Determinar si el desarrollo de una red neuronal artificial (RNA) formada por variables clínicas permite predecir el resultado de la biopsia prostática (BP).
Material Y MétodosPacientes (n=953) sometidos a BP en el Hospital Arquitecto Marcide, Ferrol, entre enero-2000 y junio-2005. Las variables estudiadas fueron edad, PSA, tacto rectal y volumen prostático, disponiendo de todos estos datos en 843 casos. Para determinar factores relacionados con el diagnóstico de cáncer de próstata (CP), se desarrollaron un análisis de regresión logística y una red neuronal “feed-forward”, con tres nodos en su capa oculta y un nodo de salida, que representa la probabilidad de CP. Ambos modelos fueron construidos a partir de una muestra aleatoria de n=643 pacientes (set de derivación). La capacidad predictiva de ambos modelos se valoró con los 200 pacientes restantes (set de validación), mediante curvas ROC y su área bajo la curva (ABC).
ResultadosSe detectó CP en 500 (59,3%) casos. Ajustando por edad, PSA, tacto rectal y volumen prostático, en un modelo de regresión logística multivariante, se observó que todas las variables predecían CP de forma independiente. Las ABC fueron de 0,693 para el PSA, 0,707 para el volumen prostático, 0,815 para la regresión logística y 0,819 para la RNA. La capacidad predictiva de la RNA fue significativamente superior a la del PSA (p=0,002) y volumen prostático (p < 0,001) y similar a la de la regresión logística (p=0,760).
ConclusionesLa RNA presenta una capacidad de predicción de CP significativamente superior a los métodos diagnósticos unimodales, y similar a la regresión logística.
To determine whether the development of an artificial neural network (ANN) made up of clinical variables allows for the prediction of prostate biopsy (PB) outcome.
Material And MethodsPatients (n=953) underwent PB at the Arquitecto Marcide Hospital in Ferrol (Spain), between january 2000 and june 2005. The variables studied were age, PSA, digital rectal examination (DRE) and prostate volume, data for all of which were available in 843 cases. In order to determine factors related to prostate cancer (PC) diagnosis, a logistic regression analysis and a feed–forward neural network were developed, including three hidden layer nodes and an output node, representing the probability of PC. Both models were constructed from a random sample of n=643 patients (derivation set). The predictive capacity was assessed with the remaining 200 patients (validation set), by means of ROC curves and the area under the curve (AUC).
ResultsPC was detected in 500 (59.3%) cases. Adjusting for age, PSA, digital rectal examination and prostate volume, in a multivariate logistic regression model it was observed that all the variables were independent predictors of PC. The AUC were 0.693 for PSA, 0.707 for prostate volume, 0.815 for logistic regression and 0.819 for ANN. The predictive capacity of the ANN was significantly higher than that of the PSA (p=0.002) and prostate volume (p < 0,001) and similar to that of logistic regression (p=0.760).
ConclusionsThe ANN shows a PC prediction capacity that is significantly higher than unimodal diagnosis methods, and similar to that of logistic regression.
Artículo
Comprando el artículo el PDF del mismo podrá ser descargado
Precio 19,34 €
Comprar ahora