covid
Buscar en
Revista Colombiana de Cardiología
Toda la web
Inicio Revista Colombiana de Cardiología Evaluación hemodinámica no invasiva con cardiografía de impedancia: aplicacio...
Journal Information
Vol. 19. Issue 2.
Pages 82-90 (February - March 2012)
Share
Share
Download PDF
More article options
Vol. 19. Issue 2.
Pages 82-90 (February - March 2012)
Open Access
Evaluación hemodinámica no invasiva con cardiografía de impedancia: aplicaciones en falla cardíaca y en hipertensión arterial
Non-invasive hemodynamic evaluation with impedance cardiography: applications in heart failure and hypertension
Visits
17514
Jon Kepa Balparda1,2,3, Jaime A. Gallo1,2, Juan G. McEwen1,3, Juan E. Ochoa3,4,5, Dagnóvar Aristizábal2,3,
Corresponding author
dagnovar@une.net.co

Correspondencia: Centro Clínico y de Investigación SICOR. Teléfono: (574) 604 0007.
1 Facultad de Medicina, Universidad de Antioquia
2 Centro Clínico y de Investigación SICOR
3 Unidad de Biología Celular y Molecular, Corporación para Investigaciones Biológicas
4 Istituto Auxologico Italiano. Milán, Italia
5 Università degli Studi di Milano-Bicocca. Milán, Italia
This item has received

Under a Creative Commons license
Article information

La cardiografía de impendancia (CGI) representa un método no invasivo para la evaluación del estado hemodinámico latido a latido. Aunque se introdujo por primera vez hace más de 40 años, la CGI ha mostrado un resurgimiento en la última década, a partir de una serie de estudios clínicos que han demostrado su precisión en la estimación del volumen latido, tanto contra el “gold-standard“invasivo (termodilución), como contra los métodos de referencia no invasivos (ecocardiografía). Diversos estudios demuestran la utilidad de esta técnica en el manejo del paciente con falla cardíaca y en el enfoque diagnóstico y terapéutico de la hipertensión arterial, por lo cual constituyen actualmente dos de las aplicaciones clínicas más importantes de la CGI. En falla cardiaca, los cambios en el volumen de líquido del tórax y del gasto cardíaco evaluados por CGI, han demostrado ser predictores de descompensación aguda, incluso semanas antes del inicio de la sintomatología respiratoria; además, permiten identificar el origen cardiogénico o respiratorio de la disnea cuando el examen físico y los demás paraclínicos no son concluyentes. En los pacientes con hipertensión arterial no controlada o resistente, la CGI permite realizar una mejor caracterización del fenotipo hipertensivo y elegir la estrategia farmacológica más específica para intervenir la alteración hemodinámica predominante (resistencia vascular vs. gasto cardiaco elevado). En este artículo se realiza una revisión de los principios biofísicos de la CGI y su utilidad en la evaluación no invasiva del estado hemodinámico, así como una evaluación crítica de la literatura que da soporte a su aplicación clínica en el tratamiento de la falla cardíaca y la hipertensión arterial.

Palabras clave:
cardiografía de impedancia
estado hemodinámico
falla cardíaca
hipertensión arterial

Impedance cardiography (ICG) represents a non-invasive method for hemodynamic assessment in a beat-to-beat basis. Since its introduction more than forty years ago, a renewed interest in the use of this technique during the last decade has been noticed, mainly as a result of a series of clinical studies showing its precision in the estimation of stroke volume either against invasive gold standard (i.e. thermodilution) or against non-invasive reference methods (i.e. echocardiography). On the other hand, ICG has demonstrated to be useful for the management of heart failure patients and for the diagnostic and therapeutic approach to hypertension, which currently constitute two of the major applications of ICG. In heart failure patients, changes in thoracic fluid content and cardiac output tracked by ICG have shown to be predictors of acute decompensation even weeks before respiratory symptoms appear; also allowing identification of a cardiac vs. respiratory origin of dyspnea when physical examination and laboratory tests are not conclusive. In the particular case of patients with uncontrolled or severe hypertension, ICG makes possible a better characterization of hypertensive phenotype leading to a more specific choice of pharmacological agents to treat the primary hemodynamic alteration (i.e elevated peripheral resistance vs. elevated cardiac output). The present review, provides a review of the biophysical principles of ICG and its precision in measuring stroke volume and present a critical assessment of the literature supporting its clinical application in the management of heart failure and arterial hypertension

Keywords:
impedance cardiography
hemodynamics
heart failure
arterial hypertension
Full text is only aviable in PDF
Bibliografía
[1.]
W.G. Kubicek, A.H. From, R.P. Patterson, et al.
Impedance cardiography as a noninvasive means to monitor cardiac function.
J Assoc Adv Med Instrum, 4 (1970), pp. 79-84
[2.]
T. Koobi.
Non-invasive cardiac output determination: state of the art.
Curr Opin Anaesthesiol, 12 (1999), pp. 9-13
[3.]
O. Thom, D. Taylor.
Transthoracic electrical bioimpedance: a means of filling the void?.
Emerg Med Australas, 17 (2005), pp. 249-262
[4.]
A.M. Napoli, J.T. Machan, K. Corl, A. Forcada.
The use of impedance cardiography in predicting mortality in emergency department patients with severe sepsis and septic shock.
Academic emergency medicine : official journal of the Society for Academic Emergency Medicine, 17 (2010), pp. 452-455
[5.]
T.N. Sathyaprabha, C. Pradhan, G. Rashmi, K. Thennarasu, T.R. Raju.
Noninvasive cardiac output measurement by transthoracic electrical bioimpedence: influence of age and gender.
J Clin Monit Comput, 22 (2008), pp. 401-408
[6.]
T.J. Noble, A.H. Morice, K.S. Channer, P. Milnes, N.D. Harris, B.H. Brown.
Monitoring patients with left ventricular failure by electrical impedance tomography.
Eur J Heart Fail, 1 (1999), pp. 379-384
[7.]
M.D. Muller, E.J. Ryan, C.H. Kim, D.M. Bellar, R.P. Blankfield, E.L. Glickman.
Reliability of the measurement of stroke volume using impedance cardiography during acute cold exposure.
Aviat Space Environ Med, 81 (2010), pp. 120-124
[8.]
G.L. Yung, P.F. Fedullo, K. Kinninger, W. Johnson, R.N. Channick.
Comparison of impedance cardiography to direct Fick and thermodilution cardiac output determination in pulmonary arterial hypertension.
Congestive heart failure, 10 (2004), pp. 7-10
[9.]
M. Packer, W.T. Abraham, M.R. Mehra, et al.
Utility of impedance cardiography for the identification of short-term risk of clinical decompensation in stable patients with chronic heart failure.
J Am Coll Cardiol, 47 (2006), pp. 2245-2252
[10.]
E.G. Havelka, K.H. Rzechula, T.O. Bryant, S.M. Anneken, E.B. Kulstad.
Correlation between impedance cardiography and B-type natriuretic Peptide levels in dyspneic patients.
J Emerg Med, 40 (2011), pp. 146-150
[11.]
A.G. Kieback, A.C. Borges, T. Schink, G. Baumann, M. Laule.
Impedance cardiography versus invasive measurements of stroke volume index in patients with chronic heart failure.
Int J Cardiol, 143 (2010), pp. 211-213
[12.]
S.A. Kamath, M.H. Drazner, G. Tasissa, J.G. Rogers, L.W. Stevenson, C.W. Yancy.
Correlation of impedance cardiography with invasive hemodynamic measurements in patients with advanced heart failure: the BioImpedance CardioGraphy (BIG) substudy of the Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness (ESCAPE) Trial.
Am Heart J, 158 (2009), pp. 217-223
[13.]
D.J. Wang, S.S. Gottlieb.
Impedance cardiography: more questions than answers.
Curr Heart Fail Rep, 3 (2006), pp. 107-113
[14.]
E.E. de Waal, M.K. Konings, C.J. Kalkman, W.F. Buhre.
Assessment of stroke volume index with three different bioimpedance algorithms: lack of agreement compared to thermodilution.
Intensive Care Med, 34 (2008), pp. 735-739
[15.]
J.A. McFetridge-Durdle, F.S. Routledge, M.J. Parry, C.R. Dean, B. Tucker.
Ambulatory impedance cardiography in hypertension: a validation study.
Eur J Cardiovasc Nurs, 7 (2008), pp. 204-213
[16.]
K.M. Heinroth, M. Elster, S. Nuding, et al.
Impedance cardiography: a useful and reliable tool in optimization of cardiac resynchronization devices.
Europace, 9 (2007), pp. 744-750
[17.]
J. Kasznicki, J. Drzewoski.
The importance of impedance cardiography in monitoring cardiac function in patients with hematological malignancies.
Acta Haematol Pol, 24 (1993), pp. 123-130
[18.]
J.E. Ochoa, J.G. McEwen, D. Aristizabal.
Principios de la evaluación hemodinámica no invasiva con cardiografía de impedancia.
Rev Col Cardiol, 16 (2009), pp. 91-102
[19.]
J. Bour, J. Kellett.
Impedance cardiography: a rapid and cost-effective screening tool for cardiac disease.
Eur J Intern Med, 19 (2008), pp. 399-405
[20.]
T.J. Faes, E. Raaijmakers, J.H. Meijer, H.G. Goovaerts, R.M. Heethaar.
Towards a theoretical understanding of stroke volume estimation with impedance cardiography.
Ann N Y Acad Sci, 873 (1999), pp. 128-134
[21.]
M.X. Kuang, Q.J. Xiao, C.Y. Cui, N.Z. Kuang, W.Q. Hong, A.R. Hu.
Mechanism of the formation for thoracic impedance change.
Ann Biomed Eng, 38 (2010), pp. 1007-1016
[22.]
R.E. Sokolovsky, S. Zlochiver, S. Abboud.
Stroke volume estimation in heart failure patients using bioimpedance: a realistic simulation of the forward problem.
Physiol Meas, 29 (2008), pp. S139-S149
[23.]
D.P. Bernstein, H.J. Lemmens.
Stroke volume equation for impedance cardiography.
Med Biol Eng Comput, 43 (2005), pp. 443-450
[24.]
O.L. Paredes, J. Shite, T. Shinke, et al.
Impedance cardiography for cardiac output estimation: reliability of wrist-to-ankle electrode configuration.
Circ J, 70 (2006), pp. 1164-1168
[25.]
M.A. Woo, M. Hamilton, L.W. Stevenson, D.L. Vredevoe.
Comparison of thermodilution and transthoracic electrical bioimpedance cardiac outputs.
Heart Lung, 20 (1991), pp. 357-362
[26.]
H.D. Fuller.
Improving the accuracy of impedance cardiac output in the intensive care unit: comparison with thermodilution cardiac output.
Congestive Heart Failure, 12 (2006), pp. 271-276
[27.]
G. Cybulski, Z. Miskiewicz, J. Szulc, A. Torbicki, T. Pasierski.
A comparison between the automatized impedance cardiography and pulsed-wave Doppler echocardiography methods for measurements of stroke volume (SV) and systolic time intervals (STI).
J Physiol Pharmacol, 44 (1993), pp. 251-258
[28.]
G. Cybulski.
Computer method for automatic determination of stroke volume using impedance cardiography signals.
Acta Physiol Pol, 39 (1988), pp. 494-503
[29.]
G. Cybulski, E. Michalak, E. Kozluk, A. Piatkowska, W. Niewiadomski.
Stroke volume and systolic time intervals: beat-to-beat comparison between echocardiography and ambulatory impedance cardiography in supine and tilted positions.
Med Biol Eng Comput, 42 (2004), pp. 707-711
[30.]
D. Karakitsos, M. Wachtel, N. Zerefos, et al.
Prognostic utility of impedance cardiography measurements in elderly hemodialysis patients with coronary artery disease.
Am J Nephrol, 29 (2009), pp. 426-433
[31.]
S.A. Hunt, W.T. Abraham, M.H. Chin, et al.
2009 focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation.
Circulation, 119 (2009), pp. e391-e479
[32.]
T. Thom, N. Haase, W. Rosamond, et al.
Heart disease and stroke statistics-2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee.
Circulation, 113 (2006), pp. e85-e151
[33.]
W.T. Abraham.
New approaches to monitoring heart failure before symptoms appear.
Rev Cardiovasc Med, 7 (2006), pp. S33-S41
[34.]
W.N. Hubbard, D.R. Fish, D.J. McBrien.
The use of impedance cardiography in heart failure.
Int J Cardiol, 12 (1986), pp. 71-79
[35.]
C.M. Yu, L. Wang, E. Chau, et al.
Intrathoracic impedance monitoring in patients with heart failure: correlation with fluid status and feasibility of early warning preceding hospitalization.
Circulation, 112 (2005), pp. 841-848
[36.]
D. Vollmann, H. Nagele, P. Schauerte, et al.
Clinical utility of intrathoracic impedance monitoring to alert patients with an implanted device of deteriorating chronic heart failure.
Eur Heart J, 28 (2007), pp. 1835-1840
[37.]
M. Maines, D. Catanzariti, C. Cirrincione, S. Valsecchi, J. Comisso, G. Vergara.
Intrathoracic impedance and pulmonary wedge pressure for the detection of heart failure deterioration.
Europace, 12 (2010), pp. 680-685
[38.]
G.B. Perego, M. Landolina, G. Vergara, C.R.T. Implantable, et al.
device diagnostics identify patients with increased risk for heart failure hospitalization.
J Interv Card Electrophysiol, 23 (2008), pp. 235-242
[39.]
M.S. Calabrese, E.J. Thompson.
Monitoring intrathoracic impedance in heart failure patients: implications for inpatient use.
Dimens Crit Care Nurs, 29 (2010), pp. 203-210
[40.]
H.Y. Lo, S.C. Liao, C.J. Ng, J.T. Kuan, J.C. Chen, T.F. Chiu.
Utility of impedance cardiography for dyspneic patients in the ED.
Am J Emerg Med, 25 (2007), pp. 437-441
[41.]
C.L. Springfield, F. Sebat, D. Johnson, S. Lengle, C. Sebat.
Utility of impedance cardiography to determine cardiac vs. noncardiac cause of dyspnea in the emergency department.
Congestive Heart Failure, 10 (2004), pp. 14-16
[42.]
E. Barcarse, R. Kazanegra, A. Chen, A. Chiu, P. Clopton, A. Maisel.
Combination of B-type natriuretic peptide levels and non-invasive hemodynamic parameters in diagnosing congestive heart failure in the emergency department.
Congestive Heart Failure, 10 (2004), pp. 171-176
[43.]
W.F. Peacock, R.L. Summers, J. Vogel, C.E. Emerman.
Impact of impedance cardiography on diagnosis and therapy of emergent dyspnea: the ED-IMPACT trial.
Academic emergency medicine: official journal of the Society for Academic Emergency Medicine, 13 (2006), pp. 365-371
[44.]
L.W. Stevenson.
Tailored therapy to hemodynamic goals for advanced heart failure.
Eur J Heart Fail, 1 (1999), pp. 251-257
[45.]
F.W. Germino.
The management and treatment of hypertension.
Clin Cornerstone, 9 (2009), pp. S27-S33
[46.]
C.W. Parrott, C. Quale, D.L. Lewis, S. Ferguson, R. Brunt, S. Glass.
Systolic blood pressure does not reliably identify vasoactive status in chronic heart failure.
Am J Hypertens, 18 (2005), pp. 82S-86S
[47.]
C.M. Ferrario, J.M. Flack, J.E. Strobeck, G. Smits, C. Peters.
Individualizing hypertension treatment with impedance cardiography: a meta-analysis of published trials.
Ther Adv Cardiovasc Dis, 4 (2010), pp. 5-16
[48.]
G. Linss, B.M. Eisenberg.
Noninvasive techniques for evaluation of heart function and hemodynamics in arterial hypertension.
An overview. Acta Cardiol, 45 (1990), pp. 133-139
[49.]
S.J. Taler, S.C. Textor, J.E. Augustine.
Resistant hypertension: comparing hemodynamic management to specialist care.
Hypertension, 39 (2002), pp. 982-988
[50.]
R.D. Smith, P. Levy, C.M. Ferrario.
Value of noninvasive hemodynamics to achieve blood pressure control in hypertensive subjects.
Hypertension, 47 (2006), pp. 771-777
[51.]
E.A. Sanidas, K. Grammatikopoulos, G. Anastasiadis, D. Papadopoulos, M. Daskalaki, V. Votteas.
Thoracic fluid content and impedance cardiography: a novel and promising noninvasive method for assessing the hemodynamic effects of diuretics in hypertensive patients.
Hellenic J Cardiol, 50 (2009), pp. 465-471
Copyright © 2012. Socidad Colombiana de Cardiología y Cirugía Cardiovascular
Download PDF
Article options