covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Lqr Robusto Mediante Incertidumbre Acotada En Los Datos
Journal Information
Vol. 4. Issue 3.
Pages 61-72 (July 2007)
Share
Share
Download PDF
More article options
Vol. 4. Issue 3.
Pages 61-72 (July 2007)
Open Access
Lqr Robusto Mediante Incertidumbre Acotada En Los Datos
Visits
2650
C. Ramos, M. Martínez, J. Sanchis, J.V. Salcedo
Departamento de Ingeniería de Sistemas y Automática Universidad Politécnica de Valencia Camino de Vera s/n, 46022 - Valencia, España
This item has received

Under a Creative Commons license
Article information
Resumen

En este trabajo se presenta el sintonizado del Regulador Lineal Cuadrático (LQR) mediante la técnica de incertidumbre acotada en los datos o Bounded Data Uncertainties (BDU) con el fin de mejorar la robustez del sistema, planteándose como un Min-Max donde se busca la mejor solución en el peor escenario posible. Así se ofrece un nuevo método guiado de ajuste del LQR, considerando los límites de la incertidumbre. La aplicación a sistemas multidimensionales no es trivial, pues presenta la forma de un Two-Point Boundary Value Problem (TPBVP), el cual se resuelve iterativamente.

Keywords:
Técnicas Minimax
Regularización
Método de Control LQR
Robustez,
Incertidumbre
Ecuaciones Matriciales de Riccati
Problema de Valor Límite
Sistemas Multidimensionales
Full text is only aviable in PDF
Referencias
[Aguado and Martínez, 2003]
Aguado, A. y M. Martínez (2003). Identificación y Control Adaptativo. Vol. ISBN: 84-205-3570-2. Prentice Hall.(Pearson Educación).
[Aström and Wittenmark, 1997]
K.J. Aström, B. Wittenmark.
Computer Controlled Systems. Theory and Design.
3rd. ed, Prentice Hall Information and Systems Sciences Series, (1997),
[Chandrasekaran et al., 2004]
S. Chandrasekaran, E. Gomez, Y. Karant, K.E. Schubert.
Backward error estimation.
Hawaii International Conference on Computer Science, (2004),
[Chandrasekaran et al., 1997]
S. Chandrasekaran, G.H. Golub, M. Gu, A.H. Sayed.
Worst-case parameter estimation with bounded model uncertainties.
American Control Conference,
[Chandrasekaran et al., 1998]
S. Chandrasekaran, G.H. Golub, M. Gu, A.H. Sayed.
Parameter estimation in the presence of bounded data uncertainties.
SIMAX, 19 (1998), pp. 235-252
[Chandrasekaran et al., 1999]
S. Chandrasekaran, G.H. Golub, M. Gu, A.H. Sayed.
An efficient algorithm for a bounded errors-in-variables model.
SIMAX, 20 (1999), pp. 839-859
[Ghaoui and Lebret, 1996]
L.E. Ghaoui, H. Lebret.
Robust least squares and applications.
In Proceedings of the 35th Conference on Decision and Control,
[Ghaoui and Lebret, 1997]
L.E. Ghaoui, H. Lebret.
Robust solutions to least-squares problems with uncertain data.
SIMAX, 18 (1997), pp. 1035-1064
[Golub et al., 1999]
G.H. Golub, P.C. Hansen, D.P. O’Leary.
Tikhonov regularization and total least squares.
SIAM J. Matrix Anal. Appl, 21 (1999), pp. 185-194
[Golub et al., 1980]
G.H. Ch. Golub, F. van Loan.
An analysis of the total least squares problem.
SIMAX, 17 (1980), pp. 883-893
[Golub et al., 1996]
G.H. Ch. Golub, F. van Loan.
Matrix Computations.
3rd ed, Johns Hopkins University Press, (1996),
[Hansen, 1992]
P.C. Hansen.
Analysis of discrete ill-posed problems by means of the L-curve.
SIAM Review, 34 (1992), pp. 561-580
[Hoerl et al., 1986]
R.W. Hoerl, J.H. Schuenemeyer, A.E. Hoerl.
A simulation of biased estimation and subset selection regression techniques.
Technometrics, 28 (1986), pp. 369-380
[Kilmer and O’Leary, 2001]
M.E. Kilmer, D.P. O’Leary.
Choosing regularization parameters in iterative methods for ill-posed problems.
SIMAX, 22 (2001), pp. 1204-1221
[Lawson and Hanson, 1995]
C.L. Lawson, R.J. Hanson.
Solving least-squares problems.
SIAM, (1995),
[Nascimento and Sayed, 1999]
V.H. Nascimento, A.H. Sayed.
Optimal state regulation for uncertain state-space models.
American Control Conference, pp. 419-424
[Neubauer and Scherzer, 1998]
A. Neubauer, O. Scherzer.
Regularization for curve representations: uniform convergence for discontinuous solutions of ill-posed problems.
SIAM J. Appl. Math, 58 (1998), pp. 1891-1900
[O’Leary, 2001]
D.P. O’Leary.
Near-optimal parameters for tikhonov and other regularization methods.
SIAM Journal on scientific computing, 23 (2001), pp. 1161-1171
[Ollero, 1991]
Ollero, A. (1991). Control por computador: descripci ón interna y diseño óptimo. p. 374. ISBN 8426708137. Marcombo. Barcelona.
[Polyak and Tempo, 2001]
B.T. Polyak, R. Tempo.
Probabilistic robust design with linear quadratic regulators.
Systems and Control Letters, 43 (2001), pp. 343-353
[Ramos, 2007]
Ramos, C. (2007). Control Predictivo basado en Modelos (CPBM) robusto con BDU. PhD thesis. Universidad Politécnica de Valencia. Valencia.
[Ramos et al., 2004]
Ramos, C., J. Sanchis, M. Martínez y J. M. Herrero (2004). Sintonizado del LQR y control predictivo mediante BDU. In: XI Congreso Latinoamericano de Control. La Habana.(Cuba).
[Ramos et al., 2005]
Ramos, C., J. Sanchis, M. Martínez y J. M. Herrero (2005). LQR and predictive control tuned via BDU. Systems Science (ISSN 0137-1223) 31(1), 15-25.
[Sayed et al., 1998]
A.H. Sayed, V.H. Nascimento, S. Chandrasekaran.
Estimation and control with bounded data uncertainties.
Elsevier, (1998),
[Sayed and Nascimento, 1999]
A.H. Sayed, V.H. Nascimento.
Design criteria for uncertain models with structured and unstructured uncertainties.
Robustness in Identification and Control, pp. 159-173
[Schubert, 2003]
Schubert, K. E. (2003). A new look at robust estimation and identification. PhD thesis. University of California. Santa Barbara.
[Skogestad and Postlethwaite, 1996]
S. Skogestad, I. Postlethwaite.
Multivariable feedback control.
Analysis and Design. John Wiley and Sons, (1996),
[Stein, 1981]
C. Stein.
Estimation of the mean of a multivariate normal distribution.
The Annals of Statistics, 9 (1981), pp. 1135-1151
[Subramanian and Sayed, 2003]
A. Subramanian, A.H. Sayed.
A robust minimum-variance filter for time varying uncertain discrete-time systems.
American Control Conference, pp. 1885-1889
[Van Huffel and Vandewalle, 1991]
S. Van Huffel, J. Vandewalle.
The total least squares problem: Computational aspects and analysis.
SIAM, (1991),
[Watson, 2001]
G.A. Watson.
Data fitting problems with bounded uncertainties in the data.
SIAM J. Matrix Anal. Appl, 22 (2001), pp. 1274-1293

Financiado parcialmente por los proyectos de investigaci ón del MEC del Gobierno Español FEDER DPI2005- 07835 y FEDER DPI2004-8383-C03-02.

Copyright © 2007. Elsevier España, S.L.. Todos los derechos reservados
Download PDF
Article options