ARTÍCULO ORIGINAL
Enzymatic oxidation of volatile malodorous organosulfur compounds in a two-phase reactor
Julio C. Cruz, Jesús García, Marcela Ayala
Corresponding author
Departamento de Biocatálisis e Ingeniería Celular. Instituto de Biotecnología, UNAM. Av. Universidad #2001, Col. Chamilpa, C.P. 62210, Cuernavaca, Morelos, México
Read
3028
Timeswas read the article
784
Total PDF
2244
Total HTML
Share statistics
array:22 [ "pii" => "S1405888X15000029" "issn" => "1405888X" "doi" => "10.1016/j.recqb.2015.05.001" "estado" => "S300" "fechaPublicacion" => "2015-06-01" "aid" => "1" "copyrightAnyo" => "2015" "documento" => "article" "crossmark" => 0 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "TIP. 2015;18:5-12" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 1556 "formatos" => array:3 [ "EPUB" => 33 "HTML" => 1067 "PDF" => 456 ] ] "itemSiguiente" => array:18 [ "pii" => "S1405888X15000030" "issn" => "1405888X" "doi" => "10.1016/j.recqb.2015.05.002" "estado" => "S300" "fechaPublicacion" => "2015-06-01" "aid" => "2" "documento" => "article" "crossmark" => 0 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "TIP. 2015;18:13-28" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 2434 "formatos" => array:3 [ "EPUB" => 38 "HTML" => 1810 "PDF" => 586 ] ] "es" => array:12 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">ARTÍCULO ORIGINAL</span>" "titulo" => "El fitoplancton de un canal de Xochimilco y la importancia de estudiar ecosistemas acuáticos urbanos" "tienePdf" => "es" "tieneTextoCompleto" => "es" "tieneResumen" => array:2 [ 0 => "es" 1 => "en" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "13" "paginaFinal" => "28" ] ] "contieneResumen" => array:2 [ "es" => true "en" => true ] "contieneTextoCompleto" => array:1 [ "es" => true ] "contienePdf" => array:1 [ "es" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figura 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 2865 "Ancho" => 4479 "Tamanyo" => 898761 ] ] "descripcion" => array:1 [ "es" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Especies del fitoplancton del canal El Bordo ordenadas por su valor de frecuencia en las recolecciones, que las califica como dominantes (5-6 recolecciones), constantes (3-4 recolecciones), frecuentes (2 recolecciones) y raras (1 recolección). Las barras en negro distinguen a las especies dominantes a frecuentes y que integran el Grupo Funcional “J”, típico de cuerpos de agua tropicales y eutróficos, de acuerdo con Reynolds <span class="elsevierStyleItalic">et al.</span> 2002<a class="elsevierStyleCrossRef" href="#bib0025"><span class="elsevierStyleSup">5</span></a>.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Zitlali López-Mendoza, Rosaluz Tavera, Eberto Novelo" "autores" => array:3 [ 0 => array:2 [ "nombre" => "Zitlali" "apellidos" => "López-Mendoza" ] 1 => array:2 [ "nombre" => "Rosaluz" "apellidos" => "Tavera" ] 2 => array:2 [ "nombre" => "Eberto" "apellidos" => "Novelo" ] ] ] ] ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1405888X15000030?idApp=UINPBA00004N" "url" => "/1405888X/0000001800000001/v1_201507040014/S1405888X15000030/v1_201507040014/es/main.assets" ] "en" => array:19 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">ARTÍCULO ORIGINAL</span>" "titulo" => "Enzymatic oxidation of volatile malodorous organosulfur compounds in a two-phase reactor" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "5" "paginaFinal" => "12" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "Julio C. Cruz, Jesús García, Marcela Ayala" "autores" => array:3 [ 0 => array:2 [ "nombre" => "Julio C." "apellidos" => "Cruz" ] 1 => array:2 [ "nombre" => "Jesús" "apellidos" => "García" ] 2 => array:4 [ "nombre" => "Marcela" "apellidos" => "Ayala" "email" => array:1 [ 0 => "maa@ibt.unam.mx" ] "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0005" ] ] ] ] "afiliaciones" => array:1 [ 0 => array:2 [ "entidad" => "Departamento de Biocatálisis e Ingeniería Celular. Instituto de Biotecnología, UNAM. Av. Universidad #2001, Col. Chamilpa, C.P. 62210, Cuernavaca, Morelos, México" "identificador" => "aff0005" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "Corresponding author." ] ] ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0010" "etiqueta" => "Figure 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 2287 "Ancho" => 3580 "Tamanyo" => 325200 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">Suggested mechanism for the oxidation of thiols to disulfides catalyzed by peroxidases, in the presence of hydrogen peroxide.</p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0025">Introduction</span><p id="par0005" class="elsevierStylePara elsevierViewall">Chloroperoxidase (CPO, EC 1.11.1.10) from <span class="elsevierStyleItalic">Caldariomyces fumago</span> is an attractive enzyme for application in several and diverse fields such as the fine chemical and pharmaceutical industry<a class="elsevierStyleCrossRef" href="#bib0005"><span class="elsevierStyleSup">1</span></a>, diagnosis<a class="elsevierStyleCrossRef" href="#bib0010"><span class="elsevierStyleSup">2</span></a> as well as the oil-related industry<a class="elsevierStyleCrossRef" href="#bib0015"><span class="elsevierStyleSup">3</span></a> and environment remediation<a class="elsevierStyleCrossRefs" href="#bib0020"><span class="elsevierStyleSup">4,5</span></a>. The versatility of CPO is determined by its ability to catalyze different reactions under controlled conditions, including halogenation (chlorination, bromination and iodination), dehydrogenation, oxygen insertion and peroxide dismutation. In addition, low substrate specificity allows CPO to catalyze the transformation of a wide range of compounds of different chemical nature<a class="elsevierStyleCrossRef" href="#bib0030"><span class="elsevierStyleSup">6</span></a>. One of the most interesting catalytic modality of CPO is the peroxygenation activity, which catalyzes the oxidation of olefins and sulfur compounds to generate epoxides and sulfoxides, respectively<a class="elsevierStyleCrossRefs" href="#bib0005"><span class="elsevierStyleSup">1,6</span></a></p><p id="par0010" class="elsevierStylePara elsevierViewall">The broad specificity displayed by CPO towards organosulfur compounds is well established. The enantioselective generation of (<span class="elsevierStyleItalic">R</span>)-sulfoxides catalyzed by CPO has been thoroughly studied. The enzyme is able to catalyze the oxidation of β-carbonyl sulfides, cycloalkyl methyl sulfides, alkyl aryl sulfides, dialkyl sulfides and cyclic sulfides to their respective (<span class="elsevierStyleItalic">R</span>)-sulfoxides<a class="elsevierStyleCrossRefs" href="#bib0035"><span class="elsevierStyleSup">7-9</span></a>. The enantioselectivity is generally favored in the absence of halogen ions and pH near neutrality (pH 6). On the other hand, under acidic conditions (pH 3) and in the presence of chloride, the enzyme catalyzes the oxidation of sulfides to the racemic mixture of sulfoxides<a class="elsevierStyleCrossRef" href="#bib0050"><span class="elsevierStyleSup">10</span></a>. Under these conditions, the sulfoxidation of aromatic and heterocyclic compounds has been reported<a class="elsevierStyleCrossRef" href="#bib0055"><span class="elsevierStyleSup">11</span></a>. Furthermore, significant enzymatic transformation of the sulfur-containing fraction in straight diesel fuel has been demonstrated, thus highlighting the ability of CPO to catalyze the oxidation of chemically diverse organosulfur compounds<a class="elsevierStyleCrossRef" href="#bib0060"><span class="elsevierStyleSup">12</span></a>.</p><p id="par0015" class="elsevierStylePara elsevierViewall">Short-chain, volatile organosulfur compounds (VOC) have low odor threshold and very unpleasant odor, characteristic of the putrid odor of rotten egg and vegetables<a class="elsevierStyleCrossRef" href="#bib0065"><span class="elsevierStyleSup">13</span></a>. Exposure to even low concentrations of these compounds leads to dizziness, vomiting, headaches and eye irritation<a class="elsevierStyleCrossRef" href="#bib0070"><span class="elsevierStyleSup">14</span></a>. Thus, these compounds are classified as atmospheric pollutants particularly affecting the area surrounding sources of emission, such as waste water treatment plants, composting sites, paper pulping process and thermal-sludge treatment plants<a class="elsevierStyleCrossRef" href="#bib0075"><span class="elsevierStyleSup">15</span></a>.</p><p id="par0020" class="elsevierStylePara elsevierViewall">Considering the low specificity of CPO for sulfur compounds and the environmental problem that VOC represent, it was interesting to study the ability of the enzyme to catalyze the oxidation of short-chain, volatile sulfides and thiols. The results are focused on the kinetic behavior of the enzyme, the identification of products and the operation of a two-phase reactor for the removal of VOC from a gaseous stream.</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0030">Materials and methods</span><p id="par0025" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">Chemicals and enzyme</span>. CPO was produced from <span class="elsevierStyleItalic">Caldariomyces fumago</span> UAMH 89362 and purified as reported elsewhere<a class="elsevierStyleCrossRef" href="#bib0080"><span class="elsevierStyleSup">16</span></a> obtaining a preparation with a Rz (A<span class="elsevierStyleInf">398nm</span>/A<span class="elsevierStyleInf">280nm</span>) of at least 1.2. Hydrogen peroxide, diethyl sulfide, dimethyl disulfide, propanethiol, butanethiol, hexanethiol and phenyl sulfide were purchased from Sigma Co. Organic solvents and salts were obtained from J.T. Baker.</p><p id="par0030" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">Kinetic characterization of CPO-catalyzed oxidation of VOC</span>. Biocatalytic oxidation of organosulfur compounds was performed at 25<span class="elsevierStyleHsp" style=""></span>°C in closed vials, to prevent volatilization of the substrates. Kinetic characterization was performed using substrate concentrations of up to 5<span class="elsevierStyleHsp" style=""></span>mM, due to insolubility of the compounds. The reaction mixture contained 10% acetonitrile, 60<span class="elsevierStyleHsp" style=""></span>mM phosphate buffer pH 6 and 1<span class="elsevierStyleHsp" style=""></span>mM H<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">2</span>. The reaction was started by addition of the enzyme (0.05-0.1 nmol). Substrate conversion was monitored by UV absorbance (typically 220-250<span class="elsevierStyleHsp" style=""></span>nm in a Perkin Elmer DAD) through reverse phase HPLC (Hypersil ODS 2.1 X 100<span class="elsevierStyleHsp" style=""></span>μm column from Agilent), using a 30% acetonitrile/70% water isocratic phase. Reduction in the area of the UV signal was used to calculate substrate conversion. Reaction rate was calculated as the ratio of substrate conversion to reaction time. Controls with peroxide and without enzyme were also performed, in order to calculate the non-enzymatic conversion. Kinetic characterization was performed using substrate concentrations of up to 5<span class="elsevierStyleHsp" style=""></span>mM, due to insolubility of the compounds. Given that saturation could not be achieved in all cases, the value of k<span class="elsevierStyleInf">cat</span>/K<span class="elsevierStyleInf">m</span> was calculated from the slope of the linear section in the initial rate <span class="elsevierStyleItalic">vs</span> substrate concentration plot. For the control reactions, in the absence of the enzyme and in the presence of peroxide, the rate constant of non-enzymatic conversion (k<span class="elsevierStyleInf">non</span>) was also calculated from the slope of rate <span class="elsevierStyleItalic">vs</span> substrate concentration plot. Results shown are the average of at least three independent reactions.</p><p id="par0035" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">Product identification</span>. For product identification, 10-mL reactions were monitored until at least 70% substrate conversion was achieved. The reaction mixture was extracted with methylene chloride, dried through an anhydride Na<span class="elsevierStyleInf">2</span>SO<span class="elsevierStyleInf">4</span> bead and analyzed through gas chromatography (Agilent 6890N) coupled to a mass selective detector (Agilent 5973). A nonpolar HP-5ms column (30m x 0.25<span class="elsevierStyleHsp" style=""></span>mm x 0.25<span class="elsevierStyleHsp" style=""></span>μm) operating at low temperature (typically 40<span class="elsevierStyleHsp" style=""></span>°C) was used to separate and identify the products.</p><p id="par0040" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">Reactor operation</span>. A two-phase reactor was assembled as follows. An air stream was passed through a reservoir containing 2<span class="elsevierStyleHsp" style=""></span>mL of 226.1<span class="elsevierStyleHsp" style=""></span>mM of dimethyl disulfide (DMDS) in acetonitrile and the resulting DMDS-enriched stream was bubbled at the bottom of a glass vessel containing 70<span class="elsevierStyleHsp" style=""></span>mL of the liquid reaction medium (15% <span class="elsevierStyleItalic">tert</span>-butanol and 85% 60<span class="elsevierStyleHsp" style=""></span>mM phosphate buffer pH 6). Gas flow was maintained between 40-60<span class="elsevierStyleHsp" style=""></span>mL/min, total duration of each experiment (i.e. until the reservoir was exhausted) was around 80-90<span class="elsevierStyleHsp" style=""></span>min. Enzyme (1<span class="elsevierStyleHsp" style=""></span>μmol CPO = 40,000 enzyme units) and peroxide were successively added and samples were taken from the liquid phase to be analyzed by HPLC. The reaction was monitored using 230<span class="elsevierStyleHsp" style=""></span>nm for product detection, as substrate concentration in the liquid medium was extremely low and could not be accurately determined.</p><p id="par0045" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">Conversion calculations of the enzymatic reaction in the reactor</span>. Product concentration in the system was calculated form a calibration curve. The ratio of total product accumulated in the liquid phase to the total amount of enzyme added to the liquid phase was calculated for each condition tested in this study. Substrate conversion was referred to the theoretically limiting substrate, H<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">2</span> in most cases. Experiments were performed at least in duplicate.</p></span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0035">Results and discussion</span><p id="par0050" class="elsevierStylePara elsevierViewall">All compounds tested in this work were transformed in the presence of CPO at pH 6 in a reaction medium containing 10% organic solvent. Under these conditions, non-enzymatic oxidation of the substrates also occurred. The rate of the enzyme-catalyzed reaction was calculated as the difference between the total rate in the presence of the enzyme and peroxide minus the control rate in the presence of only peroxide. In some cases, enzyme saturation could not be achieved due to low substrate solubility. However, the pseudo-first order rate constants of the catalyzed (k<span class="elsevierStyleInf">cat</span>/K<span class="elsevierStyleInf">m</span>) and non-enzymatic (k<span class="elsevierStyleInf">non</span>) reactions were calculated from the linear section of the rate <span class="elsevierStyleItalic">vs</span> substrate concentration plot, as described in the experimental section, and are shown in <a class="elsevierStyleCrossRef" href="#tbl0005">Table I</a>. The catalytic proficiency, also shown in <a class="elsevierStyleCrossRef" href="#tbl0005">Table I</a>, is the ratio of these rate constants and has been interpreted by other authors as the ability of enzymes to lower the activation barrier of the reaction<a class="elsevierStyleCrossRef" href="#bib0085"><span class="elsevierStyleSup">17</span></a>. In units of concentration, the catalytic proficiency relates to the affinity between the enzyme and the chemically distorted substrate in the transition state. According to our data, the dissociation constant of VOCs is in the range of 100<span class="elsevierStyleHsp" style=""></span>nM or less, suggesting a mild interaction within the active center of the enzyme.</p><elsevierMultimedia ident="tbl0005"></elsevierMultimedia><p id="par0055" class="elsevierStylePara elsevierViewall">The reaction products, identified by mass spectrometry, are shown in <a class="elsevierStyleCrossRef" href="#tbl0010">Table II</a> and <a class="elsevierStyleCrossRef" href="#fig0005">Figure 1</a>; no other products could be detected. Physical properties of substrates and products are shown in <a class="elsevierStyleCrossRef" href="#tbl0015">Table III</a>. The oxidation generates compounds with higher boiling points, reduced vapor pressures and thus decreased volatility. Consequently, the oxidation decreases the atmospheric pollutant character of the studied sulfur compounds. We observed that the oxidation of sulfides generated the corresponding sulfoxides, as expected. It is well known that the CPO catalytic mechanism for the oxidation of sulfides involves a direct oxygen transfer within the active site of the enzyme, as evidenced by almost quantitative incorporation of labeled oxygen from H<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">2</span><a class="elsevierStyleCrossRef" href="#bib0090"><span class="elsevierStyleSup">18</span></a> into the sulfoxide<a class="elsevierStyleCrossRef" href="#bib0095"><span class="elsevierStyleSup">19</span></a>. The formation of a short-lived sulfur-based free radical has also been invoked, but has not been demonstrated yet<a class="elsevierStyleCrossRef" href="#bib0100"><span class="elsevierStyleSup">20</span></a>. On the other hand, we observed that thiols were oxidized to the corresponding disulfides. This reaction has not been described before for CPO. The non-enzymatic formation of a disulfide has been reported as a consequence of CPO-catalyzed halogenation of thiols at acidic pH<a class="elsevierStyleCrossRef" href="#bib0105"><span class="elsevierStyleSup">21</span></a>, thus ruling out a similar mechanism under the peroxidatic conditions (i.e pH 6 and absence of KCl) used in the present study. In order to further confirm this type of reaction being catalyzed by CPO, we also identified diphenyl disulfide (see <a class="elsevierStyleCrossRef" href="#tbl0010">Table II</a>) as the product of the oxidation of an aromatic thiol, benzenethiol. This reaction has been reported for other heme proteins such as myeloperoxidase (MPO) and horseradish peroxidase (HRP) using aliphatic thiols as substrates; it has been noted that oxidation rate is widely variable for these enzymes. For example, HRP-catalyzed oxidation of cysteine and cysteine derivatives showed rate constants in the range of 24-660 M<span class="elsevierStyleSup">-1</span> s<span class="elsevierStyleSup">-1</span>; only cysteine methyl ester and 2,3-dimercaptopropanol showed higher oxidation rate constants, in the order of 10<span class="elsevierStyleSup">3</span> and 10<span class="elsevierStyleSup">4</span> M<span class="elsevierStyleSup">-1</span> s<span class="elsevierStyleSup">-1</span>, respectively<a class="elsevierStyleCrossRef" href="#bib0110"><span class="elsevierStyleSup">22</span></a>. On the other hand, MPO seemed less sensitive to the nature and charge of the substrate, which were oxidized with rate constants in the range of 10<span class="elsevierStyleSup">3</span>-10<span class="elsevierStyleSup">4</span> M<span class="elsevierStyleSup">-1</span> s<span class="elsevierStyleSup">-1</span><a class="elsevierStyleCrossRef" href="#bib0115"><span class="elsevierStyleSup">23</span></a>. In the case of the substrates analyzed in this work, the rate constants of the CPO-catalyzed reaction are in the range of 10<span class="elsevierStyleSup">3</span>-10<span class="elsevierStyleSup">4</span> M<span class="elsevierStyleSup">-1</span> s<span class="elsevierStyleSup">-1</span> (<a class="elsevierStyleCrossRef" href="#tbl0005">Table I</a>), thus highlighting the potential of this versatile enzyme. Regarding the possible mechanism, the reaction could involve the formation of free radicals; it has been suggested that the first enzymatic intermediary of the catalytic cycle, an oxo-ferryl radical cation called Compound I, may be able to subtract an electron from the thiol group; the free radical, after losing a proton, combines with a second free thyl radical to form the disulfide (<a class="elsevierStyleCrossRef" href="#fig0010">Figure 2</a>).</p><elsevierMultimedia ident="tbl0010"></elsevierMultimedia><elsevierMultimedia ident="fig0005"></elsevierMultimedia><elsevierMultimedia ident="tbl0015"></elsevierMultimedia><elsevierMultimedia ident="fig0010"></elsevierMultimedia><p id="par0060" class="elsevierStylePara elsevierViewall">In order to test the ability of CPO to detoxify a gaseous effluent, an air stream was enriched with dimethyl disulfide (DMDS) as described in the experimental section and contacted with an aqueous reaction medium containing pH 6 phosphate buffer and 15% <span class="elsevierStyleItalic">tert</span>-butanol in order to favor the solubility of the substrate and stability of the enzyme; for this system <span class="elsevierStyleItalic">tert</span>-butanol was chosen as organic solvent because it has been reported to be less deactivating for the enzyme, compared to acetonitrile. The system is schematized in <a class="elsevierStyleCrossRef" href="#fig0015">Figure 3</a>A. DMDS was selected as model substrate due to a higher enzymatic conversion compared to the non-enzymatic conversion (<a class="elsevierStyleCrossRef" href="#tbl0005">Table I</a>). Different enzyme and hydrogen peroxide concentrations were assayed and product formation was monitored through HPLC, obtaining profiles similar to the one shown in <a class="elsevierStyleCrossRef" href="#fig0015">Figure 3</a>B. Product formation was attributed solely to enzyme catalysis, as proper controls showed little chemical oxidation in the absence of enzyme (less than 0.1<span class="elsevierStyleHsp" style=""></span>mM product), probably due to low substrate concentration in the system. The maximum amount of product found in the aqueous solution was 1.46<span class="elsevierStyleHsp" style=""></span>mM. The ratio of mol of product per mol of added enzyme (P/E) was calculated under different conditions, as shown in <a class="elsevierStyleCrossRef" href="#tbl0020">Table IV</a>. The P/E ratio increased with enzyme concentration, up to a maximum value near 12,100<span class="elsevierStyleHsp" style=""></span>mol of product/mol of enzyme (condition A and B); further addition of enzyme resulted in lower P/E ratio (condition E). These observations suggest that the reaction is not limited by the amount of enzyme present in the reaction. If all of the substrate in the reservoir was transferred to the liquid phase and converted to product, a maximum concentration of 6.46<span class="elsevierStyleHsp" style=""></span>mM would be expected. As total H<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">2</span> is 4<span class="elsevierStyleHsp" style=""></span>mM, the oxidant could be limiting the substrate conversion, thus successive additions of 2<span class="elsevierStyleHsp" style=""></span>mM H<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">2</span> (total 8<span class="elsevierStyleHsp" style=""></span>mM) were tested (condition C); however, higher concentrations of H<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">2</span> led to extremely low concentrations of product. It is known that in the absence of an efficient electron donor substrate, peroxidases are inactivated in a suicide-like fashion<a class="elsevierStyleCrossRefs" href="#bib0120"><span class="elsevierStyleSup">24,25</span></a>. Finally, in order to test whether addition of a similar amount of H<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">2</span> (3.5<span class="elsevierStyleHsp" style=""></span>mM) but dosified in more additions (7 additions of 0.5<span class="elsevierStyleHsp" style=""></span>mM) could lead to higher P/E ratios, the amount of H<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">2</span> was dosified in condition D. However, similar product concentration and P/E ratio was obtained, although a smoother profile for product generation was noticed.</p><elsevierMultimedia ident="fig0015"></elsevierMultimedia><elsevierMultimedia ident="tbl0020"></elsevierMultimedia></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Conclusions</span><p id="par0065" class="elsevierStylePara elsevierViewall">In conclusion, CPO from <span class="elsevierStyleItalic">C. fumago</span> is able to catalyze the oxidation of short-chain sulfides and mercaptans to generate the corresponding sulfoxides and disulfides. The products are less volatile compounds, and its ability to pollute the atmosphere is thus reduced by oxidation. Based on limiting concentrations of peroxide, a ca. 40% conversion of the volatile compound contained in a gaseous stream was achieved, by controlling the concentration of enzyme in the reactor.</p><p id="par0070" class="elsevierStylePara elsevierViewall">This example of a peroxidase able to catalyze the oxidation of volatile sulfur hydrocarbons highlights the versatility of low specificity enzymes in the environmental field; this reaction could be of practical application in the remediation of gaseous effluents. Further improvement of the system is necessary, through reactor engineering, in order to improve substrate transfer to the liquid medium.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:10 [ 0 => array:3 [ "identificador" => "xres529639" "titulo" => "Abstract" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0005" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec549684" "titulo" => "Keywords" ] 2 => array:3 [ "identificador" => "xres529640" "titulo" => "Resumen" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0010" ] ] ] 3 => array:2 [ "identificador" => "xpalclavsec549685" "titulo" => "Palabras clave" ] 4 => array:2 [ "identificador" => "sec0005" "titulo" => "Introduction" ] 5 => array:2 [ "identificador" => "sec0010" "titulo" => "Materials and methods" ] 6 => array:2 [ "identificador" => "sec0015" "titulo" => "Results and discussion" ] 7 => array:2 [ "identificador" => "sec0020" "titulo" => "Conclusions" ] 8 => array:2 [ "identificador" => "xack180549" "titulo" => "Acknowledgments" ] 9 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2015-01-20" "fechaAceptado" => "2015-05-06" "PalabrasClave" => array:2 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec549684" "palabras" => array:5 [ 0 => "Environmental biocatalysis" 1 => "organosulfur compounds" 2 => "chloroperoxidase" 3 => "peroxidation" 4 => "volatile substrates." ] ] ] "es" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec549685" "palabras" => array:5 [ 0 => "Biocatálisis ambiental" 1 => "compuestos organoazufrados" 2 => "cloroperoxidasa" 3 => "peroxidación" 4 => "sustratos volátiles." ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "en" => array:2 [ "titulo" => "Abstract" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">In this work we report the oxidation of volatile organosulfur compounds (VOC) catalyzed by the enzyme chloroperoxidase from <span class="elsevierStyleItalic">Caldariomyces fumago</span>. VOC are regarded as atmospheric pollutants due to their unpleasant odor and low detection threshold. Diethyl sulfide, dimethyl disulfide, propanethiol, butanethiol and hexanethiol were found to be substrates for the enzyme in a liquid medium reaction at pH 6, under peroxidatic conditions. Product analysis showed that sulfides were oxidized to their respective sulfoxides whereas thiols were oxidized to the corresponding disulfides. The identified products showed significantly lower vapor pressure than the parental compounds; thus, the products are not considered atmospheric pollutants. A 70-mL two-phase reactor was assembled in order to determine the efficiency of the enzymatic treatment. The liquid phase, consisting of 15% organic solvent and 85% buffer, was contacted with the gaseous phase, consisting of a substrate-enriched air stream. Using dimethyl disulfide as model substrate, we found that only enzymatic oxidation occurred in this system; by controlling the enzyme and peroxide concentration, we found that the substrate is transferred to the aqueous phase where 1<span class="elsevierStyleHsp" style=""></span>mol of enzyme converted approximately 12,400<span class="elsevierStyleHsp" style=""></span>mol of substrate, thus highlighting the potential of enzymatic treatment of malodorous gaseous streams.</p></span>" ] "es" => array:2 [ "titulo" => "Resumen" "resumen" => "<span id="abst0010" class="elsevierStyleSection elsevierViewall"><p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">En este trabajo reportamos la oxidación de una serie de compuestos organoazufrados volátiles (COV) catalizada por la enzima cloroperoxidasa obtenida del hongo <span class="elsevierStyleItalic">Caldariomyces fumago</span>. Los COV se consideran contaminantes atmosféricos debido a su olor desagradable y a su bajo umbral de detección. El sulfuro de etilo, disulfuro de dimetilo, propanotiol, butanotiol y hexanotiol fueron transformados por la enzima en un medio de reacción acuoso a pH 6 y en presencia de peróxido de hidrógeno. El análisis de los productos demostró que los sulfuros fueron oxidados a sus respectivos sulfóxidos, mientras que los tioles fueron oxidados a sus correspondientes disulfuros. Los productos identificados tienen una presión de vapor significativamente menor que los compuestos originales, por lo que son mucho menos volátiles y por tanto no se consideran contaminantes atmosféricos. Se ensambló un reactor de dos fases de 70<span class="elsevierStyleHsp" style=""></span>mL de volumen con el fin de determinar la eficiencia del tratamiento enzimático. La fase líquida, compuesta por 85% de amortiguador y 15% de solvente orgánico, se puso en contacto con la fase gaseosa, compuesta por aire enriquecido con el sustrato. Usando disulfuro de metilo como sustrato modelo, encontramos únicamente reacción enzimática en este sistema; al controlar la concentración de enzima y de peróxido en la fase líquida se logró transferir el sustrato a la fase acuosa en donde 1<span class="elsevierStyleHsp" style=""></span>mol de enzima convirtió aproximadamente 12,400 moles de sustrato, resaltando el potencial de los tratamientos enzimáticos para las corrientes gaseosas con mal olor por COV.</p></span>" ] ] "multimedia" => array:7 [ 0 => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 3514 "Ancho" => 3580 "Tamanyo" => 387511 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Identified products of thiol oxidation catalyzed by chloroperoxidase in a reaction system containing 10% acetonitrile. Numbering corresponds with <a class="elsevierStyleCrossRef" href="#tbl0010">Table II</a>.</p>" ] ] 1 => array:7 [ "identificador" => "fig0010" "etiqueta" => "Figure 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 2287 "Ancho" => 3580 "Tamanyo" => 325200 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">Suggested mechanism for the oxidation of thiols to disulfides catalyzed by peroxidases, in the presence of hydrogen peroxide.</p>" ] ] 2 => array:7 [ "identificador" => "fig0015" "etiqueta" => "Figure 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 1345 "Ancho" => 3580 "Tamanyo" => 214538 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">A) Schematic representation of the two-phase reactor. Liquid phase is composed by 15% tert-butanol and 85% buffer B) Typical kinetic profile for product generation in the bioreactor. Arrows mark enzyme and peroxide additions.</p>" ] ] 3 => array:7 [ "identificador" => "tbl0005" "etiqueta" => "Table I" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "tabla" => array:2 [ "leyenda" => "<p id="spar0035" class="elsevierStyleSimplePara elsevierViewall"><span class="elsevierStyleSup">*</span>In parenthesis, the R<span class="elsevierStyleSup">2</span> of the linear correlation is shown.</p>" "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Substrate \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">k<span class="elsevierStyleInf">cat</span>/K<span class="elsevierStyleInf">m</span> (M<span class="elsevierStyleSup">-1</span> s<span class="elsevierStyleSup">-1</span>)* \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">k<span class="elsevierStyleInf">non</span> (10<span class="elsevierStyleSup">-3</span> s<span class="elsevierStyleSup">-1</span>)* \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">(k<span class="elsevierStyleInf">cat</span>/K<span class="elsevierStyleInf">m</span>)/k<span class="elsevierStyleInf">non</span> (M<span class="elsevierStyleSup">-1</span>) \t\t\t\t\t\t\n \t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">Dimethyl disulfide \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">13040 (0.8116) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0.305 (0.9881) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">42.76 x10<span class="elsevierStyleSup">6</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">Diethyl sulfide \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">4290 (0.9022) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0.248 (0.9220) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">17.28 x10<span class="elsevierStyleSup">6</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">n-propanethiol \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">23330 (0.7592) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0.450 (0.9900) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">51.84 x10<span class="elsevierStyleSup">6</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">n-butanethiol \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">18180 (0.7027) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0.690 (0.9054) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">26.34 x10<span class="elsevierStyleSup">6</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">n-hexanethiol \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">2630 (0.9430) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0.596 (0.7845) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">4.41 x10<span class="elsevierStyleSup">6</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab853587.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">Kinetic characterization of CPO-catalyzed (k<span class="elsevierStyleInf">cat</span>/K<span class="elsevierStyleInf">m</span>) and uncatalyzed (k<span class="elsevierStyleInf">non</span>) oxidation of volatile organosulfur compounds in a system containing 10% acetonitrile.</p>" ] ] 4 => array:7 [ "identificador" => "tbl0010" "etiqueta" => "Table II" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "tabla" => array:2 [ "leyenda" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">Values in parentheses are relative abundances. [M<span class="elsevierStyleSup">+</span>], molecular ion.</p>" "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Substrate \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Product \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Spectral ions (<span class="elsevierStyleItalic">m/z</span>) \t\t\t\t\t\t\n \t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">Dimethyl disulfide (1) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">S-oxide dimethyldisulfide \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">110(78)[M<span class="elsevierStyleSup">+</span>], 95(41),79(6),64(100),45(98) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">Diethyl sulfide (2) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Diethyl sulfoxide \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">106(14)[M<span class="elsevierStyleSup">+</span>],90(2),78(100),63(69),50(51) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">n-Propanethiol (3) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Propyl disulfide \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">150(33)[M<span class="elsevierStyleSup">+</span>],108(23),43(100),27(13) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">n-Butanethiol (4) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Butyl disulfide \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">178(39)[M<span class="elsevierStyleSup">+</span>],122(36),57(100),41(52),29(38) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">n-Hexanethiol (5) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Hexyl disulfide \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">234(184)[M<span class="elsevierStyleSup">+</span>],150(27),117(19),85(33),55(18),43(100) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">Benzenethiol (6) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Phenyl disulfide \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">218(62)[M<span class="elsevierStyleSup">+</span>],185(16),154(18),109(100),77(11),65(44) \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab853588.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">Mass spectra data of the products generated from CPO-catalyzed oxidation of VOC.</p>" ] ] 5 => array:7 [ "identificador" => "tbl0015" "etiqueta" => "Table III" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "tabla" => array:2 [ "leyenda" => "<p id="spar0055" class="elsevierStyleSimplePara elsevierViewall">a, Ref. 18</p>" "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Substrate/product \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Vapor pressure (mmHg<span class="elsevierStyleInf">@ 20<span class="elsevierStyleHsp" style=""></span>¿C</span>) \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Boiling point<span class="elsevierStyleSup">a</span> (¿C) \t\t\t\t\t\t\n \t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">Dimethyl disulfide / \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">22 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">109 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">S-oxide dimethyldisulfide \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0.40 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">202 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">Diethyl sulfide/ \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">50 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">90 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">diethyl sulfoxide \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0.25 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">212 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">n-propanethiol/ \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">122 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">67 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">propyl disulfide \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0.35 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">196 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">n-butanethiol/ \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">45 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">98 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">butyl disulfide \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0.03 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">226 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">n-hexanethiol/ \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">4.5 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">152 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">hexyl disulfide \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0.00027 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">305 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab853585.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">Physical properties of the studied VOC and the generated products.</p>" ] ] 6 => array:7 [ "identificador" => "tbl0020" "etiqueta" => "Table IV" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "tabla" => array:2 [ "leyenda" => "<p id="spar0065" class="elsevierStyleSimplePara elsevierViewall"><span class="elsevierStyleSup">*</span> 4 additions a: 7 additions</p>" "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Condition \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Enzyme units per addition<span class="elsevierStyleSup">*</span> \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">H<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">2</span> concentration (mM) per addition<span class="elsevierStyleSup">*</span> \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Product concentration (mM) \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">mol product / mol enzyme \t\t\t\t\t\t\n \t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">A \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">41.25 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0.43 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">7297 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">B \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">82.5 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">1.43 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">12133 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">C \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">82.5 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">2 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0.16 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">1314 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">D \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">82.5 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0.5 <span class="elsevierStyleSup">a</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">1.47 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">12473 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">E \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">122.86 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">0.5 <span class="elsevierStyleSup">a</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">1.39 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">7920 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab853586.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0060" class="elsevierStyleSimplePara elsevierViewall">Product concentration and enzyme consumption for different CPO and H<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">2</span> concentrations in the two-phase reactor.</p>" ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0005" "bibliografiaReferencia" => array:25 [ 0 => array:3 [ "identificador" => "bib0005" "etiqueta" => "1" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Casella, L., Monzani, E. & Nicolis, S. Potential applications of peroxidases in the fine chemical industries, in Biocatalysis based on heme peroxidases (eds. Torres, E. & Ayala, M.) 111-153 (Springer-Verlag; 2010)." ] ] ] 1 => array:3 [ "identificador" => "bib0010" "etiqueta" => "2" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Determination of genotoxicity using a chloroperoxidase-mediated model of PAH-DNA adduct formation" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "F.J. Márquez-Rocha" 1 => "Y. Pica-Granados" 2 => "A.M. Sandoval-Villasana" 3 => "R. Vázquez-Duhalt" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Bull. Environ. Contam. Toxicol" "fecha" => "1997" "volumen" => "59" "paginaInicial" => "788" "paginaFinal" => "795" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/9323230" "web" => "Medline" ] ] ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0015" "etiqueta" => "3" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Ayala, M. & Vázquez-Duhalt, R. Enzymatic catalysis on petroleum products in Petroleum biotechnology (eds. Vázquez-Duhalt, R. & Quintero-Ramírez, R.) 67-111 (Amsterdam, Elsevier Science, 2004)." ] ] ] 3 => array:3 [ "identificador" => "bib0020" "etiqueta" => "4" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Potential use of oxidative enzymes for the detoxification of organic pollutants" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "R. Torres" 1 => "I. Bustos-Jaimes" 2 => "S. Le Borgne" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Appl. Catal. Environ" "fecha" => "2003" "volumen" => "46" "paginaInicial" => "1" "paginaFinal" => "15" ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0025" "etiqueta" => "5" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Torres, C. & Vázquez-Duhalt, R. Applications and prospective of peroxidase biocatalysis in the environmental field in Biocatalysis based on heme peroxidases (eds. Torres, E. & Ayala, M.) 179-206 (Springer-Verlag, 2010)." ] ] ] 5 => array:3 [ "identificador" => "bib0030" "etiqueta" => "6" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Heme-thiolate haloperoxidases: versatile biocatalysts with biotechnological and environmental significance" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "M. Hofrichter" 1 => "R. Ullrich" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00253-006-0417-3" "Revista" => array:6 [ "tituloSerie" => "Appl. Microbiol. Biotechnol" "fecha" => "2006" "volumen" => "71" "paginaInicial" => "276" "paginaFinal" => "288" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16628447" "web" => "Medline" ] ] ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0035" "etiqueta" => "7" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Chloroperoxidase-induced asymmetric sulfoxidation of some conformationally restricted sulfides" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "G.A. Allenmark" 1 => "M.A. Andersson" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Chirality" "fecha" => "1998" "volumen" => "10" "paginaInicial" => "246" "paginaFinal" => "252" ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0040" "etiqueta" => "8" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A new enzymatic enantioselective synthesis of dialkyl sulfoxides catalysed by monooxygenases" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "S. Colonna" 1 => "N. Gaggero" 2 => "G. Carrea" 3 => "P. Pasta" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "Chem. Commun" "fecha" => "1997" "paginaInicial" => "439" "paginaFinal" => "440" ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0045" "etiqueta" => "9" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Asymmetric sulfoxidation of a [beta]-carbonyl sulfide series by chloroperoxidase" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "R.R. Vargas" 1 => "E.J.H. Bechara" 2 => "L. Marzorati" 3 => "B. Wladislaw" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Tetrahedron: Asymmetry" "fecha" => "1999" "volumen" => "10" "paginaInicial" => "3219" "paginaFinal" => "3227" ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0050" "etiqueta" => "10" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effects of chloride on the kinetics and stereochemistry of chloroperoxidase catalyzed oxidation of sulfides" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "P. Pasta" 1 => "G. Carrea" 2 => "S. Colonna" 3 => "N. Gaggero" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Biochim. Biophys. Acta Protein Struct. Mol. Enzymol" "fecha" => "1994" "volumen" => "1209" "paginaInicial" => "203" "paginaFinal" => "208" ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0055" "etiqueta" => "11" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Substrate specificity and ionization potential in chloroperoxidase-catalyzed oxidation of diesel fuel" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "M. Ayala" 1 => "N.R. Robledo" 2 => "A. López-Munguía" 3 => "R. Vázquez-Duhalt" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Environ. Sci. Technol" "fecha" => "2000" "volumen" => "34" "paginaInicial" => "2804" "paginaFinal" => "2809" ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0060" "etiqueta" => "12" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Biocatalytic oxidation of fuel as an alternative to biodesulfurization" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "M. Ayala" 1 => "R. Tinoco" 2 => "V. Hernández" 3 => "P. Bremauntz" 4 => "R. Vázquez-Duhalt" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Fuel Process. Technol" "fecha" => "1998" "volumen" => "57" "paginaInicial" => "101" "paginaFinal" => "111" ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0065" "etiqueta" => "13" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Science of odor as a potential health issue" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "S.S. Schiffman" 1 => "C.M. Williams" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "J. Environ. Qual" "fecha" => "2005" "volumen" => "34" "paginaInicial" => "129" "paginaFinal" => "138" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/15647542" "web" => "Medline" ] ] ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0070" "etiqueta" => "14" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Occurrence and abatement of volatile sulfur compounds during biogas production" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "F. Andersson" 1 => "T.S. Annika" 2 => "A. Karlsson" 3 => "B.H. Svensson" 4 => "J.R. Ejlertsson" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J. Air Waste Manage. Assoc" "fecha" => "2004" "volumen" => "54" "paginaInicial" => "855" "paginaFinal" => "861" ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0075" "etiqueta" => "15" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Treatment of waste gases contaminated with odorous sulfur compounds" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "E. Smet" 1 => "P. Lens" 2 => "H. Van Langenhove" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Crit. Rev. Environ. Sci. Technol" "fecha" => "1998" "volumen" => "28" "paginaInicial" => "89" "paginaFinal" => "117" ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0080" "etiqueta" => "16" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Chloroperoxidase, a peroxidase with potential" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "M.A. Pickard" 1 => "T.A. Kadima" 2 => "R.D. Carmichael" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J. Ind. Microbiol. Biotechnol" "fecha" => "1991" "volumen" => "7" "paginaInicial" => "235" "paginaFinal" => "241" ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0085" "etiqueta" => "17" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A proficient enzyme" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "A. Radzicka" 1 => "R. Wolfenden" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Science" "fecha" => "1995" "volumen" => "267" "paginaInicial" => "90" "paginaFinal" => "93" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/7809611" "web" => "Medline" ] ] ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib0090" "etiqueta" => "18" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Brown, R.L. & Stein, S.E. Boiling point data in NIST Chemistry WebBook, NIST Standard Reference Database Number 69 (eds. Linstrom, P.J. & Mallards, W.G.) National Institute of Standards and Technology http://webbook.nist.gov (last seen on 2012)." ] ] ] 18 => array:3 [ "identificador" => "bib0095" "etiqueta" => "19" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Mechanisms of sulfoxidation catalyzed by high-valent intermediates of heme enzymes: electron-transfer vs oxygen-transfer mechanism" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "Y. Goto" 1 => "T. Matsui" 2 => "S.I. Ozaki" 3 => "Y. Watanabe" 4 => "S. Fukuzumi" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J. Am. Chem. Soc" "fecha" => "1999" "volumen" => "121" "paginaInicial" => "9497" "paginaFinal" => "9502" ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bib0100" "etiqueta" => "20" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "On the mechanism of the peroxidase-catalyzed oxygen-transfer reaction" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "S. Kobayashi" 1 => "M. Nakano" 2 => "T. Kimura" 3 => "A.P. Schaap" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Biochemistry" "fecha" => "1987" "volumen" => "26" "paginaInicial" => "5019" "paginaFinal" => "5022" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/3663642" "web" => "Medline" ] ] ] ] ] ] ] ] 20 => array:3 [ "identificador" => "bib0105" "etiqueta" => "21" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Chloroperoxidase-catalyzed oxidation of thiols and disulfides to sulfenyl chlorides" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "R.M. Silverstein" 1 => "L.P. Hager" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Biochemistry" "fecha" => "1974" "volumen" => "13" "paginaInicial" => "5069" "paginaFinal" => "5073" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/4433509" "web" => "Medline" ] ] ] ] ] ] ] ] 21 => array:3 [ "identificador" => "bib0110" "etiqueta" => "22" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Transient-state and steady-state kinetics of the oxidation of aliphatic and aromatic thiols by horseradish peroxidase" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "U. Burner" 1 => "C. Obinger" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "FEBS Lett" "fecha" => "1997" "volumen" => "411" "paginaInicial" => "269" "paginaFinal" => "274" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/9271219" "web" => "Medline" ] ] ] ] ] ] ] ] 22 => array:3 [ "identificador" => "bib0115" "etiqueta" => "23" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Kinetics of oxidation of aliphatic and aromatic thiols by myeloperoxidase compounds I and II" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "U. Burner" 1 => "W. Jantschko" 2 => "C. Obinger" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "FEBS Lett" "fecha" => "1994" "volumen" => "443" "paginaInicial" => "290" "paginaFinal" => "296" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/10025950" "web" => "Medline" ] ] ] ] ] ] ] ] 23 => array:3 [ "identificador" => "bib0120" "etiqueta" => "24" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Suicide inactivation of peroxidases and the challenge of engineering more robust enzymes" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "B. Valderrama" 1 => "M. Ayala" 2 => "R. Vázquez-Duhalt" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Chem. Biol" "fecha" => "2000" "volumen" => "9" "paginaInicial" => "555" "paginaFinal" => "565" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/12031662" "web" => "Medline" ] ] ] ] ] ] ] ] 24 => array:3 [ "identificador" => "bib0125" "etiqueta" => "25" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Heme destruction, the main molecular event during the peroxide-mediated inactivation of chloroperoxidase from" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "M. Ayala" 1 => "C.V. Batista" 2 => "R. Vázquez-Duhalt" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Caldariomyces fumago. J. Biol. Inorg. Chem" "fecha" => "2011" "volumen" => "16" "paginaInicial" => "63" "paginaFinal" => "68" ] ] ] ] ] ] ] ] ] ] "agradecimientos" => array:1 [ 0 => array:4 [ "identificador" => "xack180549" "titulo" => "Acknowledgments" "texto" => "<p id="par0075" class="elsevierStylePara elsevierViewall">The results presented in this work are part of the master thesis of Julio C. Cruz (UNAM) and bachelor thesis of Jesús García (Universidad Politécnica del Estado de Morelos). This work was supported by PAPIIT UNAM IN212510, BIOCATEM Network (Grant 245413) and CONACYT 179241. The authors thank Rosa Román from Institute of Biotechnology, UNAM and René Guardián Tapia from CIICAp-UAEM for technical support.</p>" "vista" => "all" ] ] ] "idiomaDefecto" => "en" "url" => "/1405888X/0000001800000001/v1_201507040014/S1405888X15000029/v1_201507040014/en/main.assets" "Apartado" => array:4 [ "identificador" => "41941" "tipo" => "SECCION" "en" => array:2 [ "titulo" => "Artículos originales" "idiomaDefecto" => true ] "idiomaDefecto" => "en" ] "PDF" => "https://static.elsevier.es/multimedia/1405888X/0000001800000001/v1_201507040014/S1405888X15000029/v1_201507040014/en/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1405888X15000029?idApp=UINPBA00004N" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 3 | 1 | 4 |
2024 October | 27 | 4 | 31 |
2024 September | 45 | 9 | 54 |
2024 August | 34 | 13 | 47 |
2024 July | 33 | 9 | 42 |
2024 June | 22 | 4 | 26 |
2024 May | 33 | 4 | 37 |
2024 April | 25 | 7 | 32 |
2024 March | 22 | 6 | 28 |
2024 February | 12 | 8 | 20 |
2024 January | 20 | 2 | 22 |
2023 December | 29 | 6 | 35 |
2023 November | 19 | 9 | 28 |
2023 October | 17 | 0 | 17 |
2023 September | 9 | 1 | 10 |
2023 August | 13 | 2 | 15 |
2023 July | 10 | 5 | 15 |
2023 June | 24 | 5 | 29 |
2023 May | 42 | 2 | 44 |
2023 April | 38 | 3 | 41 |
2023 March | 12 | 3 | 15 |
2023 February | 28 | 1 | 29 |
2023 January | 12 | 5 | 17 |
2022 December | 25 | 6 | 31 |
2022 November | 16 | 2 | 18 |
2022 October | 17 | 5 | 22 |
2022 September | 15 | 5 | 20 |
2022 August | 16 | 4 | 20 |
2022 July | 9 | 7 | 16 |
2022 June | 13 | 8 | 21 |
2022 May | 21 | 6 | 27 |
2022 April | 7 | 3 | 10 |
2022 March | 17 | 7 | 24 |
2022 February | 9 | 6 | 15 |
2022 January | 14 | 6 | 20 |
2021 December | 8 | 5 | 13 |
2021 November | 16 | 7 | 23 |
2021 October | 28 | 15 | 43 |
2021 September | 14 | 5 | 19 |
2021 August | 27 | 4 | 31 |
2021 July | 54 | 12 | 66 |
2021 June | 19 | 4 | 23 |
2021 May | 35 | 7 | 42 |
2021 April | 36 | 6 | 42 |
2021 March | 17 | 4 | 21 |
2021 February | 10 | 8 | 18 |
2021 January | 18 | 9 | 27 |
2020 December | 23 | 5 | 28 |
2020 November | 26 | 17 | 43 |
2020 October | 22 | 4 | 26 |
2020 September | 18 | 8 | 26 |
2020 August | 14 | 10 | 24 |
2020 July | 12 | 8 | 20 |
2020 June | 26 | 5 | 31 |
2020 May | 13 | 3 | 16 |
2020 April | 10 | 5 | 15 |
2020 March | 19 | 3 | 22 |
2020 February | 18 | 3 | 21 |
2020 January | 16 | 7 | 23 |
2019 December | 15 | 4 | 19 |
2019 November | 8 | 4 | 12 |
2019 October | 10 | 4 | 14 |
2019 September | 27 | 4 | 31 |
2019 August | 5 | 2 | 7 |
2019 July | 12 | 3 | 15 |
2019 June | 18 | 21 | 39 |
2019 May | 56 | 46 | 102 |
2019 April | 34 | 16 | 50 |
2019 March | 11 | 24 | 35 |
2019 February | 6 | 7 | 13 |
2019 January | 1 | 3 | 4 |
2018 December | 7 | 3 | 10 |
2018 November | 16 | 2 | 18 |
2018 October | 7 | 13 | 20 |
2018 September | 22 | 4 | 26 |
2018 August | 4 | 0 | 4 |
2018 July | 6 | 2 | 8 |
2018 June | 0 | 1 | 1 |
2018 May | 3 | 1 | 4 |
2018 April | 4 | 0 | 4 |
2018 March | 2 | 0 | 2 |
2018 February | 4 | 0 | 4 |
2018 January | 3 | 0 | 3 |
2017 December | 3 | 0 | 3 |
2017 November | 3 | 0 | 3 |
2017 October | 10 | 3 | 13 |
2017 September | 15 | 11 | 26 |
2017 August | 9 | 3 | 12 |
2017 July | 15 | 3 | 18 |
2017 June | 17 | 2 | 19 |
2017 May | 21 | 0 | 21 |
2017 April | 28 | 2 | 30 |
2017 March | 19 | 42 | 61 |
2017 February | 21 | 0 | 21 |
2017 January | 16 | 2 | 18 |
2016 December | 23 | 8 | 31 |
2016 November | 34 | 8 | 42 |
2016 October | 40 | 6 | 46 |
2016 September | 37 | 2 | 39 |
2016 August | 36 | 1 | 37 |
2016 July | 33 | 1 | 34 |
2016 June | 17 | 4 | 21 |
2016 May | 26 | 13 | 39 |
2016 April | 25 | 16 | 41 |
2016 March | 32 | 14 | 46 |
2016 February | 32 | 23 | 55 |
2016 January | 27 | 21 | 48 |
2015 December | 31 | 18 | 49 |
2015 November | 27 | 20 | 47 |
2015 October | 50 | 29 | 79 |
2015 September | 60 | 8 | 68 |
2015 August | 27 | 11 | 38 |
2015 July | 22 | 11 | 33 |
Show all