metricas
covid
Buscar en
Revista Española de Cirugía Ortopédica y Traumatología (English Edition)
Toda la web
Inicio Revista Española de Cirugía Ortopédica y Traumatología (English Edition) Gene Expression of Joint Cartilage Preserved under Different Conditions and Trea...
Journal Information
Vol. 51. Issue 6.
Pages 343-350 (November - December 2007)
Share
Share
Download PDF
More article options
Vol. 51. Issue 6.
Pages 343-350 (November - December 2007)
Original paper
Full text access
Gene Expression of Joint Cartilage Preserved under Different Conditions and Treated with Growth Factors
Expresión génica de cartílago articular conservado en diferentes condiciones y tratado con factores de crecimiento
Visits
1088
C. Acostaa, I. Izala, P. Ripaldaa, F. Forriolb,
Corresponding author
francisco_forriol@fremap.es

Corresponding author: Hospital FREMAP. Ctra. de Pozuelo, 61. 28220 Majadahonda. Madrid.
a Experimental Orthopedics Laboratory. University of Navarre
b FREMAP Hospital. Majadahonda. Madrid
This item has received
Article information
Abstract
Bibliography
Download PDF
Statistics
Purpose

To analyze the gene expression of anabolic and catabolic factors in chondrocyte cultures obtained from cartilage preserved at different temperatures, using different preservation media and treated with growth factors.

Materials and methods

A culture was made of a young lamb's distal femoral cartilage preserved at 4°C without a cryopreservative agent, at 4°C with PBS, at 4°C with DMEM, at -80°C without a cryopreservative agent, at –80°C with 10% glycerol and –80°C with 10% DMSO. An additional culture was made of osteoarthritic and old cartilage. RT-PCR analyses were conducted of the cultured cells with 10 ng of RNA per reaction and 20 nmols of each of the two primers; the cells were also treated with growth factors (TGF-β, FGF-a, IGF-1, OP-1®). RT-PCR reactions were evaluated by means of electrophoresis in agarose gels.

Results

The best results were obtained for samples cultured at 4°C with PBS; in old cartilage a reduction was observed in the expression of all anabolic factors, except agrecan. Cartilage stored at -80°C, with glycerol or DMSO, expressed a higher amount of catabolic factors. On adding growth factors, an increase was registered in the expression of TGF-βwhile MMP-2 levels remained unchanged, at the same level as those of the control group. The best response was obtained with OP-1®, FGF-a and IGF-1.

Conclusion

Cartilage stored at -80°C expresses a higher amount of catabolic factors than cartilage preserved at 4°C.

Key words:
cartilage
osteoarthritis
chondrocytes
growth factors
Objetivo

Analizar la expresión génica de factores anabólicos y catabólicos en cultivos de condrocitos obtenidos de cartílago, conservado a diferentes temperaturas, con distintos medios de conservación y tratados con diferentes factores de crecimiento.

Material y método

Se cultivaron condrocitos de cartílago femoral distal de cordero joven conservado: a 4°C sin criopreservador; 4°C con PBS; 4°C con DMEM; –80°C sin criopreservador; –80°C con glicerol al 10%; y –80°C con DMSO al 10%. También se cultivó cartílago artrósico y viejo.

Con las células cultivadas se efectuaron ensayos de RTPCR con 10 ng de ARN por cada reacción y 20 nmoles de cada uno de los dos cebadores y fueron tratadas con diferentes factores de crecimiento (factor transformante de crecimiento β [TGF-β], factor de crecimiento fibroblástico [FGF-a], IGF-1, OP-1®). Las reacciones de RT-PCR fueron analizadas mediante electroforesis en geles de agarosa.

Resultados

Los mejores resultados fueron en muestras cultivadas a 4°C con PBS; en el cartílago viejo disminuyó la expresión de todos los factores anabólicos, excepto el agrecano. El cartílago almacenado a -80°C con glicerol o DMSO expresó mayor cantidad de factores catabólicos. Al añadir los factores de crecimiento aumentó la expresión de TGF-β y se mantuvieron niveles de MMP-2 semejantes al grupo control. La mejor respuesta se obtuvo con OP-1®, FGF-a e IGF-1.

Conclusión

El cartílago almacenado a -80°C expresa mayor cantidad de factores catabólicos que el cartílago conservado a 4°C.

Palabras clave:
cartílago
artrosis
condrocito
factores de crecimiento
Full text is only aviable in PDF
References
[1.]
W.W. Curl, J. Krome, E.S. Gordon, J. Rushing, B.P. Smith, G.G. Poehling.
Cartilage injuries: a review of 31.516 knee arthroscopies.
Arthroscopy, 13 (1997), pp. 456-460
[2.]
L.D. Kaplan, M.R. Schurhoff, H. Selesnick, M. Thorpe, J.W. Uribe.
Magnetic Resonance Imaging of the Knee in Asymptomatic Professional Basketball Players.
Arthroscopy, 21 (2005), pp. 557-561
[3.]
N.M. Major, H.C. Helms.
MR imaging of the knee: findings in asymptomatic collegiate basketball players.
Am J Rheumatol, 179 (2002), pp. 641-644
[4.]
A.E. Gross, N. Sascha, P. Aubin.
Long-term follow-up of the use of fresh osteochondral allografts for postraumatic knee defects.
Clin Orthop, 435 (2005), pp. 79-87
[5.]
J.C. Garrett.
Osteochondral allografts for reconstruction of articular defects of the knee.
Inst Course Lect, 47 (1998), pp. 517-522
[6.]
T. Sato, K. Konomi, S. Yamasaki, S. Aratani, K. Tsuchimochi, M. Yokouchi, et al.
Comparative anylisis of gene expression profiles in intact and damaged regions of human osteoarthritic cartilage.
Arthritis & Rheumatism, 54 (2006), pp. 808-817
[7.]
R. Yagi, D. Alberti, S. Weiner, W. Horton.
Intrajoint comparison of gene expression patterns in human osteoarthritis suggest a change in chondrocyte phenotype.
J Orthop Res, 23 (2005), pp. 1128-1138
[8.]
R. Dragoslav.
Articular cartilage: composition and metabolism in health and disease.
Curr Opin Orthop, 4 (1993), pp. 69-79
[9.]
W. Daughaday, P. Rotwein.
Insulin-like growth factor I and II peptide Messenger ribonucleic and gene structures, serum and tissue concentrations.
Endocrine Rev, 10 (1989), pp. 68-91
[10.]
S. Seyedin, D. Rosen.
Matrix proteins of the skeleton.
Curr Op Cell Biol, 2 (1990), pp. 914-919
[11.]
M. Takigawa, T. Okawa, H. Pan, C. Aoki, K. Takahashi, J. Zue, et al.
Insulin-like growth factors 1 and 2 are autocrine factors in stimulating proteoglycan synthesis, a marker of differentiated chondrocytes, acting through their respective receptors on a clonal human chondrosarcoma derived cell line HCS-2/8.
Endocrinology, 138 (1997), pp. 4390-4400
[12.]
A. Czitrom, S. Keating, A. Gross.
The viability of articular cartilage in fresh osteochondral allografts after clinical transplantation.
J Bone Joint Surg Am, 72-A (1990), pp. 574-581
[13.]
J. Ewing.
Arthroscopic treatment of degenerative meniscal lesions and early degenerative arthritis of the knee.
Articular Cartilage and Knee Function. Basic Science and Arthroscopy, pp. 137-145
[14.]
T. Tallheden, J. Dennis, D. Lennon, E. Sjogren-Jansson, A. Caplan, A. Lindahl.
Phenotypic plasticity of human articular chondrocytes.
J Bone Joint Surg Am, 85-A (2003), pp. 93-100
[15.]
G. Walker, M. Fischer, J. Gannon, R. Thompson, T. Oegema.
Expression of type-X collagen in osteoarthritis.
J Orthop Res, 13 (1995), pp. 4-12
[16.]
M. Bolton, J. Dudhia, M. Bayliss.
Age-related changes in synthesis of link protein and aggreccan in human cartilage: implications for agregate stability.
J Biochem, 337 (1999), pp. 77-82
[17.]
J. Martin.
The role of chondrocytes senescence in the pathogenesis of osteoarthritis and in limiting cartilage repair.
J Bone Joint Surg Am, 85-A (2003), pp. 106-110
[18.]
F. Lafeber, H.L. van Roy, P. van der Kraan, van den Berg, J. Bijlsma.
Transforming growth factor- predominantly stimulates phenotypically changed chondrocytes in osteoarthritis human cartilage.
J Rheumatol, 24 (1997), pp. 536-542
[19.]
X. Wei, K. Messner.
Age and injury-dependent concentrations of transforming growth factor-1 and proteoglycan fragments in rabbit knee joint fluid.
Osteoarthritis & Cartilage, 6 (1998), pp. 10-18
[20.]
M. Wan, X. Shi, X. Cao.
TGF-beta/BMP signaling in cartilage and bone cells.
Curr Op Orthop, 13 (2002), pp. 368-374
[21.]
H. Yamamoto, M. Sohmiya, N. Oka, Y. Kato.
Effects of aging and sex on plasma insuline-like growth factor-1 (IGF-I) levels in normal adults.
Acta Endocrinol, 124 (1991), pp. 497-500
[22.]
S. Chubinskaya, K. Kuetner.
Regulation of osteogenic proteins by chondrocyte.
Int J Biochem Cell Biol, 35 (2003), pp. 1323-1340
[23.]
R. Smith, J. Justen, L. Sam, N. Rohloff, P. Ruppel, M. Brunden, et al.
Platellet-derived growth factor potentiates cellular responses of articular chondrocytes to interleukin-1.
Arthritis & Rheum, 34 (1991), pp. 697-706
[24.]
I.K. Ashton, J.A. Matheson.
Change in response with age of human articular cartilage to plasma somatomedin activity.
Calcif Tissue Int, 29 (1979), pp. 89-94
[25.]
H. Nagase, J.F. Woesner.
Matrix metalloproteinases.
J Biol Chem, 274 (1999), pp. 21491-21494
[26.]
M. Vincenti, C. Brinkerhoff.
The potential of signal transduction inhibitors for treatment of arthritis: is it all just JNK?.
J Clin Invest, 108 (2001), pp. 181-183
[27.]
Y. Hsieh, S. Yang, S. Chu, P. Chen, M. Chou, M. Hsu, et al.
Expression changes of gelatinases in human osteoarthritic knees and arthroscopic debridement.
Arthroscopy, 20 (2004), pp. 482-488
[28.]
P. Mitchell, H. Magna, L. Reeves, L. Lopresti-Morrow, S. Yocum, P. Rosner, et al.
Cloning, expression, and type II collagenolytic activity of matrix metalloproteinase-13 from human osteoarthritic cartilage.
J Clin Invest, 97 (1996), pp. 761-768
[29.]
T. Aigner, A. Zien, D. Hanish, R. Zimmer.
Gene expression in chondrocyte assessed with use of microarrays.
J Bone Joint Surg Am, 85-A (2003), pp. 117-123
Copyright © 2007. Sociedad Española de Cirugía Ortopédica y Traumatología (SECOT). All rights reserved
Article options
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos