covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Técnicas de Control del Confort en Edificios
Journal Information
Vol. 7. Issue 3.
Pages 5-24 (July 2010)
Share
Share
Download PDF
More article options
Vol. 7. Issue 3.
Pages 5-24 (July 2010)
Open Access
Técnicas de Control del Confort en Edificios
Visits
4062
M. Castilla*,***, J.D. Álvarez*,***, M. Berenguel*,***, M. Pérez**,***, F. Rodríguez*,***, J.L. Guzmán*,***
* Universidad de Almería, Área de Ingeniería de Sistemas y Automática
** Universidad de Almería, Dpto. de Física Aplicada
*** CIESOL, Centro Mixto Universidad de Almería-CIEMAT, Ctra. Sacramento s/n, 04120 La Cañada (Almería), España
This item has received

Under a Creative Commons license
Article information
Resumen

La mayor parte del tiempo, las personas realizan sus actividades cotidianas en el interior de edificios, siendo por tanto preciso controlar las condiciones de confort (térmico, visual y calidad de aire) en el interior de los mismos, intentando minimizar el consumo energético simultáneamente. Este trabajo presenta una revisión de técnicas de control del confort en edificios. También muestra los resultados obtenidos en la implementación de un sistema de control jerárquico, que permite obtener situaciones de confort térmico adecuadas en el interior del CDdI-CIESOL-ARFRISOL (Contenedor Demostrador de Investigación - Centro de Investigación de la Energía Solar - Proyecto Singular Estratégico ARFRISOL) de la Universidad de Almería.

Full text is only aviable in PDF
Referencias
[Ahmed et al., 1996]
O. Ahmed, J. Mitchel, S. Klein.
Application of general regression neural networks (GRNN) in HVAC process identification and control.
ASHRAE Transactions, 102 (1996), pp. 1147
[Akyildiz et al., 2002]
I.F. Akyildiz, W. Su, E. Cayirci, Y. Sankarasubramaniam.
Wireless sensor networks: a survey.
Computer Networks, 38 (2002), pp. 393-422
[Ashrae, 2005]
Ashrae (2005). ASHRAE Handbook - Fundamentals. Refrigerating American Society of Heating and Air-Conditioning Engineers.
[ASHRAE55, 1992]
ASHRAE55 (1992). Thermal environment conditions for human occupancy. American Society of Heating, Ventilating and Air Conditioning Engineers.
[Atthajariyakul and Leephakpreeda, 2004]
S. Atthajariyakul, T. Leephakpreeda.
Real-time determination of optimal indoor-air condition for thermal comfort, air quality and efficient energy usage.
Energy and Buildings, 36 (2004), pp. 720-733
[Atthajariyakul and Leephakpreeda, 2005]
S. Atthajariyakul, T. Leephakpreeda.
Neural computing thermal comfort index for hvac systems.
Energy Conversion and Management, 46 (2005), pp. 2553-2565
[Awbi, 2003]
Awbi, H. (2003). Ventilation of Buildings. Spon Press.
[Berenguer and Bernal, 1994]
Berenguer, M.J. y F. Bernal (1994). Ntp 549: El dióxido de carbono en la evaluación de la calidad de aire interior. Instituto Nacional de Seguridad e Higiene en el Trabajo. Ministerio de Trabajo y Asuntos Sociales España.
[Bernard and Kuntze, 1999]
T. Bernard, B. Kuntze.
Multi-objective optimization of building climate control systems using fuzzy-logic.
European Control Conference,
[Bourgeois, 2005]
Bourgeois, D. (2005). Detailed occupancy prediction, occupancy-sensing control and advanced behavioural modelling within whole-building energy simulation. PhD thesis. Université Laval, Quebec, Canada.
[Braun, 2007]
J.E. Braun.
Intelligent building systems - past, present and future.
Proceedings of the 2007 American Control Conference,
[Calvino et al., 2004]
F. Calvino, M. La Gennusa, G. Rizzo, G. Scaccianoce.
The control of indoor thermal comfort conditions: introducing a fuzzy adaptive controller.
Energy and Buildings, 36 (2004), pp. 97-102
[Camacho and Bordons, 2004]
E.F Camacho, C. Bordons.
Control predictivo: Pasado, presente y futuro.
Revista Iberoamericana de Automática e Informática Industrial, 1 (2004), pp. 5-28
[Castilla et al., 2010a]
M. Castilla, J.D. Álvarez, M. Berenguel, M. Pérez, J.L. Guzmán, F. Rodríguez, J.A. Ferre, M. Pasamontes.
Análisis de parámetros de confort térmico en el cddi ciesol del proyecto arfrisol.
I Congreso sobre Arquitectura Bioclimática y Frío Solar (PSE-ARFRISOL),
[Castilla et al., 2009]
M. Castilla, J.D. Álvarez, M. Berenguel, M. Pérez, J.L. Guzmán, F. Rodríguez.
Análisis de confort térmico y consignas para control en el edificio bioclimático ciesol.
XXX Jornadas de Automática, (2009),
[Castilla et al., 2010b]
M. Castilla, J.D. Álvarez, M. Berenguel, M. Pérez, J.L. Guzmán, F. Rodríguez.
Comfort optimization in a solar energy research center.
Proceedings of the IFAC Conference on Control Methodologies and Technology for Energy Efficiency,
[Conceicao et al., 2010]
E. Conceicao, J. Farinho, M. Lúcio.
Human thermophysiologic sensation control based in the adaptive comfort philosophy.
Proceedings of the IFAC Conference on Control Methodologies and Technology for Energy Efficiency,
[Congradac and Kulic, 2009]
V. Congradac, F. Kulic.
Hvac system optimization with co2 concentration control using genetic algorithms.
Energy and Buildings, 41 (2009), pp. 571-577
[Cziker et al., 2007]
A. Cziker, M. Chindris, A. Miron.
Implementation of fuzzy logic in daylighting control.
IEEE International Conference on Fuzzy Systems,
[de Dear and Brager, 2001]
R. de Dear, G.S. Brager.
The adaptive model of thermal comfort and energy conservation in the built environment.
International Journal of Biometeorology, 45 (2001), pp. 100-108
[Donaisky et al., 2007]
E. Donaisky, G.H. Oliveira, R.Z. Freire, N. Mendes.
Pmv-based predictive algorithms for controlling thermal comfort in building plants.
16th IEEE International Conference on Control Applications,
[Dounis et al., 1995]
A.I. Dounis, M.J. Santamouris, C.C. Lefas, A. Argiriou.
Design of a fuzzy set environment comfort system.
Energy and Buildings, 22 (1995), pp. 81-87
[Dounis et al., 1993]
A.I Dounis, M.J. Santamouris, C.C. Lefas.
Building visual comfort control with fuzzy reasoning.
Energy Conversion and Management, 1 (1993), pp. 17-28
[Dounis and Caraiscos, 2007]
A.I. Dounis, C. Caraiscos.
Intelligent coordinator of fuzzy controller-agents for indoor environment control in building using 3-d fuzzy comfort set.
IEEE International Conference on fuzzy systems,
[Dounis and Caraiscos, 2009]
A.I. Dounis, C. Caraiscos.
Advanced control systems engineering for energy and comfort management in a building environment - a review.
Renewable and Sustainable Energy Reviews, 13 (2009), pp. 1246-1261
[Dumur et al., 1997]
D. Dumur, P. Boucher, K.M. Murphy, F. Déqué.
Comfort control in residential housing using predictive controllers.
Proceedings of the 1997 IEEE International Conference on Control Applications,
[Erickson et al., 2009]
V.L. Erickson, Y. Lin, A. Kamthe, R. Brahme, A. Surana, A.E. Cerpa, M. Sohn, S. Narayanan.
Energy efficient building environment.
Proceedings of the 1st ACM Workshop On Embedded Sensing Systems For Energy-Efficiency In Buildings,
[Fanger, 1972]
P.O. Fanger.
Thermal Comfort Analysis and Applications in Environment Engineering, McGraw Hill, (1972),
[Fanger, 1973]
P.O. Fanger.
Assessment of man's thermal comfort in practice.
British Journal of Industrial Medicine, 30 (1973), pp. 313-324
[Federspiel and Asada, 1994]
C.C. Federspiel, H. Asada.
User-adaptable comfort control for hvac systems.
Transactions of the ASME, 116 (1994), pp. 474-486
[Ferre et al., 2010]
J.A. Ferre, M. Pasamontes, M. Castilla, M. Berenguel, M.J. Jiménez, D. Bravo, M. Pérez.
Desarrollo de un sistema de monitorización y control para edificios bioclimáticos en el marco del proyecto arfrisol.
I Congreso sobre Arquitectura Bioclimática y Frío Solar (PSE-ARFRISOL), Roquetas de Mar, (2010),
[Ferre et al., 2009]
J.A. Ferre, M. Pasamontes, M. Castilla, M.J. Jiménez, M. Pérez.
Diseño, implementación y explotación de un sistema de adquisición de datos en el edificio bioclimático ciesol en la Universidad de Almería.
XXX Jornadas de Automática, (2009),
[Flórez, 1985]
Flórez, J. (1985). Temperature prediction models and their application to the control of heating systems. PhD thesis. Control Systems Centre, UMIST, UK.
[Flórez and Barney, 1987a]
J. Flórez, G.C. Barney.
Adaptive control of central heating systems: Part 1: Optimim start time control.
Applied Mathematical Modelling, 11 (1987), pp. 89-95
[Flórez and Barney, 1987b]
J. Flórez, G.C. Barney.
Adaptive control of central heating systems: Part 2: Occupance time control.
Applied Mathematical Modelling, 11 (1987), pp. 96-103
[Freire et al., 2006]
R.Z. Freire, G.H.C. Oliveira, N. Mendes.
Thermal comfort based predictive controllers for building heating systems.
IFAC Workshop on Energy Saving Control in Plants and Buildings,
[Freire et al., 2008]
R.Z. Freire, G.H.C. Oliveira, N. Mendes.
Predictive. controllers for thermal comfort optimization and energy savings.
Energy and Buildings, 40 (2008), pp. 1353-1365
[Gouda et al., 2001]
M.M Gouda, S. Danaher, C.P. Underwood.
Thermal comfort based fuzzy logic controller.
Building services engineering research and technology, 22 (2001), pp. 237-253
[Gruber et al., 2001]
P. Gruber, M. Gwerder, J. Tödtli.
Predictive control for heating applications.
7th REHVA World Congress (Clima 2000/Napoli 2001),
[Guasch et al., 2001]
Guasch, J., R. Forster, F. Ramos, A. Hernández y N. A. Smith (2001). Enciclopedia de salud y seguridad en el trabajo: Iluminación. Organización Internacional del Trabajo. Ministerio de Trabajo y Asuntos Sociales.
[Guo and Zhou, 2009]
W. Guo, M. Zhou.
Technologies toward thermal comfort-based and energy-efficient hvac systems: a review.
Proceedings of the 2009 IEEE Conference on Systems, pp. 3883-3888
[Gwerder et al., 2010]
M. Gwerder, D. Gyalistras, F. Oldewurtel, B. Lehmann, K. Wirth, V. Stauch, J. Tödtli.
Potential assessment of rule-based control for integrated room automation.
10th REHVA World Congress, Sustainable Energy Use in Buildings-CLIMA 2010,
[Gyalistras et al., 2010]
D. Gyalistras, M. Gwerder, F. Oldewurtel, C.N. Jones, M. Morari, B. Lehmann, K. Wirth, V. Stauch.
Analysis of energy savings potentials for integrated room automation.
10th REHVA World Congress, Sustainable Energy Use in Buildings-CLIMA 2010,
[Henze and Hindman, 2002]
G.P. Henze, R.E. Hindman.
Control of air-cooled chiller condenser fans using clustering neural networks.
ASHRAE Transactions, 108 (2002), pp. 4574
[Hernández, 1994a]
Hernández, A. (1994a). NTP 343: Nuevos criterios para futuros estándares de ventilación de interiores. Instituto Nacional de Seguridad e Higiene en el Trabajo. Ministerio de Trabajo y Asuntos Sociales España.
[Hernández, 1994b]
Hernández, A. (1994b). NTP 742: Ventilación general de edificios. Instituto Nacional de Seguridad e Higiene en el Trabajo. Ministerio de Trabajo y Asuntos Sociales España.
[Hoof, 2008]
J. Hoof.
Forty years of fanger's model of thermal comfort: comfort for all?.
Indoor Air, 18 (2008), pp. 182-201
[Huang and Nianping, 2006]
Y. Huang, L. Nianping.
Indoor thermal comfort control research based on adaptive fuzzy strategy.
IMACS Multiconference on “Computational Engineering in Systems Applications”,
[IDAE, 2007]
IDAE (2007). Reglamento de instalaciones térmicas en los edificios. Technical Report. Ministerio de Industria, Turismo y Comercio de España.
[Inkarojrit, 2006]
V. Inkarojrit.
Developing predictive venetian blinds control models using visual comfort predictors.
The 23rd Conference on Passive and Low Energy Architecture,
[ISO7730, 1994]
ISO7730 (1994). Moderate thermal environment.- Determination of the PMV and PPD indices and specification of the conditions for thermal comfort. International Organisation for Standardisation.
[Kalogirou and Bojic, 2000]
S.A. Kalogirou, M. Bojic.
Artificial neural networks for the prediction of the energy consumption of a passive solar building.
Energy, 25 (2000), pp. 479-491
[Kang et al., 2010]
D.H. Kang, P.H. Mo, D.H. Choi, S.Y. Song, M.S. Yeo.
Effect of mrt variation on the energy consumption in a pmv-controlled office.
Building and Environment, 45 (2010), pp. 1914-1922
[Keyser and Ionescu, 2010]
R. Keyser, C. Ionescu.
Modelling and simulation of a lighting control system.
Simulation Modelling Practice and Theory, 18 (2010), pp. 165-176
[Kim and Kim, 2010]
J.T. Kim, G. Kim.
Overview and new developments in optical daylighting systems for building a healthy indoor environment.
Building and Environment, 45 (2010), pp. 256-269
[Koçlar et al., 2004]
G. Koçlar, A. Köknel, N. Tamer.
Building envelope design with the objective to ensure thermal, visual and acoustic comfort conditions.
Building and Environment, 39 (2004), pp. 281-287
[Kolokotsa et al., 2009]
D. Kolokotsa, A. Pouliezos, G. Stavrakakis, C. Lazos.
Predictive control techniques for energy and indoor environmental quality management in buildings.
Building and Environment, 44 (2009), pp. 1850-1863
[Kolokotsa et al., 2000]
D. Kolokotsa, D. Tsiavos, G.S. Stavrakakis, K. Kalaitzakis, E. Antonidakis.
Advanced fuzzy logic controllers design and evaluation for buildings’occupants thermal - visual comfort and indoor air quality satisfaction.
Energy and Buildings, 33 (2000), pp. 531-543
[Kummer et al., 1996]
M. Kummer, P. André, J. Nicolas.
Development of simplified models for solar buildings optimal control.
EuroSun’96,
[Lee et al., 2008]
H. Lee, J.S. Choi, R. Elmasri.
A conflict resolution architecture for the comfort of occupants in intelligent office.
4th IET International Conference on Intelligent Environments,
[Leephakpreeda et al., 2001]
T. Leephakpreeda, R. Thitipatanapong, T. Grittiyachot, V. Yungchareon.
Occupancy-based control of indoor air ventilation: A theoretical and experimental study.
Science Asia, 27 (2001), pp. 279-284
[Liang and Du, 2005]
J. Liang, R. Du.
Thermal comfort control based on neural network for hvac application.
Proceedings of the 2005 IEEE Conference on Control Applications,
[Liang and Du, 2008]
J. Liang, R. Du.
Design of intelligent comfort control system with human learning and minimum power control strategies.
Energy conversion and management, 49 (2008), pp. 517-528
[Liu et al., 2007]
W. Liu, Z. Lian, B. Zhao.
A neural network evaluation model for individual thermal comfort.
Energy and Buildings, 39 (2007), pp. 1115-1122
[Ma et al., 2009]
Y. Ma, F. Borrelli, B. Hencey, A. Packard, S. Bortoff.
Model predictive control of thermal energy storage in building cooling systems.
48th IEEE Conference on Decision and Control,
[Ma et al., 2010]
Y. Ma, F. Borrelli, B. Hencey, B. Coffey, S. Bengea, A. Packard, M. Wetter, P. Haves.
Model predictive control for the operation of building cooling systems.
2010 American Control Conference - ACC2010,
[Magnier and Haghighat, 2010]
L. Magnier, F. Haghighat.
Multiobjective optimization of building design using trnsys simulations, genetic algorithm and artificial neural networks.
Building and Environment, 45 (2010), pp. 739-746
[Markov, 2002]
D. Markov.
Practical evaluation of the thermal comfort parameters.
Annual International Course: Ventilation and Indoor climate, pp. 158-170
[Martín et al., 2007]
L. Martín, F. Rodríguez, J.L. Guzmán, M. Berenguel.
Sistema automático de predicción climática. aplicación al control óptimo de crecimiento de cultivos bajo invernadero.
IV Congreso Nacional y I Congreso Ibérico de Agroingeniería,
[Menchinelli and Bemporad, 2008]
P. Menchinelli, A. Bemporad.
Hybrid model predictive control of a solar air conditioning plant.
European Journal of Control, 6 (2008), pp. 501-515
[Mendes et al., 2001]
N. Mendes, G.H.C. Oliveira, H.X. Araújo.
Building thermal performance analysis by using matlab/simulink.
7th International IBPSA Conference,
[Morosan et al., 2010]
Morosan, P.D., R. Bourdais, D. Dumur y J. Buisson (2010). Building temperature regulation using a distributed model predictive control. Energy and Buildings42, doi:10.1016/j.enbuild.2010.03.014.
[Mozer et al., 1997]
M.C. Mozer, L. Vidmar, R.H. Dodier.
The neurothermostat: Predictive optimal control of residential heating systems.
Advances in Neural Information Processing Systems 9,
[Nassif et al., 2003]
N. Nassif, S. Kajl, R. Sabourin.
Two-objective online optimization of supervisory control strategy.
Proceedings of the 8th building simulation conference, pp. 927-943
[Nicol and Humphreys., 2002]
F. Nicol, M. Humphreys.
Adaptive thermal comfort and sustainable thermal standards for buildings.
Energy and Buildings, 34 (2002), pp. 563-572
[of Light and Lighting, Society, 2002]
of Light and Lighting, Society (2002). Code for Lighting. Butterworth-Heinemann.
[Oldewurtel et al., 2010a]
F. Oldewurtel, A. Parisio, C.N. Jones, M. Morari, D. Gyalistras, M. Gwerder, V. Stauch, B. Lehmann, K. Wirth.
Energy efficient buildings climate control using stochastic model predictive control and weather predictions.
2010 American Control Conference (ACC2010),
[Oldewurtel et al., 2008]
F. Oldewurtel, C.N. Jones, M. Morari.
A tractable approximation of chance constrained stochastic MPC based on affine disturbance feedback.
Proceedings of the 47th IEEE Conference on Decision and Control,
[Oldewurtel et al., 2010b]
F. Oldewurtel, D. Gyalistras, M. Gwerder, C.N. Jones, A. Parisio, V. Stauch, B. Lehmann, M. Morari.
Increasing energy efficiency in buildings climate control using weather forecasats and model predictive control.
10th REHVA World Congress, Sustainable Energy Use in Buildings-CLIMA 2010,
[Oliveira et al., 2003]
G.H.C. Oliveira, L.S. Coelho, N. Mendes, H.X. Araújo.
Using fuzzy logic in heating control systems.
6th ASME-JSME thermal engineering joint conference, pp. 1-6
[Orosa, 2009]
J.A. Orosa.
Research on general thermal comfort models.
European Journal of Scientific Research, 2 (2009), pp. 217-227
[Page et al., 2008]
J. Page, D. Robinson, N. Morel, J.L. Scartezzini.
A generalised stochastic model for the simulation of occupant presence.
Energy and Buildings, 40 (2008), pp. 83-98
[Pasamontes et al., 2009]
M. Pasamontes, J.D. Álvarez, J.L. Guzmán, M. Berenguel.
Hybrid modeling of a solar cooling system.
IFAC International Conference on Analysis and Design of Hybrid System, ADHS09,
[Pasamontes et al., 2007a]
M. Pasamontes, J.L. Guzmán, F. Rodríguez, M. Berenguel, E.F. Camacho.
Modelo híbrido de una planta de frío solar.
Congreso Internacional de Aislamiento Térmico y Acústico - CIATEA,
[Pasamontes et al., 2007b]
M. Pasamontes, M.J. Jiménez, J.L. Guzmán, R. Olmedo, M. Pérez, J.A. Ferrer, C. San Juan, S. Rosiek, F. Rodríguez, M. Berenguel, J. Batlles, R. Heras.
Monitorización del edificio ciesol de la universidad de almería.
Congreso Internacional de Aislamiento Térmico y Acústico - CIATEA,
[Pawlowski et al., 2010]
A. Pawlowski, J.L. Guzmán, F. Rodríguez, M. Berenguel, J. Sánchez.
Application of time-series methods to disturbance estimation in predictive control problems.
ISIE10 - IEEE International Symposium on Industrial Electronics,
[Pérez-Lombard et al., 2008]
L. Pérez-Lombard, J. Ortiz, C. Pout.
A review on buildings energy consumption information.
Energy and Buildings, 40 (2008), pp. 394-398
[Rivera, 2007]
D.E Rivera.
Una metodología para la identificación integrada con el diseño de controladores imc-pid.
Revista Iberoamericana de Automática e Informática Industrial, 4 (2007), pp. 5-18
[Rivera et al., 1986]
E.D. Rivera, M. Morari, S. Skogestad.
Internal model control. 4. pid controller design.
Industrial and Engineering Chemistry Process Design and Development, 25 (1986), pp. 252-265
[Rodríguez et al., 2008]
M. Rodríguez, C. De Prada, F. Capraro, S. Cristea.
Logic embedded nmpc of a solar air conditioning plant.
European Journal of Control, 6 (2008), pp. 484-500
[Ruano et al., 2010]
A.E. Ruano, P.M. Ferreira, H. Mendes.
Moga design of temperature and relative humidity models for predictive thermal comfort.
IFAC Conference on Control Methodologies and Technology for Energy Efficiency,
[Sherman, 1985]
M. Sherman.
A simplified model of thermal comfort.
Energy and Buildings, 8 (1985), pp. 37-50
[Siroky et al., 2010]
J. Siroky, S. Privara, L. Ferkl.
Model predictive control of building heating systems.
Clima 2010 - 10th Rehva World Congress “Sustainable energy use in buildings”,
[Sonntag et al., 2008]
C. Sonntag, H. Ding, S. Engell.
Supervisory control of a solar air conditioning plant with hybrid dynamics.
European Journal of Control, 6 (2008), pp. 451-463
[Stauch et al., 2008]
V. Stauch, M. Gwerder, D. Gyalistras, F. Schubiger.
Statistical adaptation of mesoscale numerical weather forecasts for designing predictive control of indoor building climates.
Proceedings of the 8th Annual Meeting of the EMS and 7th European Conference on Applied Climatology,
[Steiner et al., 2008]
P. Steiner, V. Stauch, M. Gwerder, D. Gyalistras, B. Lehmann, M. Morari, F. Schubiger.
Numerical weather prediction at meteoswiss.
Proceedings of the 30th meeting of the European Working Group on Limited Area Modelling (EWGLAM) and 15th meeting of the Short Range Numerical Weather Prediction network (SRNWP),
[Torres and Martín, 2008]
J.L. Torres, M.L. Martín.
Modelo higrotérmico de una oficina para estudios de confort con climatización forzada.
XXI Congreso Argentino de Control Automático,
[Trobec et al., 2005]
M. Trobec, B. Zupancic, A. Krainer.
Fuzzy control for the illumination and temperature comfort in a test chamber.
Building and Environment, 40 (2005), pp. 1626-1637
[Tse and Chan, 2007a]
W.L. Tse, W.L. Chan.
Real-time measurement of thermal comfort by using an open networking technology.
Measurement, 40 (2007), pp. 654-664
[Tse and Chan, 2007b]
W.L. Tse, W.L. Chan.
A distributed sensor network for measurement of human thermal comfort feelings.
Sensors and Actuators A: Physical, 144 (2008), pp. 394-402
[UNE-EN12464-1, 2003]
UNE-EN12464-1 (2003). Iluminación. Iluminación de los lugares de trabajo. Parte 1: Lugares de trabajo en interiores. Asociación Española de Normalización y Certificación (AENOR).
[UNE-EN12464-2, 2008]
UNE-EN12464-2 (2008). Iluminación. Iluminación de lugares de trabajo. Parte 2: Lugares de trabajo exteriores. Asociación Española de Normalización y Certificación (AENOR).
[Wan et al., 2009]
J.W. Wan, K. Yang, W.J. Zhang, J.L. Zhang.
A new method of determination of indoor temperature and relative humidity with consideration of human thermal comfort.
Building and Environment, 44 (2009), pp. 411-417
[Wang et al., 2005]
D. Wang, C.C. Federspiel, F. Rubinstein.
Modeling occupancy in single person offices.
Energy and Buildings, 37 (2005), pp. 121-126
[Wang et al., 2004]
S. Wang, Z. Xu, H. Li, W. Shi.
Investigation on intelligent building standard communication protocols and application of IT technologies.
Automation in construction, 13 (2004), pp. 607-619
[Yang et al., 2003]
I.H. Yang, M.S. Yeo, K.W. Kim.
Application of artificial neural network to predict the optimal start time for heating system in building.
Energy Conversion and Management, 44 (2003), pp. 2791-2809
[Yener, 1999]
A.K. Yener.
A method of obtaining visual comfort using fixed shading devices in rooms.
Building and Environment, 34 (1999), pp. 285-291
[Yu and Dexter, 2007]
Z. Yu, A. Dexter.
Hierarchical fuzzy rule-based control of renewable energy building systems.
CISBAT 2007 Renewables in a Changing Climate: Innovation in the Built Environment,
[Zambrano et al., 2008]
D. Zambrano, C. Bordons, E. Camacho, W. García-Gabin.
Model development and validation of a solar cooling plant.
International Journal of Refrigeration, 31 (2008), pp. 315-327
[Zambrano et al., 2006a]
Zambrano, D., C. Bordons y W. García-Gabin and E. Camacho (2006a). Hybrid modeling of a solar air conditioning plant.
[Zambrano et al., 2006b]
Zambrano, D., C. Bordons y W. García-Gabin and E. Camacho (2006b). A solar cooling plant: a benchmark for hybrid systems control.
[Zambrano et al., 2008]
D. Zambrano, W. García-Gabin.
Hierarquical control of a hybrid solar air conditioning plant.
European Journal of Control, 6 (2008), pp. 464-483
Copyright © 2010. Elsevier España, S.L.. All rights reserved
Download PDF
Article options