covid
Buscar en
Revista Española de Nutrición Humana y Dietética
Toda la web
Inicio Revista Española de Nutrición Humana y Dietética Efectos de los ácidos grasos omega 3 y otros suplementos alimenticios en proces...
Journal Information
Vol. 15. Issue 1.
Pages 20-29 (January - March 2011)
Share
Share
Download PDF
More article options
Vol. 15. Issue 1.
Pages 20-29 (January - March 2011)
Revisión
Full text access
Efectos de los ácidos grasos omega 3 y otros suplementos alimenticios en procesos patológicos relacionados con la tercera edad
Effect of omega-3 fatty acids and other food supplements on elderly-related pathological processes
Visits
4774
F. Ruedaa,b,
Corresponding author
frueda@ub.edu

Autor para correspondencia.
, J.C. Domingob, N. Macha
a Àrea de Ciències de la Salut, Institut Internacional de Postgrau, Universitat Oberta de Catalunya, Barcelona, España
b Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad de Barcelona, Barcelona, España
This item has received
Article information
Resumen

El creciente número de personas de la tercera edad en nuestra sociedad ha llevado a un incremento de la prevalencia de ciertas enfermedades cuya etiología de base son procesos inflamatorios o desarreglos metabólicos lipídicos con riesgo cardiovascular. En los países desarrollados, la medicina, debido a la presión asistencial y de la industria farmacéutica, tiende a actuar de forma agresiva frente a cualquier sintomatología. La consecuencia es que poseemos una población anciana polimedicada. Actualmente es conocida la influencia de la dieta en muchas de las enfermedades que asolan a las sociedades occidentales, mientras que se han puesto de manifiesto los efectos beneficiosos de la dieta mediterránea (por ej., fibra dietética o aceite de oliva). Un caso particular son los ácidos grasos poliinsaturados omega 3 (n-3), de los cuales son conocidos sus efectos antiinflamatorios y como reguladores del metabolismo lipídico, reduciendo así los riesgos de accidentes cardiovasculares. Asimismo, la cocina tradicional oriental puede aportar ingredientes que contienen sustancias activas de las cuales se está estudiando sus posibles efectos sinérgicos en la prevención e incluso el tratamiento de algunas enfermedades crónicas. En la presente revisión se pretende describir algunos de los mecanismos moleculares mediante los cuales ejercen su acción estos ácidos grasos y sus acciones beneficiosas sobre algunas enfermedades. Asimismo, se describen las acciones de algunos de los ingredientes naturales utilizados en la cocina tradicional oriental, y se postula que podrían utilizarse para reducir la carga medicamentosa de los pacientes de la tercera edad.

Palabras clave:
Ácidos grasos
Omega 3
Inflamación
Tercera edad
Polimedicación
Abstract

The increasing number of aging people in our society has led to a rise in the prevalence of some diseases, the ethiological base of which are inflammatory processes or lipid metabolic disorders, inducing cardiovascular risk. Currently, the medicine in the developed countries, due to a patient assistance and pharmaceutical industry pressure, is prone to act in an aggressive way in front of any symptomatology. As a consequence we have a polymedicated elderly population. Up to the present, the negative influence of the diet on several chronic diseases that devastate the western societies is well known, whereas the knowledge about the beneficial effects on health of the Mediterranean diet has grown in parallel (ie., dietetic fibre or olive oil). A particular case are the omega 3 (n-3) polyunsaturated fatty acids, which are known by its anti-inflammatory effects, as well as its lipid metabolism regulatory role, consequently reducing the cardiovascular events risk. At the same time, the traditional Eastern kitchen can bring ingredients containing active substances which are being explored for the possible synergies in the prevention and even treatment of some chronic diseases. Therefore, in this review, we address some of the molecular mechanisms of the n-3 polyunsaturated fatty acids and their role in health and diseases benefits. Furthermore, we describe some of the natural ingredients used in the traditional oriental kitchen and their beneficial action, postulating that they could be used to reduce drug charge from the aging patients.

Keywords:
Fatty acids
Omega-3
Inflammation
Aging
Polymedication
Full text is only aviable in PDF
Bibliografía
[1.]
F. Blasco, J. Martínez, P. Villares, A.I. Jiménez.
El paciente anciano polimedicado: efectos sobre su salud y sobre el sistema sanitario.
Información Terapéutica del Sistema Nacional de Salud, 29 (2005), pp. 152-162
[2.]
X. Zhang.
Legal Status of Traditional Medicine and Complementary/ Alternative Medicine: A Worldwide Review.
World Health Organization, (2001),
[3.]
WHO/FAO expert consultation. Obesity: Preventing and managing the global epidemy: Report of a WHO consultation. WHO technical report series 894; 2000. p. 1-253.
[4.]
Grupo Internacional de Expertos. Dieta, nutrición y prevención de enfermedades crónicas: Informe de una Consulta Mixta de Expertos OMS/FAO. OMS, Serie de Informes Técnicos 916; 2003. p. 1–152
[5.]
Special issue - Diet, nutrition and the prevention of chronic diseases: scientific background papers of the joint WHO/FAO expert consultation, Geneva, 28 January - 1 February 2002. Public Health Nutrition. 2004;7 Suppl 1001:1-250.
[6.]
M. Laposata.
Fatty acids. Biochemistry to clinical significance.
Am J Clin Pathol, 104 (1995), pp. 172-179
[7.]
G.M. Williams, C.L. Williams, J.H. Weisburger.
Diet and cancer prevention: the fiber first diet.
Toxicol Sci, 52 (1999), pp. 72-86
[8.]
P. Yaqoob.
Monounsaturated fats and immune function.
Braz J Med Biol Res, 31 (1998), pp. 453-465
[9.]
R.P. Tracy.
Diet and hemostatic factors.
Curr Atheroscler Rep, 1 (1999), pp. 243-248
[10.]
M.J. Wargovich, J.E. Cunningham.
Diet, individual responsiveness and cancer prevention.
J Nutr, 133 (2003), pp. S2400-S2403
[11.]
A. Linares, S. Perales, R.J. Palomino-Morales, M. Castillo, M.J. Alejandre.
Nutritional control, gene regulation, and transformation of vascular smooth muscle cells in atherosclerosis.
Cardiovasc Hematol Disord Drug Targets, 6 (2006), pp. 151-168
[12.]
G. Casadesus, P.I. Moreira, A. Nunomura, S.L. Siedlak, W. Bligh-Glover, E. Balraj, et al.
Indices of metabolic dysfunction and oxidative stress.
Neurochem Res, 32 (2007), pp. 717-722
[13.]
K. Esposito, M. Ciotola, D. Giugliano.
Mediterranean diet, endothelial function and vascular inflammatory markers.
Public Health Nutr, 9 (2006), pp. 1073-1076
[14.]
N. Babio, M. Bulló, J. Salas-Salvadó.
Mediterranean diet and metabolic syndrome: the evidence.
Public Health Nutr, 12 (2009), pp. 1607-1617
[15.]
D. Vareiro, A. Bach-Faig, B. Raidó Quintana, I. Bertomeu, G. Buckland, M.D. Vaz de Almeida, et al.
Availability of Mediterranean and non-Mediterranean foods during the last four decades: comparison of several geographical areas.
Public Health Nutr, 12 (2009), pp. 1667-1675
[16.]
P.P. Dimitrow, M. Jawien.
Pleiotropic, cardioprotective effects of omega-3 polyunsaturated fatty acids.
Mini Rev Med Chem, 9 (2009), pp. 1030-1039
[17.]
R.A. Siddiqui, K.A. Harvey, N. Ruzmetov, S.J. Miller, G.P. Zaloga.
n-3 fatty acids prevent whereas trans-fatty acids induce vascular inflammation and sudden cardiac death.
Br J Nutr, 102 (2009), pp. 1811-1819
[18.]
J.H. Lee, J.H. O’Keefe, C.J. Lavie, W.S. Harris.
Omega-3 fatty acids: cardiovascular benefits, sources and sustainability.
Nat Rev Cardiol, 6 (2009), pp. 753-758
[19.]
C. Williamson.
Dietary factors and depression in older people.
Br J Community Nurs, 14 (2009), pp. 422
[20.]
G. Zuliani, M. Galvani, E. Leitersdorf, S. Volpato, M. Cavalieri, R. Fellin.
The role of polyunsaturated fatty acids (PUFA) in the treatment of dyslipidemias.
Curr Pharm Des, 15 (2009), pp. 4087-4093
[21.]
P.C. Calder.
Polyunsaturated fatty acids and inflammatory processes: New twists in an old Tale.
Biochimie, 91 (2009), pp. 791-795
[22.]
H. Seki, Y. Tani, M. Arita.
Omega-3 PUFA derived anti-inflammatory lipid mediator resolvin E1.
Prostaglandins Other Lipid Mediat, 89 (2009), pp. 126-130
[23.]
S. Rao, M. Abdel-Reheem, R. Bhella, C. McCracken, D. Hildebrand.
Characteristics of high alpha-linolenic acid accumulation in seed oils.
Lipids, 43 (2008), pp. 749-755
[24.]
R. Ayerza.
The seed's protein and oil content, fatty acid composition, and growing cycle length of a single genotype of chia (Salvia hispanica L.) as affected by environmental factors.
J Oleo Sci, 58 (2009), pp. 347-354
[25.]
I.N.T. De Gomez Dumm, R.R. Brenner.
Oxidative desaturation of alpha-linolenic, linoleic, and stearic acids by human liver microsomes.
Lipids, 10 (1975), pp. 315-317
[26.]
A.P. Simopoulos.
The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases.
Exp Biol Med, 233 (2008), pp. 674-688
[27.]
T.A. Hague, B.O. Christoffersen.
Effect of dietary fats on arachidonic acid and eicosapentaenoic acid biosynthesis and conversion to C22 fatty acids in isolated liver cells.
Biochim Biophys Acta, 796 (1984), pp. 205-217
[28.]
T.A. Hague, B.O. Christoffersen.
Evidence for peroxisomal retroconversion of adrenic acid (22:4n6) and docosahexaenoic acid (22:6n3) in isolated liver cells.
Biochim Biophys Acta, 875 (1986), pp. 165-173
[29.]
I.M. Ghafoorunissa.
N-3 fatty acids in Indian diets-comparison of the effects of precursor (alpha-linolenic acid) vs product (long chain n-3 polyunsaturated fatty acids).
Nutr Res, 12 (1992), pp. 569-582
[30.]
S.E. Carlson, P.G. Rhodes, M.G. Ferguson.
Docosahexaenoic acid status of preterm infants at birth and following feeding with human milk or formula.
Am J Clin Nutr, 44 (1986), pp. 798-804
[31.]
P. Singer, W. Jaeger, S. Voigt, H. Theil.
Defective desaturation and elongation of n-6 and n-3 fatty acids in hypertensive patients.
Prostaglandins Leukot Med, 15 (1984), pp. 159-165
[32.]
G. Honigmann, E. Schimke, J. Beitz, H.J. Mest, V. Schliack.
Influence of a diet rich in linolenic acid on lipids, thrombocyte aggregation and prostaglandins in type I (insulin-dependent) diabetes.
Diabetologia, 23 (1982), pp. 175
[33.]
A.P. Simopoulos.
Omega-3 fatty acids in health and disease and in growth and development.
Am J Clin Nutr, 54 (1991), pp. 438-463
[34.]
A.P. Simopoulos.
Essential fatty acids in health and chronic disease.
Am J Clin Nutr, 70 (1999), pp. S560-S569
[35.]
S.B. Eaton, M. Konner.
Paleolithic nutrition. A consideration of its nature and current implications.
N Engl J Med, 312 (1985), pp. 283-289
[36.]
S.B. Eaton, S.B. Eaton III., A.J. Sinclair, L. Cordain, N.J. Mann.
Dietary intake of long-chain polyunsaturated fatty acids during the Paleolithic.
World Rev Nutr Diet, 83 (1998), pp. 12-23
[37.]
A.P. Simopoulos.
Genetic variation and evolutionary aspects of diet.
Antioxidants in nutrition and health, pp. 65-88
[38.]
A.P. Simopoulos.
Evolutionary aspects of omega-3 fatty acids in the food supply.
Prostaglandins, Leukotr Essent Fatty Acids, 60 (1999), pp. 421-429
[39.]
A.P. Simopoulos.
The importance of the ratio of omega-6/omega-3 essential fatty acids.
Biomed Pharmacother, 56 (2002), pp. 365-379
[40.]
W.S. Harris, D. Mozaffarian, E. Rimm, P. Kris-Etherton, L.L. Rudel, L.J. Appel, et al.
Omega-6 fatty acids and risk for cardiovascular disease: a science advisory from the American Heart Association Nutrition Subcommittee of the Council on Nutrition, Physical Activity, and Metabolism; Council on Cardiovascular Nursing; and Council on Epidemiology and Prevention.
Circulation, 119 (2009), pp. 902-907
[41.]
J.M. Schwab, N. Chiang, M. Arita, C.N. Serhan.
Resolvin E1 and protectin D1 activate inflammation resolution programmes.
Nature, 447 (2007), pp. 869-874
[42.]
C.N. Serhan, N. Chiang, T.E. Van Dyke.
Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators.
Nature Rev Immunol, 8 (2008), pp. 349-361
[43.]
A.J. Merched, K. Ko, K.H. Gotlinger, C.N. Serhan, L. Chan.
Atherosclerosis: evidence for impairment of resolution of vascular inflammation governed by specific lipid mediators.
FASEB J, 22 (2008), pp. 3595-3606
[44.]
P.C. Calder.
N-3 polyunsaturated fatty acids and inflammation: from molecular biology to the clinic.
Lipids, 38 (2003), pp. 343-352
[45.]
P.C. Calder.
Polyunsaturated fatty acids and inflammation.
Prostaglandins Leukot Essent Fatty Acids, 75 (2006), pp. 197-202
[46.]
K.H. Weylandt, J.X. Kang.
Rethinking lipid mediators.
[47.]
C.N. Serhan, J. Savill.
Resolution of inflammation: the beginning programs the end.
Nat Immunol, 6 (2005), pp. 1191-1197
[48.]
S. Hong, K. Gronert, P.R. Devchand, R.L. Moussignac, C.N. Serhan.
Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. Autacoids in anti-inflammation.
J Biol Chem, 278 (2003), pp. 14677-14687
[49.]
F. Zapata-González, F. Rueda, J. Petriz, P. Domingo, F. Villarroya, J. Diaz-Delfin, et al.
Human dendritic cell activities are modulated by the omega-3 fatty acid, docosahexaenoic acid, mainly through PPAR(gamma):RXR heterodimers: comparison with other polyunsaturated fatty acids.
J Leuk Biol, 84 (2008), pp. 1172-1182
[50.]
C.N. Serhan, S. Hong, K. Gronert, S.P. Colgan, P.R. Devchand, G. Mirick, et al.
Resolvins: A family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals.
J Exp Med, 196 (2002), pp. 1025-1037
[51.]
C.N. Serhan, C.B. Clish, J. Brannon, S.P. Colgan, N. Chiang, K. Gronert.
Novel functional sets of lipid derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2 nonsteroidal anti-inflammatory drugs and transcellular processing.
J Exp Med, 192 (2000), pp. 1197-1204
[52.]
C.N. Serhan, M. Arita, S. Hong, K. Gotlinger.
Resolvins, docosatrienes, and neuroprotectins, novel omega-3-derived mediators, and their endogenous aspirin-triggered epimers.
Lipids, 39 (2004), pp. 1125-1132
[53.]
P.C. Calder.
Polyunsaturated fatty acids, inflammation, and immunity.
Lipids, 36 (2001), pp. 1007-1024
[54.]
H. Sano, T. Hla, J.A. Maier, L.J. Crofford, J.P. Case, T. Maciag, et al.
In vivo cyclooxygenase expression in synovial tissues of patients with rheumatoid arthritis and osteoarthritis and rats with adjuvant and streptococcal cell wall arthritis.
J Clin Invest, 89 (1992), pp. 97-108
[55.]
L.J. Crofford.
COX-1 and COX-2 tissue expression: implications and predictions.
J Rheumatol Suppl, 49 (1997), pp. 15-19
[56.]
R.A. Gupta, R.N. DuBois.
Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2.
Nat Rev Cancer, 1 (2001), pp. 11-21
[57.]
L.R. Howe, K. Subbaramaiah, A.MC. Brown, A.J. Dannenberg.
Cyclooxygenase-2: A target for the prevention and treatment of breast cancer.
Endocr Relat Cancer, 8 (2001), pp. 97-114
[58.]
J.L. Masferrer, K.M. Leahy, A.T. Koki, B.S. Zweifel, S.L. Settle, B.M. Woerner, et al.
Antiangiogenic and antitumor activities of cyclooxygenase- 2 inhibitors.
Cancer Res, 60 (2000), pp. 1306-1311
[59.]
E.L. Barry, L.B. Sansbury, M.V. Grau, I.U. Ali, S. Tsang, D.J. Munroe, et al.
Cyclooxygenase-2 polymorphisms, aspirin treatment, and risk for colorectal adenoma recurrence - data from a randomized clinical trial.
Cancer Epidemiol Biomarkers Prev, 18 (2009), pp. 2726-2733
[60.]
J.W. Alexander.
Immunonutrition: the role of omega-3 fatty acids.
Nutrition, 14 (1998), pp. 627-633
[61.]
H. Tapiero, G.N. Ba, P. Couvreur, K.D. Tew.
Polyunsaturated fatty acids (PUFA) and eicosanoids in human health and pathologies.
Biomed Pharmacother, 56 (2002), pp. 215-222
[62.]
S.T. Bailey, S. Ghosh.
’PPAR’ting ways with inflammation.
Nat Immunol, 6 (2005), pp. 966-967
[63.]
R. Marion-Letellier, P. De’Chelotte, M. Lacucci, S. Ghosh.
Dietary modulation of peroxisome proliferator-activated receptor gamma.
[64.]
K. Subbaramaiah, D.T. Lin, J.C. Hart, A.J. Dannenberg.
Peroxisome proliferator-activated receptor gamma ligands suppress the transcriptional activation of cyclooxygenase-2. Evidence for involvement of activator protein-1 and CREB-binding protein/p300.
J Biol Chem, 276 (2001), pp. 12440-12448
[65.]
W.L. Yang, H. Frucht.
Activation of the PPAR pathway induces apoptosis and COX-2 inhibition in HT-29 human colon cancer cells.
Carcinogenesis, 22 (2001), pp. 1379-1383
[66.]
K. Yamazaki, M. Shimizu, M. Okuno, R. Matsushima-Nishiwaki, N. Kanemura, H. Araki, et al.
Synergistic effects of RXR alpha and PPAR gamma ligands to inhibit growth in human colon cancer cells-phosphorylated RXR alpha is a critical target for colon cancer management.
Gut, 56 (2007), pp. 1557-1563
[67.]
N. Sato, R.A. Kozar, L. Zou, J.M. Weatherall, B. Attuwaybi, S.D. Moore-Olufemi, et al.
Peroxisome Proliferator-Activated Receptor [gamma] mediates protection against Cyclooxygenase-2-induced gut dysfunction in a rodent model of mesenteric ischemia/reperfusion.
Shock, 24 (2005), pp. 462-469
[68.]
A. Vecchini, V. Ceccarelli, F. Susta, P. Caligiana, P. Orvietani, L. Binaglia, et al.
Dietary a-linolenic acid reduces COX-2 expression and induces apoptosis of hepatoma cells.
J Lipid Res, 45 (2004), pp. 308
[69.]
S. Camandola, G. Leonarduzzi, T. Musso, L. Varesio, R. Carini, A. Scavazza, et al.
Nuclear factor κB is activated by arachidonic acid but not by eicosapentenoic acid.
Biochem Biophys Res Commun, 229 (1996), pp. 643-647
[70.]
J.A. Ross, A.G. Moses, K.C. Fearon.
The anti-catabolic effects of n-3 fatty acids.
Curr Opin Clin Nutr Metab Care, 2 (1999), pp. 219-226
[71.]
T.E. Novak, T.A. Babcock, D.H. Jho, W.S. Helton, N.J. Espat.
NF-κB inhibition by ω-3 fatty acids modulates LPS-stimulated macrophage TNF-α transcription.
Am J Physiol, 284 (2003), pp. L84-L89
[72.]
P.N. Paradkar, P.S. Blum, M.A. Berhow, H. Baumann, S.M. Kuo.
Dietary isoflavones suppress endotoxin-induced inflammatory reaction in liver and intestine.
Cancer Letters, 215 (2004), pp. 21-28
[73.]
F. Ye, J. Wu, T. Dunn, J. Yi, X. Tong, D. Zhang.
Inhibition of cyclooxygenase-2 activity in head and neck cancer cells by genistein.
Cancer Letters, 211 (2004), pp. 39-46
[74.]
M.H. Chung, J-H. Kim, J-S. Keum, S.S.Y. Lee, Y-J. Surh.
Genistein Inhibits NF-?B-dependent COX-2 Expression in Human Breast Epithelial Cells.
Journal of Korean Association of Cancer Prevention, 7 (2002), pp. 229-232
[75.]
Y. Denkins, D. Kempf, M. Ferniz, S. Nileshwar, D. Marchetti.
Role of ω-3 polyunsaturated fatty acids on cyclooxygenase-2 metabolism in brain-metastatic melanoma.
J Lipid Res, 46 (2005), pp. 1278
[76.]
E. Horia, B.A. Watkins.
Complementary actions of docosahexaenoic acid and genistein on COX-2, PGE2 and invasiveness in MDA-MB-231 breast cancer cells.
Carcinogenesis, 28 (2007), pp. 809
[77.]
M. Arita, F. Bianchini, J. Aliberti, A. Sher, N. Chiang, S. Hong, et al.
Stereochemical assignment, antiinflammatory properties, and receptor for the omega-3 lipid mediator resolvin E1.
J Exp Med, 201 (2005), pp. 713-722
[78.]
K.A. O’Leary, S. De Pascual-Tereasa, P.W. Needs, Y.P. Bao, N.M. O’Brien, G. Williamson.
Effect of flavonoids and vitamin E on cyclooxygenase-2 (COX-2) transcription.
Mutation Res, 551 (2004), pp. 245-254
[79.]
O’Brian C. Resveratrol: A Nutritional Suppressor of EGFR-Dependent Erk 1/2. Nutritional Genomics and Proteomics in Cancer Prevention [Abstract]. 2002.
[80.]
V.S. Govindarajan.
Turmeric-chemistry, technology, and quality.
Crit Rev Food Sci Nutr, 12 (1980), pp. 199-301
[81.]
S. Bengmark.
Curcumin, an atoxic antioxidant and natural NFkappaB, cyclooxygenase-2, lipooxygenase, and inducible nitric oxide synthase inhibitor: a shield against acute and chronic diseases.
JPEN J Parenter Enteral Nutr, 30 (2006), pp. 45-51
[82.]
W.M. Weber, L.A. Hunsaker, S.F. Abcouwer, L.M. Deck, D.L. Vander Jagt.
Anti-oxidant activities of curcumin and related enones.
Bioorg Med Chem, 13 (2005), pp. 3811-3820
[83.]
Y. Yamamoto, R.B. Gaynor.
Therapeutic potential of inhibition of the NF-?B pathway in the treatment of inflammation and cancer.
J Clin Invest, 107 (2001), pp. 135-142
[84.]
A.C. Bharti, N. Donato, S. Singh, B.B. Aggarwal.
Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor-kappa B and IkappaBalpha kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis.
Blood, 101 (2003), pp. 1053-1062
[85.]
N. Chainani-Wu.
Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa).
J Altern Complement Med, 9 (2003), pp. 161-168
[86.]
S.E. Nissen, K. Wolski.
Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes.
N Engl J Med, 356 (2007), pp. 2457-2471
[87.]
P.R. Liebson.
The thiazolidinedione controversy in cardiovascular risk.
Preventive Cardiology, 13 (2010), pp. 209-212
[88.]
J. Rennings, P. Smits, M.W. Stewart, C.J. Tack.
Autonomic neuropathy predisposes to rosiglitazone-induced vascular leakage in insulin-treated patients with type 2 diabetes: a randomised, controlled trial on thiazolidinedione-induced vascular leakage.
Diabetologia, 53 (2010), pp. 1856-1866
[89.]
R.J. Clifford.
Revisiting the Rosiglitazone Story – Lessons Learned.
N Engl J Med, 363 (2010), pp. 803-806
[90.]
F. Zapata-Gonzalez, F. Rueda, J. Petriz, P. Domingo, F. Villarroya, A. De Madariaga, J.C. Domingo.
9-cis-retinoic acid (9cRA), a retinoid X receptor (RXR) ligand, exerts immunosuppressive effects on dendritic cells by RXR-dependent activation: inhibition of peroxisome proliferator-activated receptor {gamma} blocks some of the 9cRA activities, and precludes them to mature phenotype development.
J Immunol, 178 (2007), pp. 6130-6139
[91.]
C. Chen.
COX-2's new role in inflammation.
Nature Chemical Biology, 6 (2010), pp. 401-402
[92.]
A.L. Groeger, C. Cipollina, M.P. Cole, S.R. Woodcock, G. Bonacci, T.K. Rudolph, et al.
Cyclooxygenase-2 generates anti-inflammatory mediators from omega-3 fatty acids.
Nature Chemical Biology, 6 (2010), pp. 433-441
[93.]
C. Sommer, F. Birklein.
Fighting off pain with resolvins.
Nature Medicine, 16 (2010), pp. 518-2094
[94.]
Z.-Z. Xu, L. Zhang, T. Liu, J.Y. Park, T. Berta, R. Yang, et al.
Resolvins RvE1 and RvD1 attenuate inflammatory pain via central and peripheral actions.
Nature Medicine, 16 (2010), pp. 592-597
Copyright © 2011. Asociación Española de Dietistas-Nutricionistas
Download PDF
Article options
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos