metricas
covid
Buscar en
Revista Colombiana de Psiquiatría
Toda la web
Inicio Revista Colombiana de Psiquiatría Mitochondrial Dysfunction in Bipolar Disorder: Lessons from Brain Imaging and Mo...
Journal Information
Vol. 40. Issue S.
Pages 166S-182S (January 2011)
Share
Share
Download PDF
More article options
Vol. 40. Issue S.
Pages 166S-182S (January 2011)
Artículos de revisión
Full text access
Mitochondrial Dysfunction in Bipolar Disorder: Lessons from Brain Imaging and Molecular Markers
Disfunción mitocondrial en el trastorno bipolar: lecciones de las imágenes cerebrales y los marcadores moleculares
Visits
2229
Luciano Minuzzi1,2, Guilherme Antônio Behr1,2,3,4, José Cláudio Fonseca Moreira3, Benicio N. Frey1,2,
Corresponding author
freybn@mcmaster.ca

Corresponding author: Benicio N. Frey, Capes Foundation, Ministry of Education of Brazil, Caixa Postal 250, CEP 70040-020, Brasília, DF, Brazil
1 Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, L8P 3B6, Canada
2 Women's Health Concerns Clinic, St. Joseph's Healthcare, Hamilton, ON, L8P 3B6, Canada
3 Center of Oxidative Stress Research, Professor Tuiskon Dick Department of Biochemistry, Institute of Health Basic Sciences, Federal University of Rio Grande do Sul (UFRGS), Av. Ramiro Barcelos, 2600 - Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
4 Capes Foundation, Ministry of Education of Brazil. Caixa Postal 250, CEP 70040-020, Brasília, DF, Brazil
This item has received
Article information
Abstract
Bibliography
Download PDF
Statistics
Abstract

Bipolar disorder (BD) is a chronic major mental illness characterized by extreme mood episodes, cognitive impairment, and high rates of disability. Several lines of evidence suggest that BD may be associated with abnormalities in mitochondrial function. Here we critically review findings from brain imaging and from preclinical studies that investigated markers of energy metabolism in BD. Research with postmortem brain and peripheral tissue revealed changes in size and distribution of mitochondria, as well as decreased mitochondrial electron transport chain function, increased oxidative stress, and increased lipid and protein damage. PET imaging studies revealed decreased glucose metabolism in sub-areas of the prefrontal cortex, amygdala, and hippocampus structures in BD. On the other hand, increased lactate levels in BD have been found in cerebrospinal fluid and in gray matter by magnetic resonance spectroscopy, which suggest that distinct pathophysiological processes may be region-specific. Resting state fMRI studies have demonstrated decreased functional connectivity between fronto-limbic circuits. In conclusion, these results support the hypothesis of mitochondrial dysfunction in BD and suggest that BD is associated with decreased energy production and a shift towards anaerobic glycolysis. Such changes in energy metabolism can potentially decrease cell plasticity and ultimately disrupt brain circuits associated with mood and cognitive control.

Key words:
Mitochondrial dysfunction
bipolar disorder
PET
biomarkers
Resumen

El trastorno bipolar (TB) es una enfermedad mental crónica grave caracterizada por episodios de ánimo extremo, trastornos cognitivos y altas tasas de discapacidad. Varias líneas de evidencia sugieren que el TB puede estar asociado con anormalidades en la función mitocondrial. Aquí analizamos críticamente los hallazgos de las imágenes cerebrales y de los estudios preclínicos que han investigado los marcadores del metabolismo de energía en TB. Las investigaciones post mórtem basadas en tejidos cerebrales y tejidos periféricos revelaron cambios en el tamaño y en la distribución de las mitocondrias, además de una disminución en la funcionalidad de la cadena de transporte de electrones de las mitocondrias, un mayor estrés oxidativo y mayores daños lipídicos y proteínicos. Estudios con imágenes TEP revelan un metabolismo de glucosa disminuido en las subáreas de la corteza prefrontal, la amígdala y el hipocampo en TB. Por otro lado, se han hallado concentraciones mayores de lactato en TB en el líquido cefalorraquídeo cerebral y en la materia gris utilizando la espectroscopia con resonancia magnética, lo cual sugiere que los procesos fisiopatológicos individuales pueden ser específicos de las distintas regiones. Los estudios con resonancias magnéticas funcionales han demostrado una menor conectividad funcional entre los circuitos frontolímbicos. En conclusión, estos resultados apoyan la hipótesis de una disfunción mitocondrial en el TB y sugieren que el TB está asociado con una menor producción de energía y un cambio hacia la glicólisis anaeróbica. Estos cambios en el metabolismo energético pueden disminuir potencialmente la plasticidad celular y, en últimas, perturbar los circuitos cerebrales asociados con el estado de ánimo y el control cognitivo.

Palabras clave:
Disfunción mitocondrial
trastorno bipolar
tomografía por emisión de positrones
biomarcadores
Full text is only aviable in PDF
References
[1]
DJ Kupfer.
The increasing medical burden in bipolar disorder.
JAMA, 293 (2005), pp. 2528-2530
[2]
M Leboyer, DJ Kupfer.
Bipolar disorder: new perspectives in health care and prevention.
J Clin Psychiatry, 71 (2010), pp. 1689-1695
[3]
HB Clay, S Sillivan, C Konradi.
Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia.
Int J Dev Neurosci, 29 (2011), pp. 311-324
[4]
T Kato, N Kato.
Mitochondrial dysfunction in bipolar disorder.
Bipolar Disord, 2 (2000), pp. 180-190
[5]
C Stork, PF Renshaw.
Mitochondrial dysfunction in bipolar disorder: evidence from magnetic resonance spectroscopy research.
Mol Psychiatry, 10 (2005), pp. 900-919
[6]
M Berk, F Kapczinski, AC Andreazza, et al.
Pathways underlying neuroprogression in bipolar disorder: focus on inflammation, oxidative stress and neurotrophic factors.
Neurosci Biobehav Rev, 35 (2011), pp. 804-817
[7]
AM Cataldo, DL McPhie, NT Lange, et al.
Abnormalities in mitochondrial structure in cells from patients with bipolar disorder.
Am J Pathol, 177 (2010), pp. 575-585
[8]
AC Andreazza, L Shao, JF Wang, et al.
Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder.
Arch Gen Psychiatry, 67 (2010), pp. 360-368
[9]
WT Regenold, P Phatak, CM Marano, et al.
Elevated cerebrospinal fluid lactate concentrations in patients with bipolar disorder and schizophrenia: implications for the mitochondrial dysfunction hypothesis.
Biol Psychiatry, 65 (2009), pp. 489-494
[10]
AV Naydenov, ML MacDonald, D Ongur, et al.
Differences in lymphocyte electron transport gene expression levels between subjects with bipolar disorder and normal controls in response to glucose deprivation stress.
Arch Gen Psychiatry, 64 (2007), pp. 555-564
[11]
IC Maurer, P Schippel, HP Volz.
Lithium-induced enhancement of mitochondrial oxidative phosphorylation in human brain tissue.
Bipolar Disord, 11 (2009), pp. 515-522
[12]
ML MacDonald, A Naydenov, M Chu, et al.
Decrease in creatine kinase messenger RNA expression in the hippocampus and dorsolateral prefrontal cortex in bipolar disorder.
Bipolar Disord, 8 (2006), pp. 255-264
[13]
EL Streck, G Amboni, G Scaini, et al.
Brain creatine kinase activity in an animal model of mania.
Life Sci, 82 (2008), pp. 424-429
[14]
C Chinopoulos, V Adam-Vizi.
Calcium, mitochondria and oxidative stress in neuronal pathology. Novel aspects of an enduring theme.
[15]
S Orrenius, B Zhivotovsky, P Nicotera.
Regulation of cell death: the calcium-apoptosis link.
Nat Rev Mol Cell Biol, 4 (2003), pp. 552-565
[16]
M Berk, W Bodemer, T van Oudenhove, et al.
Dopamine increases platelet intracellular calcium in bipolar affective disorder and controls.
Int Clin Psychopharmacol, 9 (1994), pp. 291-293
[17]
SL Dubovsky, J Murphy, M Thomas, et al.
Abnormal intracellular calcium ion concentration in platelets and lymphocytes of bipolar patients.
Am J Psychiatry, 149 (1992), pp. 118-120
[18]
I Kusumi, T Koyama, I Yamashita.
Thrombin-induced platelet calcium mobilization is enhanced in bipolar disorders.
Biol Psychiatry, 32 (1992), pp. 731-734
[19]
T Kato, M Ishiwata, K Mori, et al.
Mechanisms of altered Ca2+ signalling in transformed lymphoblastoid cells from patients with bipolar disorder.
Int J Neuropsychopharmacol, 6 (2003), pp. 379-389
[20]
MJ Wasserman, TW Corson, D Sibony, et al.
Chronic lithium treatment attenuates intracellular calcium mobilization.
Neuropsychopharmacology, 29 (2004), pp. 759-769
[21]
JT Coyle, P Puttfarcken.
Oxidative stress, glutamate, and neurodegenerative disorders.
Science, 262 (1993), pp. 689-695
[22]
V Adam-Vizi, C Chinopoulos.
Bioenergetics and the formation of mitochondrial reactive oxygen species.
Trends Pharmacol Sci, 27 (2006), pp. 639-645
[23]
G Lenaz, M D'Aurelio, M Merlo Pich, et al.
Mitochondrial bioenergetics in aging.
Biochim Biophys Acta, 1459 (2000), pp. 397-404
[24]
AV Steckert, SS Valvassori, M Moretti, et al.
Role of oxidative stress in the pathophysiology of bipolar disorder.
Neurochem Res, 35 (2010), pp. 1295-1301
[25]
AC Andreazza, BN Frey, B Erdtmann, et al.
DNA damage in bipolar disorder.
Psychiatry Res, 153 (2007), pp. 27-32
[26]
N Buttner, S Bhattacharyya, J Walsh, et al.
DNA fragmentation is increased in non-GABAergic neurons in bipolar disorder but not in schizophrenia.
Schizophr Res, 93 (2007), pp. 33-41
[27]
JF Wang, L Shao, X Sun, et al.
Increased oxidative stress in the anterior cingulate cortex of subjects with bipolar disorder and schizophrenia.
Bipolar Disord, 11 (2009), pp. 523-529
[28]
M Kuloglu, B Ustundag, M Atmaca, et al.
Lipid peroxidation and antioxidant enzyme levels in patients with schizophrenia and bipolar disorder.
Cell Biochem Funct, 20 (2002), pp. 171-175
[29]
AC Andreazza, C Cassini, AR Rosa, et al.
Serum S100B and antioxidant enzymes in bipolar patients.
J Psychiatr Res, 41 (2007), pp. 523-529
[30]
F Kapczinski, F Dal-Pizzol, AL Teixeira, et al.
Peripheral biomarkers and illness activity in bipolar disorder.
J Psychiatr Res, 45 (2011), pp. 156-161
[31]
R Machado-Vieira, AC Andreazza, CI Viale, et al.
Oxidative stress parameters in unmedicated and treated bipolar subjects during initial manic episode: a possible role for lithium antioxidant effects.
Neurosci Lett, 421 (2007), pp. 33-36
[32]
ME Ozcan, M Gulec, E Ozerol, et al.
Antioxidant enzyme activities and oxidative stress in affective disorders.
Int Clin Psychopharmacol, 19 (2004), pp. 89-95
[33]
HA Savas, HS Gergerlioglu, A Gurel, et al.
[Increased xanthine oxidase and malondialdehyde levels in euthymic bipolar patients].
Klinik Psikiyatri Dergisi, 8 (2005), pp. 180-185
[34]
J Cui, L Shao, LT Young, et al.
Role of glutathione in neuroprotective effects of mood stabilizing drugs lithium and valproate.
Neuroscience, 144 (2007), pp. 1447-1453
[35]
L Shao, LT Young, JF Wang.
Chronic treatment with mood stabilizers lithium and valproate prevents excitotoxicity by inhibiting oxidative stress in rat cerebral cortical cells.
Biol Psychiatry, 58 (2005), pp. 879-884
[36]
RF Bachmann, Y Wang, P Yuan, et al.
Common effects of lithium and valproate on mitochondrial functions: protection against methamphetamine-induced mitochondrial damage.
Int J Neuropsychopharmacol, 12 (2009), pp. 805-822
[37]
BN Frey, SS Valvassori, GZ Reus, et al.
Effects of lithium and valproate on amphetamine-induced oxidative stress generation in an animal model of mania.
J Psychiatry Neurosci, 31 (2006), pp. 326-332
[38]
AC Andreazza, M Kauer-Sant'Anna, BN Frey, et al.
Effects of mood stabilizers on DNA damage in an animal model of mania.
J Psychiatry Neurosci, 33 (2008), pp. 516-524
[39]
PK Ranjekar, A Hinge, MV Hegde, et al.
Decreased antioxidant enzymes and membrane essential polyunsaturated fatty acids in schizophrenic and bipolar mood disorder patients.
Psychiatry Res, 121 (2003), pp. 109-122
[40]
JW Gawryluk, JF Wang, AC Andreazza, et al.
Decreased levels of glutathione, the major brain antioxidant, in postmortem prefrontal cortex from patients with psychiatric disorders.
Int J Neuropsychopharmacol, 14 (2011), pp. 123-130
[41]
BN Frey, AC Andreazza, M Kunz, et al.
Increased oxidative stress and DNA damage in bipolar disorder: a twin-case report.
Prog Neuropsychopharmacol Biol Psychiatry, 31 (2007), pp. 283-285
[42]
AC Andreazza, M Kauer-Sant'anna, BN Frey, et al.
Oxidative stress markers in bipolar disorder: a meta-analysis.
J Affect Disord, 111 (2008), pp. 135-144
[43]
M Berk, DL Copolov, O Dean, et al.
N-acetyl cysteine for depressive symptoms in bipolar disorder–a double-blind randomized placebo-controlled trial.
Biol Psychiatry, 64 (2008), pp. 468-475
[44]
O Dean, F Giorlando, M Berk.
N-acetylcysteine in psychiatry: current therapeutic evidence and potential mechanisms of action.
J Psychiatry Neurosci, 36 (2011), pp. 78-86
[45]
MS Buchsbaum, J Wu, LE DeLisi, et al.
Frontal cortex and basal ganglia metabolic rates assessed by positron emission tomography with [18F]2-deoxyglucose in affective illness.
J Affect Disord, 10 (1986), pp. 137-152
[46]
WC Drevets, JL Price, JR Simpson Jr., et al.
Subgenual prefrontal cortex abnormalities in mood disorders.
Nature, 386 (1997), pp. 824-827
[47]
LS Kegeles, KM Malone, M Slifstein, et al.
Response of cortical metabolic deficits to serotonergic challenge in familial mood disorders.
Am J Psychiatry, 160 (2003), pp. 76-82
[48]
WC Drevets, JL Price, ME Bardgett, et al.
Glucose metabolism in the amygdala in depression: relationship to diagnostic subtype and plasma cortisol levels.
Pharmacol, Biochem Behav, 71 (2002), pp. 431-447
[49]
RT Dunn, MW Willis, BE Benson, et al.
Preliminary findings of uncoupling of flow and metabolism in unipolar compared with bipolar affective illness and normal controls.
Psychiatry Res, 140 (2005), pp. 181-198
[50]
T Hosokawa, T Momose, K Kasai.
Brain glucose metabolism difference between bipolar and unipolar mood disorders in depressed and euthymic states.
Prog Neuropsychopharmacol Biol Psychiatry, 33 (2009), pp. 243-250
[51]
AH al-Mousawi, N Evans, KP Ebmeier, et al.
Limbic dysfunction in schizophrenia and mania. A study using 18F-labelled fluorodeoxyglucose and positron emission tomography.
The British journal of psychiatry : the journal of mental science, 169 (1996), pp. 509-516
[52]
BE Benson, MW Willis, TA Ketter, et al.
Interregional cerebral metabolic associativity during a continuous performance task (Part II) : differential alterations in bipolar and unipolar disorders.
Psychiatry Res, 164 (2008), pp. 30-47
[53]
JO Brooks 3rd, PW Wang, JC Bonner, et al.
Decreased prefrontal, anterior cingulate, insula, and ventral striatal metabolism in medication-free depressed outpatients with bipolar disorder.
J Psychiatr Res, 43 (2009), pp. 181-188
[54]
ME Raichle, AM MacLeod, AZ Snyder, et al.
A default mode of brain function.
Proc Natl Acad Sci U S A, 98 (2001), pp. 676-682
[55]
MD Fox, ME Raichle.
Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging.
Nat Rev Neurosci, 8 (2007), pp. 700-711
[56]
A Anand, Y Li, Y Wang, et al.
Resting state corticolimbic connectivity abnormalities in unmedicated bipolar disorder and unipolar depression.
Psychiatry Res, 171 (2009), pp. 189-198
[57]
D Ongur, M Lundy, I Greenhouse, et al.
Default mode network abnormalities in bipolar disorder and schizophrenia.
Psychiatry Res, 183 (2010), pp. 59-68
[58]
LG Chepenik, M Raffo, M Hampson, et al.
Functional connectivity between ventral prefrontal cortex and amygdala at low frequency in the resting state in bipolar disorder.
Psychiatry Res, 182 (2010), pp. 207-210
[59]
DP Dickstein, C Gorrostieta, H Ombao, et al.
Fronto-temporal spontaneous resting state functional connectivity in pediatric bipolar disorder.
Biol Psychiatry, 68 (2010), pp. 839-846
[60]
M Erecinska, MB Troeger, DF Wilson, et al.
The role of glial cells in regulation of neurotransmitter amino acids in the external environment. II. Mechanism of aspartate transport.
Brain research, 369 (1986), pp. 203-214
[61]
JD Port, SS Unal, DA Mrazek, et al.
Metabolic alterations in medication-free patients with bipolar disorder: a 3T CSF-corrected magnetic resonance spectroscopic imaging study.
Psychiatry Res, 162 (2008), pp. 113-121
[62]
SR Dager, SD Friedman, A Parow, et al.
Brain metabolic alterations in medication-free patients with bipolar disorder.
Arch Gen Psychiatry, 61 (2004), pp. 450-458
[63]
D Ongur, JE Jensen, AP Prescot, et al.
Abnormal glutamatergic neurotransmission and neuronal-glial interactions in acute mania.
Biol Psychiatry, 64 (2008), pp. 718-726
[64]
KM Cecil, MP DelBello, R Morey, et al.
Frontal lobe differences in bipolar disorder as determined by proton MR spectroscopy.
Bipolar Disord, 4 (2002), pp. 357-365
[65]
MA Frye, J Watzl, S Banakar, et al.
Increased anterior cingulate/medial prefrontal cortical glutamate and creatine in bipolar depression.
Neuropsychopharmacology, 32 (2007), pp. 2490-2499
[66]
CM Moore, JA Frazier, CA Glod, et al.
Glutamine and glutamate levels in children and adolescents with bipolar disorder: a 4.0-T proton magnetic resonance spectroscopy study of the anterior cingulate cortex.
J Am Acad Child Adolesc Psychiatry, 46 (2007), pp. 524-534
[67]
MK Singh, D Spielman, A Libby, et al.
Neurochemical deficits in the cerebellar vermis in child offspring of parents with bipolar disorder.
Bipolar Disord, 13 (2011), pp. 189-197
[68]
BP Brennan, JI Hudson, JE Jensen, et al.
Rapid enhancement of glutamatergic neurotransmission in bipolar depression following treatment with riluzole.
Neuropsychopharmacology, 35 (2010), pp. 834-846
[69]
BP Forester, CT Finn, YA Berlow, et al.
Brain lithium, N-acetyl aspartate and myo-inositol levels in older adults with bipolar disorder treated with lithium: a lithium-7 and proton magnetic resonance spectroscopy study.
Bipolar Disord, 10 (2008), pp. 691-700
[70]
SD Friedman, SR Dager, A Parow, et al.
Lithium and valproic acid treatment effects on brain chemistry in bipolar disorder.
Biol Psychiatry, 56 (2004), pp. 340-348
[71]
DJ Kim, IK Lyoo, SJ Yoon, et al.
Clinical response of quetiapine in rapid cycling manic bipolar patients and lactate level changes in proton magnetic resonance spectroscopy.
Prog Neuropsychopharmacol Biol Psychiatry, 31 (2007), pp. 1182-1188
[72]
SJ Yoon, IK Lyoo, C Haws, et al.
Decreased glutamate/glutamine levels may mediate cytidine's efficacy in treating bipolar depression: a longitudinal proton magnetic resonance spectroscopy study.
Neuropsychopharmacology, 34 (2009), pp. 1810-1818
[73]
J Urenjak, SR Williams, DG Gadian, et al.
Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types.
J Neurosci, 13 (1993), pp. 981-989
[74]
RF Deicken, MP Pegues, S Anzalone, et al.
Lower concentration of hippo-campal N-acetylaspartate in familial bipolar I disorder.
Am J Psychiatry, 160 (2003), pp. 873-882
[75]
RF Deicken, Y Eliaz, R Feiwell, et al.
Increased thalamic N-acetylaspartate in male patients with familial bipolar I disorder.
Psychiatry Res, 106 (2001), pp. 35-45
[76]
T Hajek, D Bernier, C Slaney, et al.
A comparison of affected and unaffected relatives of patients with bipolar disorder using proton magnetic resonance spectroscopy.
J Psychiatry Neurosci, 33 (2008), pp. 531-540
[77]
H Hamakawa, T Kato, T Shioiri, et al.
Quantitative proton magnetic resonance spectroscopy of the bilateral frontal lobes in patients with bipolar disorder.
Psychological medicine, 29 (1999), pp. 639-644
[78]
GS Malhi, B Ivanovski, W Wen, et al.
Measuring mania metabolites: a longitudinal proton spectroscopy study of hypomania.
Act Psychiatr Scand Suppl, (2007), pp. 57-66
[79]
BN Frey, M Folgierini, M Nicoletti, et al.
A proton magnetic resonance spectroscopy investigation of the dorsolateral prefrontal cortex in acute mania.
Human psychopharmacol, 20 (2005), pp. 133-139
[80]
SC Caetano, RL Olvera, JP Hatch, et al.
Lower N-acetyl-aspartate levels in prefrontal cortices in pediatric bipolar disorder: a (1)H magnetic resonance spectroscopy study.
J Am Acad Child Adolesc Psychiatry, 50 (2011), pp. 85-94
[81]
KM Cecil, MP DelBello, MC Sellars, et al.
Proton magnetic resonance spectroscopy of the frontal lobe and cerebellar vermis in children with a mood disorder and a familial risk for bipolar disorders.
J Child Adolesc Psychopharmacol, 13 (2003), pp. 545-555
[82]
M Castillo, L Kwock, H Courvoisie, et al.
Proton MR spectroscopy in children with bipolar affective disorder: preliminary observations.
AJNR Am J Neuroradiol, 21 (2000), pp. 832-838
[83]
CM Moore, J Biederman, J Wozniak, et al.
Mania, glutamate/glutamine and risperidone in pediatric bipolar disorder: a proton magnetic resonance spectroscopy study of the anterior cingulate cortex.
J Affect Disord, 99 (2007), pp. 19-25
[84]
S Frangou, M Lewis, J Wollard, et al.
Preliminary in vivo evidence of increased N-acetyl-aspartate following eicosapentanoic acid treatment in patients with bipolar disorder.
J Psychopharmacol, 21 (2007), pp. 435-439
[85]
NC Patel, MP DelBello, KM Cecil, et al.
Temporal change in N-acetyl-aspartate concentrations in adolescents with bipolar depression treated with lithium.
J Child Adolesc Psychopharmacol, 18 (2008), pp. 132-139
[86]
DJ Rigotti, M Inglese, O Gonen.
Whole-brain N-acetylaspartate as a surrogate marker of neuronal damage in diffuse neurologic disorders.
AJNR Am J Neuroradiol, 28 (2007), pp. 1843-1849
[87]
BN Frey, JA Stanley, FG Nery, et al.
Abnormal cellular energy and phospholipid metabolism in the left dorsolateral prefrontal cortex of medication-free individuals with bipolar disorder: an in vivo 1H MRS study.
Bipolar Disord, 9 (2007), pp. 119-127
[88]
F Benedetti, G Calabrese, A Bernasconi, et al.
Spectroscopic correlates of antidepressant response to sleep deprivation and light therapy: a 3.0 Tesla study of bipolar depression.
Psychiatry Res, 173 (2009), pp. 238-242
[89]
RF Deicken, G Fein, MW Weiner.
Abnormal frontal lobe phosphorous metabolism in bipolar disorder.
Am J Psychiatry, 152 (1995), pp. 915-918

Conflicts of interest: The autors have not conflicts of interest.

Copyright © 2011. Asociación Colombiana de Psiquiatría
Download PDF
Article options