NOTA CIENTÍFICA
ON THE NATURE OF EVOLUTION: AN EXPLICATIVE MODEL
Sobre la naturaleza de la evolución: un modelo explicativo
Arcadio Monroy-Ata
, Juan Carlos Peña-Becerril
Corresponding author
Unidad de Investigación en Ecología Vegetal, Facultad de Estudios Superiores Zaragoza, Campus II, UNAM. Batalla del 5 de mayo esq. Fuerte de Loreto, Col. Ejército de Oriente, C.P. 09230, Ciudad de México, México
Read
3251
Timeswas read the article
712
Total PDF
2539
Total HTML
Share statistics
array:22 [ "pii" => "S1405888X16300067" "issn" => "1405888X" "doi" => "10.1016/j.recqb.2016.06.006" "estado" => "S300" "fechaPublicacion" => "2016-08-01" "aid" => "25" "copyrightAnyo" => "2016" "documento" => "article" "crossmark" => 0 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "sco" "cita" => "TIP. 2016;19:127-32" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 1096 "formatos" => array:3 [ "EPUB" => 26 "HTML" => 758 "PDF" => 312 ] ] "itemAnterior" => array:18 [ "pii" => "S1405888X16300055" "issn" => "1405888X" "doi" => "10.1016/j.recqb.2016.06.005" "estado" => "S300" "fechaPublicacion" => "2016-08-01" "aid" => "24" "documento" => "article" "crossmark" => 0 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "ssu" "cita" => "TIP. 2016;19:116-26" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 3345 "formatos" => array:3 [ "EPUB" => 35 "HTML" => 2388 "PDF" => 922 ] ] "es" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">ARTÍCULO DE REVISIÓN</span>" "titulo" => "CRECIMIENTO Y METABOLISMO: LA REGULACIÓN Y LA VÍA DE LA INSULINA DESDE LA MOSCA DE LA FRUTA, <span class="elsevierStyleItalic">Drosophila melanogaster</span>" "tienePdf" => "es" "tieneTextoCompleto" => "es" "tieneResumen" => array:2 [ 0 => "es" 1 => "en" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "116" "paginaFinal" => "126" ] ] "titulosAlternativos" => array:1 [ "en" => array:1 [ "titulo" => "Growth and Metabolism: Regulation and the Insulin Pathway from a Fruit Fly's Viewpoint" ] ] "contieneResumen" => array:2 [ "es" => true "en" => true ] "contieneTextoCompleto" => array:1 [ "es" => true ] "contienePdf" => array:1 [ "es" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0015" "etiqueta" => "Figura 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 1176 "Ancho" => 2151 "Tamanyo" => 293626 ] ] "descripcion" => array:1 [ "es" => "<p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">Localización de las células secretoras de los <span class="elsevierStyleItalic">Ilp</span> en el cerebro adulto de la mosca de la fruta. El esquema muestra la localización aproximada de estos dos grupos de células (un grupo consiste de aproximadamente quince células en la parte medio-dorsal de cada hemisferio cerebral) en relación con los cuerpos setíferos, los lóbulos ópticos y los glomérulos olfatorios. El esquema no está a escala. Modificado de Nassel, D.R. <span class="elsevierStyleItalic">et al.</span><a class="elsevierStyleCrossRef" href="#bib0090"><span class="elsevierStyleSup">18</span></a>.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Deyannira Otero-Moreno, María Teresa Peña-Rangel, Juan Rafael Riesgo-Escovar" "autores" => array:3 [ 0 => array:2 [ "nombre" => "Deyannira" "apellidos" => "Otero-Moreno" ] 1 => array:2 [ "nombre" => "María Teresa" "apellidos" => "Peña-Rangel" ] 2 => array:2 [ "nombre" => "Juan Rafael" "apellidos" => "Riesgo-Escovar" ] ] ] ] ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1405888X16300055?idApp=UINPBA00004N" "url" => "/1405888X/0000001900000002/v1_201607220355/S1405888X16300055/v1_201607220355/es/main.assets" ] "en" => array:20 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">NOTA CIENTÍFICA</span>" "titulo" => "ON THE NATURE OF EVOLUTION: AN EXPLICATIVE MODEL" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "127" "paginaFinal" => "132" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "Arcadio Monroy-Ata, Juan Carlos Peña-Becerril" "autores" => array:2 [ 0 => array:4 [ "nombre" => "Arcadio" "apellidos" => "Monroy-Ata" "email" => array:1 [ 0 => "arcadiom@unam.mx" ] "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0005" ] ] ] 1 => array:3 [ "nombre" => "Juan Carlos" "apellidos" => "Peña-Becerril" "email" => array:1 [ 0 => "jczbio@comunidad.unam.mx" ] ] ] "afiliaciones" => array:1 [ 0 => array:2 [ "entidad" => "Unidad de Investigación en Ecología Vegetal, Facultad de Estudios Superiores Zaragoza, <span class="elsevierStyleItalic">Campus</span> II, UNAM. Batalla del 5 de mayo esq. Fuerte de Loreto, Col. Ejército de Oriente, C.P. 09230, Ciudad de México, México" "identificador" => "aff0005" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "Corresponding author." ] ] ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Sobre la naturaleza de la evolución: un modelo explicativo" ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1112 "Ancho" => 1707 "Tamanyo" => 101021 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">A time-information graphic showing changes in matter evolution toward an increase or loss in its amount of information. The discontinuous line suggests the transition between what is called abiotic matter (below) and living systems (above). The information axis runs from 0 to ∞.</p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0025">INTRODUCTION</span><p id="par0005" class="elsevierStylePara elsevierViewall">What is life? Technically, it could be defined as cells with evolutionary potential, make up by organic matter and getting on in an autopoyetic metabolism<a class="elsevierStyleCrossRef" href="#bib0005"><span class="elsevierStyleSup">[1]</span></a>. Organisms use energy flow gradients at different organization levels in accord with physical laws. The living systems have three principal functions as self-organizing units: a) compartmentalization, b) metabolism, and c) regulation of input and output information flux<a class="elsevierStyleCrossRef" href="#bib0010"><span class="elsevierStyleSup">[2]</span></a>. The layer between internal and external environment of organisms controls matter, energy and information flows; metabolism regulates epigenetic and autopoyetic processes; biological information is a program (and a set of programs) that operates both physiology and functionality, codified in the DNA<a class="elsevierStyleCrossRef" href="#bib0015"><span class="elsevierStyleSup">[3]</span></a>.</p><p id="par0010" class="elsevierStylePara elsevierViewall">Darwinian theory of evolution by means of variation, natural selection and reproductive success of heritable variation in populations and organisms, can be defined as an ecological process that change the covariance of phenotypic traits (as expression of genetic, epigenetic, ontogenic and environmental factors) in living organisms or biological systems grouped at different organization levels<a class="elsevierStyleCrossRef" href="#bib0020"><span class="elsevierStyleSup">[4]</span></a>. Natural selection operates on biological systems that have three features: a) variability, b) reproductivity, and c) heritability; one result of natural selection is a tendency toward to an increase in fitness and functionality of biological systems in an environmental stochasticity (both biotic and abiotic). Fitness is a measure of reproductive success of changes in allele frequency of organisms on a determinate ecological noise, conditioned on the phenotype or genotype<a class="elsevierStyleCrossRef" href="#bib0025"><span class="elsevierStyleSup">[5]</span></a>.</p><p id="par0015" class="elsevierStylePara elsevierViewall">In this paper, an analogy between a biological system and a message was made; it was also considered the environmental stochasticity as the noise when a message is transmitted. Thus, the biological system is analogous to the amount of information of a message (for example: genetic information) that is transported to the next generation inside an ecological noise. This favors the use of the Norbert Wiener model of message's transmission in a telephonic line with noise<a class="elsevierStyleCrossRef" href="#bib0030"><span class="elsevierStyleSup">[6]</span></a>. In our model, it has been considered that information could be as simple as a binary unit (bit, 0 and 1), but it can grow by the additive property<a class="elsevierStyleCrossRefs" href="#bib0035"><span class="elsevierStyleSup">[7,8]</span></a>.</p><p id="par0020" class="elsevierStylePara elsevierViewall">The amount of information defined by Wiener<a class="elsevierStyleCrossRef" href="#bib0035"><span class="elsevierStyleSup">[7]</span></a> (p. 62) is the negative of the quantity usually defined as statistical entropy. This principle of the second law of thermodynamics can be understood for a closed system as the negative of its degree of restrictions<a class="elsevierStyleCrossRef" href="#bib0045"><span class="elsevierStyleSup">[9]</span></a> (p. 23), i.e., its structuration level. Also, G.N. Lewis in 1930 (cited by Ben-Naim<a class="elsevierStyleCrossRef" href="#bib0050"><span class="elsevierStyleSup">[10]</span></a> p. 20) quotes: “Gain in entropy always means loss of information”.</p><p id="par0025" class="elsevierStylePara elsevierViewall">In relation to information theory, Léon Brillouin in his book “La información y la incertidumbre en la ciencia”<a class="elsevierStyleCrossRef" href="#bib0055"><span class="elsevierStyleSup">[11]</span></a> (p. 22-25) wrote that entropy is connected with probabilities as is expressed in equations by Ludwig Eduard Boltzmann and Max Planck, and suggested that information is a negative entropy<a class="elsevierStyleCrossRefs" href="#bib0060"><span class="elsevierStyleSup">[12,13]</span></a> or negentropy<a class="elsevierStyleCrossRef" href="#bib0060"><span class="elsevierStyleSup">[12]</span></a>. But instead of using the term of entropy, Arieh Ben-Naim<a class="elsevierStyleCrossRef" href="#bib0050"><span class="elsevierStyleSup">[10]</span></a> (p. 21) proposes to replace it by “missing information”.</p><p id="par0030" class="elsevierStylePara elsevierViewall">Nevertheless, the second law of thermodynamics neither implies one-way time, nor has a statistical probabilities model. For this reason, in this paper it was employed a time series tool and the Brownian motion as a model to simulate the dynamics of the amount of information of a message, as an analogous of a biological system. This approach shows that biological information could be carried by “some physical process, say some form of radiation” as Wiener<a class="elsevierStyleCrossRef" href="#bib0035"><span class="elsevierStyleSup">[7]</span></a> wrote (p. 58). What wavelength? Brillouin<a class="elsevierStyleCrossRef" href="#bib0055"><span class="elsevierStyleSup">[11]</span></a> (p. 132), in his scale mass-wavelength equals a mass of 10<span class="elsevierStyleSup">−17</span> g to a wavelength of 10<span class="elsevierStyleSup">−20</span> cm; for this scales, it could be important to consider <span class="elsevierStyleItalic">k</span>, the Boltzmann constant, because its value is 1.38 x 10<span class="elsevierStyleSup">−16</span> erg/°K, in unities of the system cm, g, second. Likewise, a quantum <span class="elsevierStyleItalic">h</span> can be expressed as <span class="elsevierStyleItalic">h</span> = 10<span class="elsevierStyleSup">−33</span> cm; this smaller length “plays a fundamental role in two interrelated aspects of fundamental research in particle physics and cosmology”<a class="elsevierStyleCrossRef" href="#bib0070"><span class="elsevierStyleSup">[14]</span></a> and “is approximately the length scale at wich all fundamental interactions become indistinguishable”<a class="elsevierStyleCrossRef" href="#bib0070"><span class="elsevierStyleSup">[14]</span></a>. Moreover, it is necessary to mention that Brownian motion is a thermic noise that implies energy of the level <span class="elsevierStyleItalic">k</span>T (where T is temperature) by degree of freedom<a class="elsevierStyleCrossRef" href="#bib0055"><span class="elsevierStyleSup">[11]</span></a> (p. 135). It was hypothesized that this radiation could be the wavelength of photons incoming on Earth's surface, irradiated by the photosphere of the Sun at a temperature of 5760 °K; after the dissipation of high energy photons to low energy ones, through irreversible processes that maintain the biosphere, the temperature of the outgoing photons that Earth radiates to space is 255 °K<a class="elsevierStyleCrossRef" href="#bib0075"><span class="elsevierStyleSup">[15]</span></a>. This incoming radiation support plant photosynthesis, evapotranspiration flow, plant water potential, plant growth, energy for carbon-carbon bonds (or C-H, C-O, O=O, etc.), and food of the trophic chains in ecosystems, among other energy supported processes.</p><p id="par0035" class="elsevierStylePara elsevierViewall">The question to answer in this paper is: What is the driven force of biological evolution? The possible answer is that driven force is the dynamics of the amount of information in a biological system (genetic and epigenetic messages). Antoine Danchin<a class="elsevierStyleCrossRef" href="#bib0080"><span class="elsevierStyleSup">[16]</span></a>, in a similar approach, proposes that mechanical selection of novel information drives evolution. In the next section, it will be described the mathematical model of the dynamics of message transmission, as a proposal to explain the nature of biological evolution.</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0030">THE MODEL</span><p id="par0040" class="elsevierStylePara elsevierViewall">Shannon entropy formula is<a class="elsevierStyleCrossRef" href="#bib0085"><span class="elsevierStyleSup">[17]</span></a> (p. 291):<elsevierMultimedia ident="eq0005"></elsevierMultimedia></p><p id="par0045" class="elsevierStylePara elsevierViewall">Where Ω is the number of microstates or possible arrangements of a system, for N particles that can occupy <span class="elsevierStyleItalic">m</span> states with occupations numbers (<span class="elsevierStyleItalic">n</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">1</span></span><span class="elsevierStyleItalic">, n</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">2</span></span>, ….., <span class="elsevierStyleItalic">n</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">m</span></span>) and <span class="elsevierStyleItalic">k</span> is the Boltzmann constant, that is R (the ideal gas constant) divided by the Avogadro′s number:<elsevierMultimedia ident="eq0010"></elsevierMultimedia></p><p id="par0050" class="elsevierStylePara elsevierViewall">and Brillouin information (I) formula<a class="elsevierStyleCrossRef" href="#bib0090"><span class="elsevierStyleSup">[18]</span></a> (p. 1) is:<elsevierMultimedia ident="eq0015"></elsevierMultimedia></p><p id="par0055" class="elsevierStylePara elsevierViewall">Where K is a constant and P<span class="elsevierStyleInf">o</span> is the number of possible states of a system, keeping in reserve that the states have <span class="elsevierStyleItalic">a priori</span> the same probability. The logarithm means that information has the additive property.</p><p id="par0060" class="elsevierStylePara elsevierViewall">For example, if the configuration states of two independent systems are coupled in this way: P<span class="elsevierStyleInf">0</span> = P<span class="elsevierStyleInf">01</span> · P<span class="elsevierStyleInf">02</span><elsevierMultimedia ident="eq0020"></elsevierMultimedia></p><p id="par0065" class="elsevierStylePara elsevierViewall">with<elsevierMultimedia ident="eq0025"></elsevierMultimedia></p><p id="par0070" class="elsevierStylePara elsevierViewall">The constant K can be equal to 1/(ln2) if information is measured in binary units (bits) (<span class="elsevierStyleItalic">op. cit</span>., p. 2); nevertheless, if information of Brillouin's formula is compared with Shannon entropy formula, and K is replaced by <span class="elsevierStyleItalic">k</span>, the Boltzmann constant, then information and entropy have the same unities: energy divided by temperature<a class="elsevierStyleCrossRef" href="#bib0090"><span class="elsevierStyleSup">[18]</span></a> (p. 3). The relationship, between entropy and information, if temperature -in centigrade scale- is measured in energy units is:<elsevierMultimedia ident="eq0030"></elsevierMultimedia></p><p id="par0075" class="elsevierStylePara elsevierViewall">The problem to associate entropy and information as concepts and in unities is that information is not a change between an initial and a final state, and it lacks of statistical treatment of possible configurations as in thermodynamical statistics. Thus, Norbert Wiener<a class="elsevierStyleCrossRef" href="#bib0035"><span class="elsevierStyleSup">[7]</span></a> developed the next model, where information has a time series and their distribution follows the configuration of the Brownian motion (chapter III).</p><p id="par0080" class="elsevierStylePara elsevierViewall">For this, Wiener<a class="elsevierStyleCrossRef" href="#bib0035"><span class="elsevierStyleSup">[7]</span></a> (p. 61) established that the amount of information of a system, where initially a variable <span class="elsevierStyleItalic">x</span> lies between 0 and 1, and in a final state it lies on the interval (<span class="elsevierStyleItalic">a, b</span>) inside (0, 1), is:<elsevierMultimedia ident="eq0035"></elsevierMultimedia></p><p id="par0085" class="elsevierStylePara elsevierViewall">The <span class="elsevierStyleItalic">a priori</span> knowledge is that the probability that a certain quantity lies between <span class="elsevierStyleItalic">x</span> and <span class="elsevierStyleItalic">x + dx</span> is a function of <span class="elsevierStyleItalic">x</span> in two times: initial and final or <span class="elsevierStyleItalic">a priori</span> and <span class="elsevierStyleItalic">a posteriori</span>. In this perspective, the <span class="elsevierStyleItalic">a priori</span> probability is <span class="elsevierStyleItalic">f</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">1</span></span><span class="elsevierStyleItalic">(x) dx</span> and the <span class="elsevierStyleItalic">a posteriori</span> probability is <span class="elsevierStyleItalic">f</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">2</span></span><span class="elsevierStyleItalic">(x) dx</span>.</p><p id="par0090" class="elsevierStylePara elsevierViewall">Thus, it is valid to ask: “How much new information does our <span class="elsevierStyleItalic">a posteriori</span> probability give us?”<a class="elsevierStyleCrossRef" href="#bib0035"><span class="elsevierStyleSup">[7]</span></a> (p. 62). Mathematically this means to bind a width to the regions under the curves <span class="elsevierStyleItalic">y=f</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">1</span></span><span class="elsevierStyleItalic">(x)</span> and <span class="elsevierStyleItalic">y=f</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">2</span></span><span class="elsevierStyleItalic">(x)</span>, that is initial and final conditions of the system; also, it is assumed that the variable <span class="elsevierStyleItalic">x</span> have a fundamental equipartition in its distribution. Since <span class="elsevierStyleItalic">f</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">1</span></span><span class="elsevierStyleItalic">(x)</span> is a probability density, it could be established<a class="elsevierStyleCrossRef" href="#bib0035"><span class="elsevierStyleSup">[7]</span></a> (p. 62):<elsevierMultimedia ident="eq0040"></elsevierMultimedia></p><p id="par0095" class="elsevierStylePara elsevierViewall">and that the average logarithm of the breadth of the region under <span class="elsevierStyleItalic">f</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">1</span></span><span class="elsevierStyleItalic">(x)</span> may be considered as an average of the height of the logarithm of the reciprocal of <span class="elsevierStyleItalic">f</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">1</span></span><span class="elsevierStyleItalic">(x)</span>, as Norbert Wiener<a class="elsevierStyleCrossRef" href="#bib0035"><span class="elsevierStyleSup">[7]</span></a> wrote using a personal communication of J. von Neumann. Thus, an estimate measure of the amount of information associated with the curve <span class="elsevierStyleItalic">f</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">1</span></span><span class="elsevierStyleItalic">(x)</span> is:<elsevierMultimedia ident="eq0045"></elsevierMultimedia></p><p id="par0100" class="elsevierStylePara elsevierViewall">This quantity is the amount of information of the described system and it is the negative of the quantity usually defined as entropy in similar situations<a class="elsevierStyleCrossRef" href="#bib0035"><span class="elsevierStyleSup">[7]</span></a> (p. 62). It could also be showed that the amount of information from independent sources is additive<a class="elsevierStyleCrossRef" href="#bib0035"><span class="elsevierStyleSup">[7]</span></a> (p. 63). Besides: “It is interesting to show that, on the average, it has the properties we associate with an entropy”<a class="elsevierStyleCrossRef" href="#bib0035"><span class="elsevierStyleSup">[7]</span></a> (p. 64). For example, there are no operations on a message in communication engineering that can gain information, because on the average, there is a loss of information, in an analogous manner to the loss of energy by a heat machine, as predicted by the second law of thermodynamics.</p><p id="par0105" class="elsevierStylePara elsevierViewall">In order to build up a time series as general as possible from the simple Brownian motion series, it is necessary to use functions that could be expanded by Fourier series developments, as it is showed by Norbert Wiener in his equation 3.46, and others, in his book on cybernetics<a class="elsevierStyleCrossRef" href="#bib0035"><span class="elsevierStyleSup">[7]</span></a> (pp: 60-94).</p><p id="par0110" class="elsevierStylePara elsevierViewall">It is possible to apply equation <a class="elsevierStyleCrossRef" href="#eq0045">(5)</a> to a particular case if the amount of information of the message is a constant over (<span class="elsevierStyleItalic">a</span>, <span class="elsevierStyleItalic">b</span>) and is zero elsewhere, then:<elsevierMultimedia ident="eq0050"></elsevierMultimedia></p><p id="par0115" class="elsevierStylePara elsevierViewall">Using this equation to compare the amount of information of a point in the region (0, 1), with the information that is the region (<span class="elsevierStyleItalic">a</span>, <span class="elsevierStyleItalic">b</span>), it can be obtained for the measure of the difference:<elsevierMultimedia ident="eq0055"></elsevierMultimedia></p><p id="par0120" class="elsevierStylePara elsevierViewall">It is important to say that this definition of the amount of information can be also applicable when the variable <span class="elsevierStyleItalic">x</span> is replaced by a variable ranging over two or more dimensions. In the two dimensional case, <span class="elsevierStyleItalic">f(x, y)</span> is a function such that:<elsevierMultimedia ident="eq0060"></elsevierMultimedia></p><p id="par0125" class="elsevierStylePara elsevierViewall">and the amount of information is:<elsevierMultimedia ident="eq0065"></elsevierMultimedia></p><p id="par0130" class="elsevierStylePara elsevierViewall">if <span class="elsevierStyleItalic">f</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">1</span></span><span class="elsevierStyleItalic">(x, y)</span> is the form <span class="elsevierStyleItalic">φ(x) ψ(y)</span> and<elsevierMultimedia ident="eq0070"></elsevierMultimedia></p><p id="par0135" class="elsevierStylePara elsevierViewall">then<elsevierMultimedia ident="eq0075"></elsevierMultimedia></p><p id="par0140" class="elsevierStylePara elsevierViewall">and<elsevierMultimedia ident="eq0080"></elsevierMultimedia></p><p id="par0145" class="elsevierStylePara elsevierViewall">this shows that the amount of information from independent sources is additive<a class="elsevierStyleCrossRef" href="#bib0035"><span class="elsevierStyleSup">[7]</span></a> (pp: 62-63).</p><p id="par0150" class="elsevierStylePara elsevierViewall">For this model, it would be interesting to know the degrees of freedom of a message. It would be convenient to take the proposal of Léon Brillouin<a class="elsevierStyleCrossRef" href="#bib0090"><span class="elsevierStyleSup">[18]</span></a> (pp: 90-91), who made the next development:</p><p id="par0155" class="elsevierStylePara elsevierViewall">A certain function <span class="elsevierStyleItalic">f(t)</span> has a spectrum that does not include frequencies higher than a certain maximum limit: ν<span class="elsevierStyleInf">M</span> and the function can be expanded over a time interval τ. The outstanding question is: How much parameters (or degrees of freedom) are necessary for to define the function?</p><p id="par0160" class="elsevierStylePara elsevierViewall">If it is established that there is <span class="elsevierStyleItalic">N</span> degrees of freedom and<elsevierMultimedia ident="eq0085"></elsevierMultimedia></p><p id="par0165" class="elsevierStylePara elsevierViewall">To choose the independent parameters for the function, it was considered the interval <span class="elsevierStyleItalic">0 < t < τ</span> and that it is suitable to know the function values before 0 and after <span class="elsevierStyleItalic">τ</span>, without any addition of information to the message <span class="elsevierStyleItalic">f(t)</span>. Thus, it is chosen a periodic function that reproduces in an indefinite way the solution curve of the function <span class="elsevierStyleItalic">f(t)</span> between 0 and τ as:<elsevierMultimedia ident="eq0090"></elsevierMultimedia></p><p id="par0170" class="elsevierStylePara elsevierViewall">and use a periodic function with a period τ; thus, applying a development of a Fourier series, it is obtained:<elsevierMultimedia ident="eq0095"></elsevierMultimedia></p><p id="par0175" class="elsevierStylePara elsevierViewall">with<elsevierMultimedia ident="eq0100"></elsevierMultimedia></p><p id="par0180" class="elsevierStylePara elsevierViewall">as was stated by Brillouin<a class="elsevierStyleCrossRef" href="#bib0090"><span class="elsevierStyleSup">[18]</span></a> (pp: 90-91).</p><p id="par0185" class="elsevierStylePara elsevierViewall">This means that the degrees of freedom bound to a message could be a periodic function that is dependent on the amount of information and the time interval.</p></span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0035">DISCUSSION</span><p id="par0190" class="elsevierStylePara elsevierViewall">It has been demonstrated a mathematical model that correlates the accumulation of information with biological evolution, by means of additive information (it could be genetic and epigenetic). Biological systems can be assimilated as messages transmitted to the next generation in the middle of an environmental noise, biotic and abiotic. What kind of information? It could be as simple as binary units (bits, 0 and 1), which can be a set in a wavelength of a photon and that can be assembled into integrative structures. For example, in computer technology the hardware is the physical support of an ensemble of structured information (algorithms hierarchically organized); this informatics programs run on a binary system where an alpha-numeric character is formed with a set of binary units, <span class="elsevierStyleItalic">i. e.</span>, a byte (byte is equals to 8 bit series), and then, they can form data (words), concepts, sentences, routines, algorithms, programs and sets of programs as in computers software. The DNA is a genetic information code and it must have epigenetic, ontogenic and autopoyetic programs that regulate (by expression or restriction) its development. The genetic pleiotropy in organisms is when a gene affects more than one phenotypic trait, and it exhibits the gene modulation by an epigenetic process.</p><p id="par0195" class="elsevierStylePara elsevierViewall">The mathematical model also shows that changes in information and entropy could be the same process: an increase in entropy normally means a loss of structure or restrictions of a system. On the contrary, the evolution of a biological system usually means an enlargement in its amount of information and complexity that drives to an increase in its fitness and functionality. Biological systems are information building systems<a class="elsevierStyleCrossRefs" href="#bib0095"><span class="elsevierStyleSup">[19–21]</span></a>, i.e., genetic and epigenetic capacity to generate developmental functional complexity (phenotype), as is quoted by Elsheikh<a class="elsevierStyleCrossRef" href="#bib0110"><span class="elsevierStyleSup">[22]</span></a> in his abstract, but organisms also face to environmental networks, where there are stochasticity, random processes (positive or negative) and, sometimes, chaos<a class="elsevierStyleCrossRefs" href="#bib0115"><span class="elsevierStyleSup">[23,24]</span></a>.</p><p id="par0200" class="elsevierStylePara elsevierViewall">Two emergent attributes of biological organisms are phenotype and behavior. Phenotype is a synthesis of equilibrium between internal and external environments, and behavior is a driven force in individual evolution<a class="elsevierStyleCrossRefs" href="#bib0125"><span class="elsevierStyleSup">[25–27]</span></a>. A path frequently transited by evolutionary changes is the mutualistic symbiosis<a class="elsevierStyleCrossRef" href="#bib0005"><span class="elsevierStyleSup">[1]</span></a>. In this sense, the transmission of biological messages (organisms) to the next generation increases its possibilities to improve the amount of information, if the message is redundant and symbiosis is a way to form additive messages. For example, if the organism A has three traits and become a functional unity with the organism B, which has other three different traits and both can share all traits; then, they have 9 binomial sets of traits.</p><p id="par0205" class="elsevierStylePara elsevierViewall">Finally, it is necessary to point out that information create programs and a set of programs that drive toward power-law behavior of organisms. Behavior also has two sources: a) phylogenetic memory (i.e., genetically codified routines and conducts), and b) algorithms induced by epigenetic modulation and environmental noise or stochasticity. It is already known that ecological behavior of organisms is the driven force to its evolution (accumulation of information) or its degradation (loss of structures and information).</p></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">CONCLUDING REMARKS</span><p id="par0210" class="elsevierStylePara elsevierViewall"><a class="elsevierStyleCrossRef" href="#fig0005">Figure 1</a> makes a synthesis of the role of information on the evolution of biological systems and on changes in entropy. Mathematically, the origin of matter in the universe could have begun above zero entropy<a class="elsevierStyleCrossRef" href="#bib0075"><span class="elsevierStyleSup">[15]</span></a>, and matter evolution drives to form organization levels with increasing complexity and information. The transition between both is called abiotic matter, and living systems must be carried by the degrees of freedom due to the product of the Boltzmann constant by temperature (<span class="elsevierStyleItalic">k</span>T). The big source of heat on the Earth is the Sun that is at 5760 Kelvin degrees at the photosphere and the Earth average temperature in the biosphere actually is <span class="elsevierStyleItalic">ca.</span> 288 °K. Then, organisms absorb high energy solar photons and they use that energy for photosynthesis or as food in the trophic chain by means of dissipative processes. Living organism “eat” high energy photons and they distribute them among photons with low energy. The entropy of photons is proportional to the number of photons<a class="elsevierStyleCrossRef" href="#bib0075"><span class="elsevierStyleSup">[15]</span></a> in a system and on the Earth's energy balance, Lineweaver and Egan<a class="elsevierStyleCrossRef" href="#bib0075"><span class="elsevierStyleSup">[15]</span></a> (p. 231) say: “when the Earth absorbs one solar photon, the Earth emits 20 photons with wavelengths 20 times longer”.</p><elsevierMultimedia ident="fig0005"></elsevierMultimedia><p id="par0215" class="elsevierStylePara elsevierViewall">Likewise, Karo Michaelian<a class="elsevierStyleCrossRef" href="#bib0140"><span class="elsevierStyleSup">[28]</span></a> (p. 43) wrote: “Direct absorption of a UV photon of 260<span class="elsevierStyleHsp" style=""></span>nm on RNA/DNA would leave 4.8<span class="elsevierStyleHsp" style=""></span>eV of energy locally which, given the heat capacity of water, would be sufficient energy to raise the temperature by an additional 3 Kelvin degrees of a local volume of water that could contain up to 50 base pairs”. In this discerment, solar photons increase the degrees of freedom, in structure and functionality, of living organisms. One degree of freedom is an independent parameter of a system and it could be considered as novel information of it.</p><p id="par0220" class="elsevierStylePara elsevierViewall">Finally, it is important to say that information can be the driven force of biological evolution. Life, as a state, can be defined as a dissipative system that has a structural biomass or <span class="elsevierStyleItalic">hardware</span>, genetic and epigenetic programs or <span class="elsevierStyleItalic">software</span> and metabolic-ontogenic interface that regulates flows of matter, energy and information, in order to have an autopoyetic homeostasis, behavior and increases in its fitness and functionality. Furthermore, a living system is an unique set of programs reservoir that evolves in face to ecological noise, stochasticity and, sometimes, chaos.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:10 [ 0 => array:3 [ "identificador" => "xres697140" "titulo" => "ABSTRACT" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0005" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec706866" "titulo" => "Keywords" ] 2 => array:3 [ "identificador" => "xres697139" "titulo" => "RESUMEN" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0010" ] ] ] 3 => array:2 [ "identificador" => "xpalclavsec706867" "titulo" => "Palabras clave" ] 4 => array:2 [ "identificador" => "sec0005" "titulo" => "INTRODUCTION" ] 5 => array:2 [ "identificador" => "sec0010" "titulo" => "THE MODEL" ] 6 => array:2 [ "identificador" => "sec0015" "titulo" => "DISCUSSION" ] 7 => array:2 [ "identificador" => "sec0020" "titulo" => "CONCLUDING REMARKS" ] 8 => array:2 [ "identificador" => "xack232958" "titulo" => "ACKNOWLEDGMENTS" ] 9 => array:1 [ "titulo" => "REFERENCES" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2016-03-15" "fechaAceptado" => "2016-06-06" "PalabrasClave" => array:2 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec706866" "palabras" => array:6 [ 0 => "biological evolution" 1 => "entropy" 2 => "information" 3 => "living systems" 4 => "messages" 5 => "noise" ] ] ] "es" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec706867" "palabras" => array:6 [ 0 => "evolución biológica" 1 => "entropía" 2 => "información" 3 => "sistemas vivos" 4 => "mensajes" 5 => "ruido" ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "en" => array:2 [ "titulo" => "ABSTRACT" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">For years, links between entropy and information of a system have been proposed, but their changes in time and in their probabilistic structural states have not been proved in a robust model as a unique process. This document demonstrates that increasement in entropy and information of a system are the two paths for changes in its configuration status. Biological evolution also has a trend toward information accumulation and complexity. In this approach, the aim of this article is to answer the question: What is the driven force of biological evolution? For this, an analogy between the evolution of a living system and the transmission of a message in time was made, both in the middle of environmental noise and stochasticity. A mathematical model, initially developed by Norbert Wiener, was employed to show the dynamics of the amount of information in a message, using a time series and the Brownian motion as statistical frame. Léon Brillouin's mathematical definition of information and Claude Shannon's entropy equation were employed, both are similar, in order to know changes in the two physical properties. The proposed model includes time and configurational probabilities of the system and it is suggested that entropy can be considered as missing information, according to Arieh Ben–Naim. In addition, a graphic shows that information accumulation can be the driven force of both processes: evolution (gain in information and complexity), and increase in entropy (missing information and restrictions loss). Finally, a living system can be defined as a dynamic set of information coded in a reservoir of genetic, epigenetic and ontogenic programs, in the middle of environmental noise and stochasticity, which points toward an increase in fitness and functionality.</p></span>" ] "es" => array:2 [ "titulo" => "RESUMEN" "resumen" => "<span id="abst0010" class="elsevierStyleSection elsevierViewall"><p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">Durante años se han propuesto vínculos entre entropía e información de un sistema, pero sus cambios en tiempo y en sus estados estructurales probabilísticos no han sido probados en un modelo robusto como un proceso único. Este documento demuestra que incrementos en entropía e información de un sistema son las dos sendas para cambios en su estado configuracional. También, la evolución biológica tiene una tendencia hacia una acumulación de información y complejidad. Con este enfoque, aquí se planteó como objetivo contestar la pregunta: ¿Cuál es la fuerza motriz de la evolución biológica? Para esto, se hizo una analogía entre la evolución de un sistema vivo y la transmisión de un mensaje en el tiempo, ambos en medio de ruido y estocasticidad ambiental. Se empleó un modelo matemático, desarrollado inicialmente por Norbert Wiener, para mostrar la dinámica de la cantidad de información de un mensaje, usando una serie de tiempo y el movimiento Browniano como estructura estadística. Se utilizó la definición matemática de información de Léon Brillouin y la ecuación de la entropía de Claude Shannon, ambas son similares, para conocer los cambios en las dos propiedades físicas. El modelo propuesto incluye tiempo y probabilidades configuracionales del sistema y se sugiere que la entropía puede ser considerada como pérdida de información, de acuerdo con Arieh Ben-Naim. Se muestra una gráfica donde la acumulación de información puede ser la fuerza motriz de ambos procesos: evolución (incremento en información y complejidad) y aumento en entropía (pérdida de información y de restricciones). Finalmente, se puede definir a un sistema vivo como la dinámica de un conjunto de información codificada en un reservorio de programas genéticos, epigenéticos y ontogénicos, en medio de ruido y estocasticidad ambiental, que tiende a incrementar su adecuación y funcionalidad.</p></span>" ] ] "multimedia" => array:21 [ 0 => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1112 "Ancho" => 1707 "Tamanyo" => 101021 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">A time-information graphic showing changes in matter evolution toward an increase or loss in its amount of information. The discontinuous line suggests the transition between what is called abiotic matter (below) and living systems (above). The information axis runs from 0 to ∞.</p>" ] ] 1 => array:6 [ "identificador" => "eq0005" "etiqueta" => "(1)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx1.jpeg" "Tamanyo" => 29769 "Alto" => 320 "Ancho" => 1852 ] ] ] ] 2 => array:5 [ "identificador" => "eq0010" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx2.jpeg" "Tamanyo" => 83797 "Alto" => 300 "Ancho" => 2760 ] ] ] ] 3 => array:6 [ "identificador" => "eq0015" "etiqueta" => "(2)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx3.jpeg" "Tamanyo" => 10855 "Alto" => 118 "Ancho" => 548 ] ] ] ] 4 => array:6 [ "identificador" => "eq0020" "etiqueta" => "(3)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx4.jpeg" "Tamanyo" => 24131 "Alto" => 144 "Ancho" => 1556 ] ] ] ] 5 => array:5 [ "identificador" => "eq0025" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx5.jpeg" "Tamanyo" => 31565 "Alto" => 144 "Ancho" => 1692 ] ] ] ] 6 => array:5 [ "identificador" => "eq0030" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx6.jpeg" "Tamanyo" => 24774 "Alto" => 104 "Ancho" => 1384 ] ] ] ] 7 => array:5 [ "identificador" => "eq0035" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx7.jpeg" "Tamanyo" => 51448 "Alto" => 303 "Ancho" => 1381 ] ] ] ] 8 => array:6 [ "identificador" => "eq0040" "etiqueta" => "(4)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx8.jpeg" "Tamanyo" => 15904 "Alto" => 174 "Ancho" => 798 ] ] ] ] 9 => array:6 [ "identificador" => "eq0045" "etiqueta" => "(5)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx9.jpeg" "Tamanyo" => 28397 "Alto" => 174 "Ancho" => 1244 ] ] ] ] 10 => array:6 [ "identificador" => "eq0050" "etiqueta" => "(6)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx10.jpeg" "Tamanyo" => 65793 "Alto" => 270 "Ancho" => 2706 ] ] ] ] 11 => array:6 [ "identificador" => "eq0055" "etiqueta" => "(7)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx11.jpeg" "Tamanyo" => 25837 "Alto" => 267 "Ancho" => 1530 ] ] ] ] 12 => array:6 [ "identificador" => "eq0060" "etiqueta" => "(8)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx12.jpeg" "Tamanyo" => 27883 "Alto" => 174 "Ancho" => 1266 ] ] ] ] 13 => array:6 [ "identificador" => "eq0065" "etiqueta" => "(9)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx13.jpeg" "Tamanyo" => 40384 "Alto" => 174 "Ancho" => 1734 ] ] ] ] 14 => array:6 [ "identificador" => "eq0070" "etiqueta" => "(10)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx14.jpeg" "Tamanyo" => 30093 "Alto" => 158 "Ancho" => 1206 ] ] ] ] 15 => array:6 [ "identificador" => "eq0075" "etiqueta" => "(11)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx15.jpeg" "Tamanyo" => 27777 "Alto" => 158 "Ancho" => 1242 ] ] ] ] 16 => array:6 [ "identificador" => "eq0080" "etiqueta" => "(12)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx16.jpeg" "Tamanyo" => 100330 "Alto" => 520 "Ancho" => 2270 ] ] ] ] 17 => array:6 [ "identificador" => "eq0085" "etiqueta" => "(13)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx17.jpeg" "Tamanyo" => 26516 "Alto" => 144 "Ancho" => 1776 ] ] ] ] 18 => array:6 [ "identificador" => "eq0090" "etiqueta" => "(14)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx18.jpeg" "Tamanyo" => 34290 "Alto" => 128 "Ancho" => 1806 ] ] ] ] 19 => array:6 [ "identificador" => "eq0095" "etiqueta" => "(15)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx19.jpeg" "Tamanyo" => 49710 "Alto" => 289 "Ancho" => 2152 ] ] ] ] 20 => array:6 [ "identificador" => "eq0100" "etiqueta" => "(16)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "imagen" => array:1 [ 0 => array:4 [ "Fichero" => "fx20.jpeg" "Tamanyo" => 24961 "Alto" => 250 "Ancho" => 1472 ] ] ] ] ] "bibliografia" => array:2 [ "titulo" => "REFERENCES" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0005" "bibliografiaReferencia" => array:28 [ 0 => array:3 [ "identificador" => "bib0005" "etiqueta" => "1" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "¿Qué es la vida?." "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "L. Margulis" 1 => "S. Dorion" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "1996" "editorial" => "Tusquets Editores" "editorialLocalizacion" => "Barcelona" ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0010" "etiqueta" => "2" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "La vida y la máquina de Turing" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "A. Danchin" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Mundo Cient." "fecha" => "2001" "volumen" => "229" "paginaInicial" => "46" "paginaFinal" => "52" ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0015" "etiqueta" => "3" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Self-organization in dissipative structures: A thermodynamics theory for the emergence of prebiotic cells and their epigenetic evolution" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "R.M. Pulselli" 1 => "E. Simoncini" 2 => "E. Tiezzi" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "BioSyst." "fecha" => "2009" "volumen" => "96" "paginaInicial" => "237" "paginaFinal" => "241" ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0020" "etiqueta" => "4" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "How can evolution learn?" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "R.A. Watson" 1 => "E. Szathmáry" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/ele.12650" "Revista" => array:7 [ "tituloSerie" => "Trends in Ecol. & Evol." "fecha" => "2016" "volumen" => "31" "numero" => "2" "paginaInicial" => "147" "paginaFinal" => "157" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27434040" "web" => "Medline" ] ] ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0025" "etiqueta" => "5" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The concept of fitness in fluctuating environments" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "B.-E. Sæther" 1 => "S. Engen" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:7 [ "tituloSerie" => "Trends in Ecol. & Evol." "fecha" => "2015" "volumen" => "30" "numero" => "5" "paginaInicial" => "273" "paginaFinal" => "281" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27434040" "web" => "Medline" ] ] ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0030" "etiqueta" => "6" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Transfer of information in noise induced transport" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "J.R. Sánchez" 1 => "C.M. Arizmendi" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Computer Phys. Comm." "fecha" => "1999" "volumen" => "121–122" "paginaInicial" => "374" "paginaFinal" => "375" ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0035" "etiqueta" => "7" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Cybernetics or control and communication in the animal and the machine" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "N. Wiener" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:4 [ "edicion" => "2<span class="elsevierStyleSup">nd</span> ed." "fecha" => "1961" "editorial" => "MIT Press and John Wiley & Sons, Inc" "editorialLocalizacion" => "New York" ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0040" "etiqueta" => "8" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Cibernética y Sociedad" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "N. Wiener" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "1981" "editorial" => "Ediciones del Consejo Nacional de Ciencia y Tecnología" "editorialLocalizacion" => "Ciudad de México" ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0045" "etiqueta" => "9" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Entropía." "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "L. García Colín" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "1983" "editorial" => "Ediciones de la Universidad Nacional Autónoma de México" "editorialLocalizacion" => "Ciudad de México" ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0050" "etiqueta" => "10" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A farewell to entropy: Statistical thermodynamics based on information." "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "A. Ben-Naim" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "2008" "editorial" => "World Scientific Publishers" "editorialLocalizacion" => "Singapore" ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0055" "etiqueta" => "11" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "La información y la incertidumbre en la ciencia." "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "L. Brillouin" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "1969" "editorial" => "Ediciones de la Universidad Nacional Autónoma de México" "editorialLocalizacion" => "Ciudad de México" ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0060" "etiqueta" => "12" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "¿Qué es la vida?." "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "E. Schrödinger" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "2005" "editorial" => "Universidad de Salamanca" "editorialLocalizacion" => "Madrid" ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0065" "etiqueta" => "13" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The negentropy principle of information and some problems in bioenergetics" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "A.I. Bykhovsky" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Math. Biosci." "fecha" => "1968" "volumen" => "3" "paginaInicial" => "353" "paginaFinal" => "370" ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0070" "etiqueta" => "14" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Clifford algebras, fuzzy set theory and the fundamental constants of nature" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "M.S. El Naschie" 1 => "Quantum gravity" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Chaos, Solit. & Fractals." "fecha" => "2004" "volumen" => "20" "paginaInicial" => "437" "paginaFinal" => "450" ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0075" "etiqueta" => "15" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Life, gravity and the second law of thermodynamics" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "Ch.H. Lineweaver" 1 => "Ch.A. Egan" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Phys. of Life Rev." "fecha" => "2008" "volumen" => "5" "paginaInicial" => "225" "paginaFinal" => "242" ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0080" "etiqueta" => "16" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Myopic selection of novel information drives evolution" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "A. Danchin" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Curr. Op. in Biotechnol." "fecha" => "2009" "volumen" => "20" "paginaInicial" => "504" "paginaFinal" => "508" ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0085" "etiqueta" => "17" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Introduction to biophysics." "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "J. Claycomb" 1 => "J.Q.P. Tran" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "2011" "editorial" => "Jones and Bartlett Pub" "editorialLocalizacion" => "Boston" ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib0090" "etiqueta" => "18" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "La science et la théorie de l′information." "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "L. Brillouin" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "1959" "editorial" => "Masson et Cie" "editorialLocalizacion" => "Paris" ] ] ] ] ] ] 18 => array:3 [ "identificador" => "bib0095" "etiqueta" => "19" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The fractal structure of evolution" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "G. Binning" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "LibroEditado" => array:4 [ "titulo" => "In Fractals in Physics Aharoy" "paginaInicial" => "32" "paginaFinal" => "36" "serieFecha" => "1989" ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bib0100" "etiqueta" => "20" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Structural stability can shape biological evolution" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "J. Fernández" 1 => "A. Plastino" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "P hysica A." "fecha" => "2000" "volumen" => "276" "paginaInicial" => "610" "paginaFinal" => "619" ] ] ] ] ] ] 20 => array:3 [ "identificador" => "bib0105" "etiqueta" => "21" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Écologie de la végétation terrestre" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "M. Godron" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "1984" "editorial" => "Masson" "editorialLocalizacion" => "Paris" ] ] ] ] ] ] 21 => array:3 [ "identificador" => "bib0110" "etiqueta" => "22" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Towards a new physical theory of biotic evolution and development" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "E.M. Elsheikh" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Ecol. Modelling." "fecha" => "2010" "volumen" => "221" "paginaInicial" => "1108" "paginaFinal" => "1118" ] ] ] ] ] ] 22 => array:3 [ "identificador" => "bib0115" "etiqueta" => "23" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The maximum entropy principle and the stochastic aspects of deterministic chaos" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "J.L. Del Río-Correa" 1 => "L.S. García-Colín" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Physica A." "fecha" => "1998" "volumen" => "258" "paginaInicial" => "77" "paginaFinal" => "88" ] ] ] ] ] ] 23 => array:3 [ "identificador" => "bib0120" "etiqueta" => "24" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Robustness and network evolution -an entropic principle" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "L. Demetrius" 1 => "T. Manke" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "P hysica A." "fecha" => "2005" "volumen" => "346" "paginaInicial" => "682" "paginaFinal" => "696" ] ] ] ] ] ] 24 => array:3 [ "identificador" => "bib0125" "etiqueta" => "25" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A note on information, order, stability and adaptability" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "J.K. De Vree" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "BioSyst." "fecha" => "1996" "volumen" => "38" "paginaInicial" => "221" "paginaFinal" => "227" ] ] ] ] ] ] 25 => array:3 [ "identificador" => "bib0130" "etiqueta" => "26" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "¿Tiene reglas la evolución cultural?" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "F. Gil-White" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Mundo Cient. No." "fecha" => "2001" "volumen" => "229" "paginaInicial" => "60" "paginaFinal" => "65" ] ] ] ] ] ] 26 => array:3 [ "identificador" => "bib0135" "etiqueta" => "27" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Natural selection and population dynamics" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "I. Saccheri" 1 => "I. Hanski" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/ele.12650" "Revista" => array:7 [ "tituloSerie" => "Trends in Ecol. & Evol." "fecha" => "2006" "volumen" => "21" "numero" => "6" "paginaInicial" => "341" "paginaFinal" => "347" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27434040" "web" => "Medline" ] ] ] ] ] ] ] ] 27 => array:3 [ "identificador" => "bib0140" "etiqueta" => "28" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Thermodynamic dissipation theory for the origin of life" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "K. Michaelian" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Earth System Dynamics." "fecha" => "2011" "volumen" => "2" "paginaInicial" => "37" "paginaFinal" => "51" ] ] ] ] ] ] ] ] ] ] "agradecimientos" => array:1 [ 0 => array:4 [ "identificador" => "xack232958" "titulo" => "ACKNOWLEDGMENTS" "texto" => "<p id="par0225" class="elsevierStylePara elsevierViewall">The authors are grateful to Edmundo Patiño and César González for their observations to the original manuscript and to three anonymous reviewers. This study was financed by the Dirección General de Asuntos del Personal Académico of the Universidad Nacional Autónoma de México, UNAM (Grant PAPIIT IN-205889).</p>" "vista" => "all" ] ] ] "idiomaDefecto" => "en" "url" => "/1405888X/0000001900000002/v1_201607220355/S1405888X16300067/v1_201607220355/en/main.assets" "Apartado" => array:4 [ "identificador" => "56702" "tipo" => "SECCION" "en" => array:2 [ "titulo" => "Nota científica" "idiomaDefecto" => true ] "idiomaDefecto" => "en" ] "PDF" => "https://static.elsevier.es/multimedia/1405888X/0000001900000002/v1_201607220355/S1405888X16300067/v1_201607220355/en/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1405888X16300067?idApp=UINPBA00004N" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 4 | 0 | 4 |
2024 October | 30 | 4 | 34 |
2024 September | 37 | 6 | 43 |
2024 August | 45 | 8 | 53 |
2024 July | 19 | 7 | 26 |
2024 June | 12 | 4 | 16 |
2024 May | 8 | 1 | 9 |
2024 April | 14 | 5 | 19 |
2024 March | 18 | 5 | 23 |
2024 February | 14 | 4 | 18 |
2024 January | 20 | 10 | 30 |
2023 December | 22 | 9 | 31 |
2023 November | 18 | 8 | 26 |
2023 October | 42 | 2 | 44 |
2023 September | 31 | 6 | 37 |
2023 August | 22 | 4 | 26 |
2023 July | 7 | 7 | 14 |
2023 June | 11 | 1 | 12 |
2023 May | 33 | 7 | 40 |
2023 April | 28 | 2 | 30 |
2023 March | 30 | 2 | 32 |
2023 February | 35 | 4 | 39 |
2023 January | 31 | 1 | 32 |
2022 December | 28 | 6 | 34 |
2022 November | 27 | 6 | 33 |
2022 October | 17 | 4 | 21 |
2022 September | 19 | 5 | 24 |
2022 August | 14 | 4 | 18 |
2022 July | 51 | 8 | 59 |
2022 June | 8 | 6 | 14 |
2022 May | 13 | 10 | 23 |
2022 April | 10 | 3 | 13 |
2022 March | 21 | 5 | 26 |
2022 February | 29 | 7 | 36 |
2022 January | 37 | 7 | 44 |
2021 December | 27 | 11 | 38 |
2021 November | 32 | 6 | 38 |
2021 October | 211 | 10 | 221 |
2021 September | 104 | 10 | 114 |
2021 August | 221 | 8 | 229 |
2021 July | 31 | 14 | 45 |
2021 June | 19 | 9 | 28 |
2021 May | 25 | 9 | 34 |
2021 April | 91 | 21 | 112 |
2021 March | 35 | 15 | 50 |
2021 February | 18 | 6 | 24 |
2021 January | 22 | 19 | 41 |
2020 December | 22 | 17 | 39 |
2020 November | 14 | 7 | 21 |
2020 October | 9 | 4 | 13 |
2020 September | 9 | 10 | 19 |
2020 August | 7 | 17 | 24 |
2020 July | 10 | 10 | 20 |
2020 June | 11 | 5 | 16 |
2020 May | 14 | 8 | 22 |
2020 April | 12 | 1 | 13 |
2020 March | 20 | 4 | 24 |
2020 February | 23 | 1 | 24 |
2020 January | 14 | 3 | 17 |
2019 December | 16 | 4 | 20 |
2019 November | 10 | 2 | 12 |
2019 October | 7 | 0 | 7 |
2019 September | 8 | 5 | 13 |
2019 August | 9 | 3 | 12 |
2019 July | 21 | 4 | 25 |
2019 June | 41 | 30 | 71 |
2019 May | 113 | 53 | 166 |
2019 April | 52 | 27 | 79 |
2019 March | 3 | 16 | 19 |
2019 February | 9 | 3 | 12 |
2019 January | 11 | 3 | 14 |
2018 December | 5 | 5 | 10 |
2018 November | 9 | 2 | 11 |
2018 October | 20 | 3 | 23 |
2018 September | 15 | 7 | 22 |
2018 August | 22 | 1 | 23 |
2018 July | 4 | 1 | 5 |
2018 June | 4 | 0 | 4 |
2018 May | 9 | 8 | 17 |
2018 April | 11 | 7 | 18 |
2018 March | 8 | 0 | 8 |
2018 February | 2 | 1 | 3 |
2018 January | 11 | 0 | 11 |
2017 December | 2 | 0 | 2 |
2017 November | 8 | 0 | 8 |
2017 October | 27 | 6 | 33 |
2017 September | 12 | 0 | 12 |
2017 August | 9 | 0 | 9 |
2017 July | 13 | 1 | 14 |
2017 June | 14 | 20 | 34 |
2017 May | 17 | 1 | 18 |
2017 April | 7 | 3 | 10 |
2017 March | 13 | 59 | 72 |
2017 February | 18 | 2 | 20 |
2017 January | 18 | 1 | 19 |
2016 December | 25 | 7 | 32 |
2016 November | 21 | 7 | 28 |
2016 October | 37 | 8 | 45 |
2016 September | 39 | 5 | 44 |
2016 August | 26 | 2 | 28 |
2016 July | 7 | 2 | 9 |
Show all