. diazotrophicus</span> grown in solid LGI media supplemented with different NH<span class="elsevierStyleInf">4</span>NO<span class="elsevierStyleInf">3</span> concentrations</p>" ] ] 4 => array:7 [ "identificador" => "tbl0010" "etiqueta" => "Table 2" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "tabla" => array:2 [ "leyenda" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">Values correspond to the media of five independent samples determined by the MPN method using a McCrady table with three replicate vials for all dilutions of each sample. Mean values with equal letters are not statistically different at <span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span>≤<span class="elsevierStyleHsp" style=""></span>0.05, using the <span class="elsevierStyleItalic">t</span>-Student test. SD: standard deviation.</p>" "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td-with-role" title="table-head ; entry_with_role_rowhead " align="left" valign="top" scope="col">[NH<span class="elsevierStyleInf">4</span>NO<span class="elsevierStyleInf">3</span>] mM \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " colspan="3" align="center" valign="top" scope="col" style="border-bottom: 2px solid black">Log of cell number/ml (SD)</th></tr><tr title="table-row"><th class="td" title="table-head " align="" valign="top" scope="col" style="border-bottom: 2px solid black"> \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">PAl 5<span class="elsevierStyleSup">T</span> \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">PAl 3 \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">UAP 5560 \t\t\t\t\t\t\n \t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="table-entry " align="char" valign="top">0 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">8.57 (±0.43)<span class="elsevierStyleBold">A</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">8.51 (±0.43)<span class="elsevierStyleBold">A</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">8.49 (±0.30)<span class="elsevierStyleBold">A</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="char" valign="top">0.35 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">8.43 (±0.37)<span class="elsevierStyleBold">A</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">8.47 (±0.35)<span class="elsevierStyleBold">A</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">8.27 (±0.13)<span class="elsevierStyleBold">A</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="char" valign="top">0.7 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">8.43 (±0.31)<span class="elsevierStyleBold">A</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">8.44 (±0.41)<span class="elsevierStyleBold">A</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">8.43 (±0.31)<span class="elsevierStyleBold">A</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="char" valign="top">1.4 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">8.46 (±0.35)<span class="elsevierStyleBold">A</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">8.29 (±0.36)<span class="elsevierStyleBold">A</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">8.28 (±0.32)<span class="elsevierStyleBold">A</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="char" valign="top">2.8 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">8.40 (±0.27)<span class="elsevierStyleBold">A</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">8.33 (±0.38)<span class="elsevierStyleBold">A</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">8.21 (±0.42)<span class="elsevierStyleBold">A</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="char" valign="top">5.6 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">8.38 (±0.34)<span class="elsevierStyleBold">A</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">8.26 (±0.37)<span class="elsevierStyleBold">A</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">8.25 (±0.33)<span class="elsevierStyleBold">A</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="char" valign="top">11.2 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">8.32 (±0.35)<span class="elsevierStyleBold">A</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">8.13 (±0.25)<span class="elsevierStyleBold">A</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">8.13 (±0.38)<span class="elsevierStyleBold">A</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="char" valign="top">22.4 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">8.32 (±0.44)<span class="elsevierStyleBold">A</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">8.17 (±0.32)<span class="elsevierStyleBold">A</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">8.15 (±0.40)<span class="elsevierStyleBold">A</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="char" valign="top">44.8 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">2.56 (±0.32)<span class="elsevierStyleBold">B</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">2.62 (±0.44)<span class="elsevierStyleBold">B</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">2.57 (±0.35)<span class="elsevierStyleBold">B</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="char" valign="top">89.6 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0 <span class="elsevierStyleBold">D</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0 <span class="elsevierStyleBold">D</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">1.03 (±0.45)<span class="elsevierStyleBold">C</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="char" valign="top">179.2 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0 <span class="elsevierStyleBold">D</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0 <span class="elsevierStyleBold">D</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0 <span class="elsevierStyleBold">D</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab986776.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">Bacterial number of three strains of <span class="elsevierStyleItalic">G. diazotrophicus</span> grown in semisolid LGI media supplemented with different NH<span class="elsevierStyleInf">4</span>NO<span class="elsevierStyleInf">3</span> concentrations</p>" ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0005" "bibliografiaReferencia" => array:42 [ 0 => array:3 [ "identificador" => "bib0215" "etiqueta" => "1" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Induced systemic resistance in cucumber and <span class="elsevierStyleItalic">Arabidopsis thaliana</span> by the combination of <span class="elsevierStyleItalic">Trichoderma harzianum</span> Tr6 and <span class="elsevierStyleItalic">Pseudomonas</span> sp. Ps14" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "H. Alizadeh" 1 => "K. Behboudi" 2 => "M. Ahmadzadeh" 3 => "M. Javan-Nikkhah" 4 => "C. Zamioudis" 5 => "C.M.J. Pieterse" 6 => "P.A.H.M. Bakker" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Biol Control" "fecha" => "2013" "volumen" => "65" "paginaInicial" => "14" "paginaFinal" => "23" ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0220" "etiqueta" => "2" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Influence of ammonium and nitrate on the growth and photosynthesis of sugarcane" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "R. Armas" 1 => "M.-H. Valadier" 2 => "M.L. Champigny" 3 => "T. Lamaze" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J Plant Physiol" "fecha" => "1992" "volumen" => "140" "paginaInicial" => "531" "paginaFinal" => "535" ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0225" "etiqueta" => "3" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Acetic acid bacterial biota of the pink sugarcane mealybug, <span class="elsevierStyleItalic">Saccharoccocus sacchari</span>, and its environs" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "N.J. Ashbolt" 1 => "P.E. Inkerman" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Appl Environ Microbiol" "fecha" => "1990" "volumen" => "56" "paginaInicial" => "707" "paginaFinal" => "712" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16348144" "web" => "Medline" ] ] ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0230" "etiqueta" => "4" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Production of indole-3-acetic acid and gibberellins A1 y A3 by <span class="elsevierStyleItalic">Acetobacter diazotrophicus</span> and <span class="elsevierStyleItalic">Herbaspirillum seropedicae</span> in chemically-defined culture media" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "F. Bastian" 1 => "A. Cohen" 2 => "P. Piccoli" 3 => "V. Luna" 4 => "R. Baraldi" 5 => "R. Bottini" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Plant Growth Regul" "fecha" => "1998" "volumen" => "24" "paginaInicial" => "7" "paginaFinal" => "11" "itemHostRev" => array:3 [ "pii" => "S0735109708034347" "estado" => "S300" "issn" => "07351097" ] ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0235" "etiqueta" => "5" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Ecological significance and complexity of N-source preference in plants" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "D.T. Britto" 1 => "H.J. Kronzucker" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1093/aob/mct157" "Revista" => array:6 [ "tituloSerie" => "Ann Bot" "fecha" => "2013" "volumen" => "112" "paginaInicial" => "957" "paginaFinal" => "963" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23884397" "web" => "Medline" ] ] ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0240" "etiqueta" => "6" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Limited genetic diversity in the endophytic sugarcane bacterium <span class="elsevierStyleItalic">Acetobacter diazotrophicus</span>" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "J. Caballero-Mellado" 1 => "E. Martínez-Romero" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Appl Environ Microbiol" "fecha" => "1994" "volumen" => "79" "paginaInicial" => "1532" "paginaFinal" => "1537" ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0245" "etiqueta" => "7" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Genetic structure of <span class="elsevierStyleItalic">Acetobacter diazotrophicus</span> populations and identification of a new genetically distant group" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "J. Caballero-Mellado" 1 => "L.E. Fuentes-Ramírez" 2 => "V.M. Reis" 3 => "E. Martínez-Romero" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Appl Environ Microbiol" "fecha" => "1995" "volumen" => "61" "paginaInicial" => "3008" "paginaFinal" => "3013" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16535102" "web" => "Medline" ] ] ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0250" "etiqueta" => "8" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A new acid-tolerant nitrogen fixing bacterium associated with sugarcane" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "V.A. Cavalcante" 1 => "J. Döbereiner" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Plant Soil" "fecha" => "1988" "volumen" => "108" "paginaInicial" => "23" "paginaFinal" => "31" ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0255" "etiqueta" => "9" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Pinus flexilis and <span class="elsevierStyleItalic">Picea engelmannii</span> share a simple and consistent needle endophyte microbiota with a potential role in nitrogen fixation" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "A.A. Carrell" 1 => "A.C. Frank" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3389/fmicb.2014.00333" "Revista" => array:5 [ "tituloSerie" => "Front Microbiol" "fecha" => "2014" "volumen" => "5" "paginaInicial" => "333" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25071746" "web" => "Medline" ] ] ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0260" "etiqueta" => "10" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Quantification of cultivable bacteria by the massive stamping drop plate method" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "A. Corral-Lugo" 1 => "Y.E. Morales-García" 2 => "L.A. Pazos-Rojas" 3 => "A. Ramírez-Valverde" 4 => "R.D. Martínez-Contreras" 5 => "J. Muñoz-Rojas" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Rev Colomb Biotecnol" "fecha" => "2012" "volumen" => "XIV" "paginaInicial" => "147" "paginaFinal" => "156" "itemHostRev" => array:3 [ "pii" => "S0735109712009369" "estado" => "S300" "issn" => "07351097" ] ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0265" "etiqueta" => "11" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "From the soil to the seeds: the long journey of nitrate in plants" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "J. Dechorgnat" 1 => "C.T. Nguyen" 2 => "P. Armengaud" 3 => "M. Jossier" 4 => "E. Diatloff" 5 => "S. Filleur" 6 => "F.D. Daniel-Vedele" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1093/jxb/erq409" "Revista" => array:6 [ "tituloSerie" => "J Exp Bot" "fecha" => "2011" "volumen" => "62" "paginaInicial" => "1349" "paginaFinal" => "1359" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/21193579" "web" => "Medline" ] ] ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0270" "etiqueta" => "12" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Endophytes diazotrophs in sugar cane, cereals and tuber plants" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "J. Döbereiner" 1 => "V.M. Reis" 2 => "M.A. Paula" 3 => "F.L. Olivares" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "LibroEditado" => array:4 [ "titulo" => "New horizons in nitrogen fixation" "paginaInicial" => "671" "paginaFinal" => "676" "serieFecha" => "1993" ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0275" "etiqueta" => "13" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Research progress and perspectives of nitrogen fixing bacterium, <span class="elsevierStyleItalic">Gluconacetobacter diazotrophicus</span>, in monocot plants" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "N. Eskin" 1 => "K. Vessey" 2 => "L. Tian" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1155/2014/208383" "Revista" => array:2 [ "tituloSerie" => "Int J Agron" "fecha" => "2014" ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0280" "etiqueta" => "14" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Colonization of sugarcane by <span class="elsevierStyleItalic">Acetobacter diazotrophicus</span> is inhibited by high N-fertilization" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "L.E. Fuentes-Ramírez" 1 => "J. Caballero-Mellado" 2 => "J. Sepúlveda" 3 => "E. Martínez Romero" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "FEMS Microbiol Ecol" "fecha" => "1999" "volumen" => "29" "paginaInicial" => "117" "paginaFinal" => "128" ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0285" "etiqueta" => "15" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "<span class="elsevierStyleItalic">Acetobacter diazotrophicus</span>, and indolacetic acid producing bacterium isolated from sugarcane cultivars of México" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "L.E. Fuentes-Ramírez" 1 => "T. Jiménez-Salgado" 2 => "I.R. Abarca-Ocampo" 3 => "J. Caballero-Mellado" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Plant Soil" "fecha" => "1993" "volumen" => "154" "paginaInicial" => "145" "paginaFinal" => "150" ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0290" "etiqueta" => "16" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Sugarcane genetic controls involved in the association with beneficial endophytic nitrogen fixing bacteria" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "T.L. Gurjão de Carvalho" 1 => "P.C. Gomes Ferreira" 2 => "A.S. Hemerly" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Trop Plant Biol" "fecha" => "2011" "volumen" => "4" "paginaInicial" => "31" "paginaFinal" => "41" "itemHostRev" => array:3 [ "pii" => "S0735109707029026" "estado" => "S300" "issn" => "07351097" ] ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0295" "etiqueta" => "17" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "<span class="elsevierStyleItalic">Coffea arabica</span> L., a new host plant for <span class="elsevierStyleItalic">Acetobacter diazotrophicus</span>, and isolation of other nitrogen-fixing acetobacteria" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "T. Jiménez-Salgado" 1 => "L.E. Fuentes-Ramírez" 2 => "A. Tapia-Hernández" 3 => "M.A. Mascarúa-Esparza" 4 => "E. Martínez-Romero" 5 => "J. Caballero-Mellado" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Appl Environ Microbiol" "fecha" => "1997" "volumen" => "63" "paginaInicial" => "3676" "paginaFinal" => "3683" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/9293018" "web" => "Medline" ] ] ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib0300" "etiqueta" => "18" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Isolation and characterization of two genetically distant groups of <span class="elsevierStyleItalic">Acetobacter diazotrophicus</span> from a new host plant <span class="elsevierStyleItalic">Eleusine coracana</span> L" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "P. Loganathan" 1 => "R. Suelta" 2 => "A.K. Parlda" 3 => "S. Fair" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J Appl Microbiol" "fecha" => "1999" "volumen" => "87" "paginaInicial" => "167" "paginaFinal" => "172" ] ] ] ] ] ] 18 => array:3 [ "identificador" => "bib0305" "etiqueta" => "19" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Ocurrence of <span class="elsevierStyleItalic">Gluconacetobacter diazotrophicus</span> in tropical and subtropical plants of Western Ghats, India" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "M. Madhaiyan" 1 => "V.S. Saravanan" 2 => "D.B.S. Sandal-Jovi" 3 => "H. Lee" 4 => "R. Thenmozhi" 5 => "K. Hari" 6 => "T. Sa" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Microb Res" "fecha" => "2004" "volumen" => "159" "paginaInicial" => "233" "paginaFinal" => "243" ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bib0310" "etiqueta" => "20" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Antagonistic interactions among bacteria inhabiting pineapple" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:8 [ 0 => "V. Marín-Cevada" 1 => "J. Muñoz-Rojas" 2 => "J. Caballero-Mellado" 3 => "M.A. Mascarúa-Esparza" 4 => "M. Castañeda-Lucio" 5 => "R. Carreño-López" 6 => "P. Estrada de los Santos" 7 => "L.E. Fuentes-Ramírez" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Appl Soil Ecol" "fecha" => "2012" "volumen" => "61" "paginaInicial" => "230" "paginaFinal" => "235" "itemHostRev" => array:3 [ "pii" => "S0735109710002858" "estado" => "S300" "issn" => "07351097" ] ] ] ] ] ] ] 20 => array:3 [ "identificador" => "bib0315" "etiqueta" => "21" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effect of N concentration and N source on root colonization by <span class="elsevierStyleItalic">Pseudomonas fluorescens</span> 2-79RLI" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "P. Marscher" 1 => "J. Gerendás" 2 => "B. Sattelmacher" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Plant Soil" "fecha" => "1999" "volumen" => "215" "paginaInicial" => "135" "paginaFinal" => "141" ] ] ] ] ] ] 21 => array:3 [ "identificador" => "bib0320" "etiqueta" => "22" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Nitrogen source effect on <span class="elsevierStyleItalic">Gluconacetobacter diazotrophicus</span> colonization of sugarcane (<span class="elsevierStyleItalic">Saccharum</span> spp.)" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "A.F.A. Medeiros" 1 => "J.C. Polidoro" 2 => "V.M. Reis" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Plant Soil" "fecha" => "2006" "volumen" => "279" "paginaInicial" => "141" "paginaFinal" => "152" ] ] ] ] ] ] 22 => array:3 [ "identificador" => "bib0325" "etiqueta" => "23" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Exopolysaccharide production is required for biofilm formation and plant colonization by the nitrogen-fixing endophyte <span class="elsevierStyleItalic">Gluconacetobacter diazotrophicus</span>" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "C.H.S.G. Meneses" 1 => "L.F.M. Rows" 2 => "J.L. Simões-Araújo" 3 => "M.S. Vidal" 4 => "J.I. Baldani" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Mol Plant Microbe Interact" "fecha" => "2011" "volumen" => "12" "paginaInicial" => "1448" "paginaFinal" => "1458" ] ] ] ] ] ] 23 => array:3 [ "identificador" => "bib0330" "etiqueta" => "24" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effect of nitrogen on the time-course of sucrose accumulation in sugarcane" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "R.C. Muchow" 1 => "M.J. Robertson" 2 => "A.W. Wood" 3 => "B.A. Keating" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Field Crops Res" "fecha" => "1996" "volumen" => "47" "paginaInicial" => "143" "paginaFinal" => "153" ] ] ] ] ] ] 24 => array:3 [ "identificador" => "bib0335" "etiqueta" => "25" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Population dynamics of <span class="elsevierStyleItalic">Gluconacetobacter diazotrophicus</span> in sugarcane cultivars and its effect on plant growth" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "J. Muñoz-Rojas" 1 => "J. Caballero-Mellado" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00248-003-0110-3" "Revista" => array:7 [ "tituloSerie" => "Microb Ecol" "fecha" => "2003" "volumen" => "46" "paginaInicial" => "454" "paginaFinal" => "464" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/14722690" "web" => "Medline" ] ] "itemHostRev" => array:3 [ "pii" => "S0735109797003471" "estado" => "S300" "issn" => "07351097" ] ] ] ] ] ] ] 25 => array:3 [ "identificador" => "bib0340" "etiqueta" => "26" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Antagonism among <span class="elsevierStyleItalic">Gluconacetobacter diazotrophicus</span> strains in culture media and in endophytic association" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "J. Muñoz-Rojas" 1 => "L.E. Fuentes-Ramírez" 2 => "J. Caballero-Mellado" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.femsec.2005.02.011" "Revista" => array:6 [ "tituloSerie" => "FEMS Microbiol Ecol" "fecha" => "2005" "volumen" => "54" "paginaInicial" => "57" "paginaFinal" => "66" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16329972" "web" => "Medline" ] ] ] ] ] ] ] ] 26 => array:3 [ "identificador" => "bib0345" "etiqueta" => "27" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Natural association of <span class="elsevierStyleItalic">Gluconacetobacter diazotrophicus</span> and diazotrophic <span class="elsevierStyleItalic">Acetobacter peroxydans</span> with wetland rice" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:11 [ 0 => "R. Muthukumarasamy" 1 => "I. Cleenwerck" 2 => "G. Revathi" 3 => "M. Vadivelu" 4 => "D. Janssens" 5 => "B. Hoste" 6 => "K.U. Gum" 7 => "K.-D. Park" 8 => "C.Y. Son" 9 => "T. Sa" 10 => "J. Caballero-Mellado" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Syst Appl Microbiol" "fecha" => "2005" "volumen" => "28" "paginaInicial" => "277" "paginaFinal" => "286" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/15900973" "web" => "Medline" ] ] ] ] ] ] ] ] 27 => array:3 [ "identificador" => "bib0350" "etiqueta" => "28" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Influence of N fertilization on the isolation of <span class="elsevierStyleItalic">Acetobacter diazotrophicus</span> and <span class="elsevierStyleItalic">Herbaspirillum</span> spp. from Indian sugarcane varieties" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "R. Muthukumarasamy" 1 => "G. Revathi" 2 => "C. Lakshminarasimhan" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Biol Fertil Soils" "fecha" => "1999" "volumen" => "29" "paginaInicial" => "157" "paginaFinal" => "164" ] ] ] ] ] ] 28 => array:3 [ "identificador" => "bib0355" "etiqueta" => "29" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effect of inorganic N on the population, in vitro colonization and morphology of <span class="elsevierStyleItalic">Acetobacter diazotrophicus</span> (syn. <span class="elsevierStyleItalic">Gluconacetobacter diazotrophicus</span>)" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "R. Muthukumarasamy" 1 => "G. Revathi" 2 => "P. Loganathan" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Plant Soil" "fecha" => "2002" "volumen" => "243" "paginaInicial" => "91" "paginaFinal" => "102" ] ] ] ] ] ] 29 => array:3 [ "identificador" => "bib0360" "etiqueta" => "30" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Induced disease resistance in plants by chemicals" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "M. Oostendorp" 1 => "W. Kunz" 2 => "B. Dietrich" 3 => "T. Staub" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Eur J Plant Physiol" "fecha" => "2001" "volumen" => "107" "paginaInicial" => "19" "paginaFinal" => "28" ] ] ] ] ] ] 30 => array:3 [ "identificador" => "bib0365" "etiqueta" => "31" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Low recovery frequency of <span class="elsevierStyleItalic">Gluconacetobacter diazotrophicus</span> from plants and associated mealybugs in Cuban sugarcane fields" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "P. Ortega-Rodés" 1 => "E. Ortega" 2 => "D. Kleiner" 3 => "F.G. Loiret" 4 => "R. Rodés" 5 => "J. Caballero-Mellado" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Symbiosis" "fecha" => "2011" "volumen" => "54" "paginaInicial" => "131" "paginaFinal" => "138" ] ] ] ] ] ] 31 => array:3 [ "identificador" => "bib0370" "etiqueta" => "32" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Optimization of indole 3-acetic acid (IAA) production by <span class="elsevierStyleItalic">Acetobacter diazotrophicus</span> L1 isolated from sugarcane" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "N.B. Patil" 1 => "M. Gajbhiye" 2 => "S.S. Ahiwale" 3 => "A.B. Gunjal" 4 => "B.P. Kapadnis" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Int J Environ Sci" "fecha" => "2011" "volumen" => "2" "paginaInicial" => "295" "paginaFinal" => "302" ] ] ] ] ] ] 32 => array:3 [ "identificador" => "bib0375" "etiqueta" => "33" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Relationships between nitrogen fixation and auxins production in <span class="elsevierStyleItalic">Gluconacetobacter diazotrophicus</span> strains from different crops" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "M.M. Rojas" 1 => "A.J. Rodríguez" 2 => "I.D. Trujillo" 3 => "M. Heydrich" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Rev Colomb Biotecnol" "fecha" => "2009" "volumen" => "11" "paginaInicial" => "84" "paginaFinal" => "93" ] ] ] ] ] ] 33 => array:3 [ "identificador" => "bib0380" "etiqueta" => "34" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Ecological occurrence of <span class="elsevierStyleItalic">Gluconacetobacter diazotrophicus</span> and nitrogen-fixing <span class="elsevierStyleItalic">Acetobacteraceae</span> members: their possible role in plant growth promotion" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "V.S. Saravanan" 1 => "M. Madhaiyan" 2 => "J. Osborne" 3 => "M. Thangaraju" 4 => "T.M. Sa" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00248-007-9258-6" "Revista" => array:6 [ "tituloSerie" => "Microb Ecol" "fecha" => "2008" "volumen" => "55" "paginaInicial" => "130" "paginaFinal" => "140" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17574542" "web" => "Medline" ] ] ] ] ] ] ] ] 34 => array:3 [ "identificador" => "bib0385" "etiqueta" => "35" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Comparison of benefit to sugarcane plant growth and <span class="elsevierStyleSup">15</span>N<span class="elsevierStyleInf">2</span> incorporation following inoculation of sterile plants with <span class="elsevierStyleItalic">Acetobacter diazotrophicus</span> wild-type and Nif<span class="elsevierStyleSup">−</span> mutant strains" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "M. Sevilla" 1 => "R.H. Burris" 2 => "N. Gunpala" 3 => "C. Kennedy" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1094/MPMI.2001.14.3.358" "Revista" => array:6 [ "tituloSerie" => "Mol Plant Microbe Interact" "fecha" => "2001" "volumen" => "14" "paginaInicial" => "358" "paginaFinal" => "366" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/11277433" "web" => "Medline" ] ] ] ] ] ] ] ] 35 => array:3 [ "identificador" => "bib0390" "etiqueta" => "36" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Improving sugarcane growth and nutrient uptake by inoculating <span class="elsevierStyleItalic">Gluconacetobacter diazotrophicus</span>" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "A. Suman" 1 => "A. Gaur" 2 => "A.K. Shrivastava" 3 => "R.L. Yadav" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Plant Growth Regul" "fecha" => "2005" "volumen" => "47" "paginaInicial" => "155" "paginaFinal" => "162" ] ] ] ] ] ] 36 => array:3 [ "identificador" => "bib0395" "etiqueta" => "37" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Natural endophytic ocurrente of <span class="elsevierStyleItalic">Acetobacter diazotrophicus</span> in pineapple plants" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "A. Tapia-Hernández" 1 => "R. Bustillos-Cristales" 2 => "T. Jiménez-Salgado" 3 => "J. Caballero-Mellado" 4 => "L.E. Fuentes-Ramírez" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:7 [ "tituloSerie" => "Microb Ecol" "fecha" => "2000" "volumen" => "39" "paginaInicial" => "49" "paginaFinal" => "55" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/10790517" "web" => "Medline" ] ] "itemHostRev" => array:3 [ "pii" => "S0002914913006218" "estado" => "S300" "issn" => "00029149" ] ] ] ] ] ] ] 37 => array:3 [ "identificador" => "bib0400" "etiqueta" => "38" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Nitrogen compounds in the apoplastic sap of sugarcane stem: some implications in the association with endophytes" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "N. Tejera" 1 => "E. Ortega" 2 => "R. Rodes" 3 => "C. Llunch" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jplph.2005.03.010" "Revista" => array:6 [ "tituloSerie" => "J Plant Physiol" "fecha" => "2006" "volumen" => "163" "paginaInicial" => "80" "paginaFinal" => "85" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16360806" "web" => "Medline" ] ] ] ] ] ] ] ] 38 => array:3 [ "identificador" => "bib0405" "etiqueta" => "39" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Plant immune triggered by beneficial microbes" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "S.C.M. Van Wees" 1 => "S. Van der Ent" 2 => "C.M.J. Pieterse" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.pbi.2008.05.005" "Revista" => array:6 [ "tituloSerie" => "Curr Opin Plant Biol" "fecha" => "2008" "volumen" => "11" "paginaInicial" => "443" "paginaFinal" => "448" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18585955" "web" => "Medline" ] ] ] ] ] ] ] ] 39 => array:3 [ "identificador" => "bib0410" "etiqueta" => "40" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Drought tolerance conferred to sugarcane by association with <span class="elsevierStyleItalic">Gluconacetobacter diazotrophicus</span>: a transcriptomic view of hormone pathways" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:11 [ 0 => "L. Vargas" 1 => "A.B. Santa Brigida" 2 => "J.P. Mota Filho" 3 => "T.G. de Carvalho" 4 => "C.A. Rojas" 5 => "D. Vaneechoutte" 6 => "M. Van Bel" 7 => "L. Farrinelli" 8 => "P.C.G. Ferreira" 9 => "K. Vandepoele" 10 => "A.S. Hemerly" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "PLOS ONE" "fecha" => "2014" "volumen" => "9" "paginaInicial" => "1" "paginaFinal" => "37" ] ] ] ] ] ] 40 => array:3 [ "identificador" => "bib0415" "etiqueta" => "41" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Induced systemic resistance by fluorescent pseudomonads against red rot disease of sugarcane caused by <span class="elsevierStyleItalic">Collecotrichum falcatum</span>" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "R. Viswanathan" 1 => "R. Samiyappan" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Crop Prot" "fecha" => "2002" "volumen" => "21" "paginaInicial" => "1" "paginaFinal" => "10" ] ] ] ] ] ] 41 => array:3 [ "identificador" => "bib0420" "etiqueta" => "42" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A novel morphological response of maize (<span class="elsevierStyleItalic">Zea mays</span>) adult roots to heterogeneous nitrate supply revealed by split-root experiment" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "P. Yu" 1 => "X. Li" 2 => "L. Yuan" 3 => "C. Li" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/ppl.12075" "Revista" => array:6 [ "tituloSerie" => "Physiol Plant" "fecha" => "2014" "volumen" => "150" "paginaInicial" => "133" "paginaFinal" => "144" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23724916" "web" => "Medline" ] ] ] ] ] ] ] ] ] ] ] ] "agradecimientos" => array:1 [ 0 => array:4 [ "identificador" => "xack202831" "titulo" => "Acknowledgments" "texto" => "<p id="par0105" class="elsevierStylePara elsevierViewall">We are grateful to <span class="elsevierStyleGrantSponsor" id="gs1">CONACYT</span> (<span class="elsevierStyleGrantNumber" refid="gs1">000000000156576</span>), <span class="elsevierStyleGrantSponsor" id="gs2">PRODEP</span> and <span class="elsevierStyleGrantSponsor" id="gs3">VIEP-BUAP-2014</span> for the support of this work. Osvaldo Rodríguez-Andrade and Dalia Molina Romero were awarded a CONACYT fellowship. This work is dedicated to the memory of Jesús Caballero-Mellado.</p>" "vista" => "all" ] ] ] "idiomaDefecto" => "en" "url" => "/03257541/0000004700000004/v2_201602050024/S032575411500125X/v2_201602050024/en/main.assets" "Apartado" => array:4 [ "identificador" => "37862" "tipo" => "SECCION" "en" => array:2 [ "titulo" => "Microbiología agrícola, ambiental e industrial" "idiomaDefecto" => true ] "idiomaDefecto" => "en" ] "PDF" => "https://static.elsevier.es/multimedia/03257541/0000004700000004/v2_201602050024/S032575411500125X/v2_201602050024/en/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S032575411500125X?idApp=UINPBA00004N" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 1 | 0 | 1 |
2024 October | 20 | 7 | 27 |
2024 September | 38 | 8 | 46 |
2024 August | 26 | 4 | 30 |
2024 July | 23 | 12 | 35 |
2024 June | 30 | 1 | 31 |
2024 May | 20 | 9 | 29 |
2024 April | 23 | 3 | 26 |
2024 March | 25 | 7 | 32 |
2024 February | 19 | 4 | 23 |
2024 January | 24 | 5 | 29 |
2023 December | 18 | 7 | 25 |
2023 November | 27 | 7 | 34 |
2023 October | 34 | 6 | 40 |
2023 September | 17 | 8 | 25 |
2023 August | 14 | 3 | 17 |
2023 July | 10 | 7 | 17 |
2023 June | 29 | 4 | 33 |
2023 May | 13 | 2 | 15 |
2023 April | 17 | 6 | 23 |
2023 March | 7 | 7 | 14 |
2023 February | 24 | 3 | 27 |
2023 January | 22 | 11 | 33 |
2022 December | 35 | 8 | 43 |
2022 November | 43 | 10 | 53 |
2022 October | 25 | 7 | 32 |
2022 September | 24 | 25 | 49 |
2022 August | 32 | 8 | 40 |
2022 July | 29 | 7 | 36 |
2022 June | 21 | 12 | 33 |
2022 May | 20 | 24 | 44 |
2022 April | 19 | 8 | 27 |
2022 March | 40 | 10 | 50 |
2022 February | 45 | 11 | 56 |
2022 January | 56 | 18 | 74 |
2021 December | 32 | 8 | 40 |
2021 November | 49 | 17 | 66 |
2021 October | 37 | 26 | 63 |
2021 September | 39 | 17 | 56 |
2021 August | 37 | 17 | 54 |
2021 July | 12 | 8 | 20 |
2021 June | 21 | 9 | 30 |
2021 May | 22 | 10 | 32 |
2021 April | 7 | 22 | 29 |
2021 March | 13 | 9 | 22 |
2021 February | 12 | 9 | 21 |
2021 January | 18 | 12 | 30 |
2020 December | 13 | 10 | 23 |
2020 November | 14 | 8 | 22 |
2020 October | 10 | 6 | 16 |
2020 September | 16 | 16 | 32 |
2020 August | 11 | 8 | 19 |
2020 July | 6 | 5 | 11 |
2020 June | 20 | 17 | 37 |
2020 May | 15 | 12 | 27 |
2020 April | 17 | 4 | 21 |
2020 March | 16 | 6 | 22 |
2020 February | 18 | 11 | 29 |
2020 January | 17 | 10 | 27 |
2019 December | 11 | 11 | 22 |
2019 November | 11 | 17 | 28 |
2019 October | 17 | 6 | 23 |
2019 September | 15 | 19 | 34 |
2019 August | 8 | 9 | 17 |
2019 July | 13 | 18 | 31 |
2019 June | 37 | 11 | 48 |
2019 May | 86 | 9 | 95 |
2019 April | 45 | 13 | 58 |
2019 March | 12 | 4 | 16 |
2019 February | 20 | 4 | 24 |
2019 January | 25 | 4 | 29 |
2018 December | 18 | 10 | 28 |
2018 November | 26 | 5 | 31 |
2018 October | 27 | 7 | 34 |
2018 September | 23 | 5 | 28 |
2018 August | 32 | 5 | 37 |
2018 July | 13 | 2 | 15 |
2018 June | 21 | 7 | 28 |
2018 May | 12 | 7 | 19 |
2018 April | 34 | 13 | 47 |
2018 March | 108 | 2 | 110 |
2018 February | 19 | 2 | 21 |
2018 January | 102 | 5 | 107 |
2017 December | 40 | 1 | 41 |
2017 November | 12 | 5 | 17 |
2017 October | 17 | 7 | 24 |
2017 September | 13 | 15 | 28 |
2017 August | 12 | 6 | 18 |
2017 July | 12 | 2 | 14 |
2017 June | 24 | 4 | 28 |
2017 May | 21 | 4 | 25 |
2017 April | 12 | 26 | 38 |
2017 March | 22 | 74 | 96 |
2017 February | 12 | 4 | 16 |
2017 January | 10 | 1 | 11 |
2016 December | 31 | 9 | 40 |
2016 November | 27 | 7 | 34 |
2016 October | 37 | 6 | 43 |
2016 September | 38 | 9 | 47 |
2016 August | 32 | 4 | 36 |
2016 July | 30 | 7 | 37 |
2016 June | 40 | 18 | 58 |
2016 May | 23 | 14 | 37 |
2016 April | 37 | 27 | 64 |
2016 March | 61 | 28 | 89 |
2016 February | 32 | 27 | 59 |
2016 January | 26 | 34 | 60 |
2015 December | 9 | 8 | 17 |