covid
Buscar en
Angiología
Toda la web
Inicio Angiología Ateromatosis y aterotrombosis carotídea. Implicación del factor tisular
Información de la revista
Vol. 55. Núm. 1.
Páginas 64-76 (enero 2003)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 55. Núm. 1.
Páginas 64-76 (enero 2003)
Acceso a texto completo
Ateromatosis y aterotrombosis carotídea. Implicación del factor tisular
Carotid atheromatosis and a therothrombosis. the involvement of the tissue factor
Ateromatose eaterotrombose carotídea. envolvimento do factor tecidual
Visitas
5162
E. Catenaa,c, J. Krupinskia,c, R. Vilab, M.A. Cairols
,b
, F. Rubio-Borregoa, L. Badimónc
a Servicio de Neurología. Hospital Universitario de Bellvitge. L'Hospitalet de Llobregat, Barcelona.
b Servicio de Angiología y Cirugía Vascular. Hospital Universitario de Bellvitge. L'Hospitalet de Llobregat, Barcelona.
c Centro de Investigación Cardiovascular. CSIC/ICCC. Barcelona España.
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas
Resumen
Introducción

Los procesos implicados en lagénesisy progresión de la enfermedad aterosclerótica todavía no se conocen bien; es posible que, a lo largo de los años, el crecimiento de las placas ateroscleróticas sea discontinuo en lugar de lineal, conperíodos de inactividadrelativa interrumpidos por otros de rápida evolución.

Desarrollo

Se comentan los estadios diferenciados en lapatogénesis de la aterosclerosis, así como elpapel que desempeña el factor tisular (FT) en la aterotrombosis. Investigaciones recientes destacan la importancia de la vía del FT, anteriormente denominada vía extrínseca delsistema de la coagulación, que es elprincipalsistemade coagulación in vivo, y lo consideran elprincipalregulador de la coagulación, de la hemostasia y de la trombosis. El proceso procoagulante se inicia cuando, tras romperse la placa aterosclerótica, se expone a la circulación sanguínea el núcleo grasoy su contenido en FT se hace accesible a las pequeñas cantidades de factor VIIa que circulan por la sangre, iniciándose así la deposiciónplaquetariay la cascada de la coagulación.

Conclusión

En la actualidadse están realizando ensayos clínicos sobre las lesiones ateroscleróticas carotídeas confármacos anticoagulantes cuyo principal mecanismo de acción se centra en la inhibición de la vía del FT.

Palabras clave:
Ateromatosis carotídea
Aterosclerosis
Aterotrombosis carotídea
Factor tisular
Lipoproteínas
Placafibrosa
Sistema de coagulación
Summery
Introduction

We still do not have a very clear understanding ofthe processes involved in the genesis andprogression ofatherosclerotic disease. With thepassing oftheyears, the growth of atherosclerotic plaques may become discontinuous insteadoflinear, withperiods of relative inactivity that are interrupted by others in whichprogress is fast.

Development

We discuss the differentstages in the pathogenesis of atherosclerosis, and also the role playedby the tissuefactor (TF) in atherothrombosis. Recent research has underlinedthe importance ofthe TF pathway (previously known as the extrinsic pathway ofthe coagulation system), which is the main coagulation system in vivo, andit is seen as beingthe chiefregulatorofcoagulation, haemostasis andthrombosis. The procoagulation process begins when, after rupture ofthe atherosclerotic plaque, the lipid nucleus is exposedto the bloodstream andits TF content becomes accessible to the small amounts of factor VIIa circulating in the blood, thus triggering plaque deposition and the coagulation cascade.

Conclusion

Clinical trials are currently being conductedon carotidatherosclerotic lesions with anticoagulant drugs that act mainly through a mechanism which centres on inhibiting the TF pathway.

Key words:
Atherosclerosis
Carotid atheromatosis
Carotid atherothrombosis
Coagulation system
Fibrous plaque
Lipoproteins
Tissuefactor
Resumo
Introdução

Osprocessos envolvidos na génese e progressão da doença aterosclerótica não são bem conhecidas; é possível que, ao longo dos anos, o crescimento dasplacas ateroscleróticas seja descontínuo em vez de linear, comperíodos de inactivida-de relativa interrompidos por outros de rápida evolucao.

Desenvolvimento

Comentam-se os estados diferenciados napatogénese da aterosclerose, assim como o papel que des-empenha o factor tecidual (FT) na aterotrombose. Investigações recentes destacam a importancia da via do FT, anteriormente denominada via extrínseca do sistema de coagulacao, que é o principal sistema de coagulação in vivo, e consideram-no o principal regulador da coagulação, da hemostase e da trombose. Oprocessopró-coagulante tem início quando, após ruptura da placa ateros-clerótica, expõe-se a circulação sanguínea o nucelo gordo e o seu conteúdo de FT tornase acessível as pequenas quantidades de factor VIIa que circulam no sangue, dando início a deposição plaquetária e a cascata da coagulacao.

Conclusão

Actualmente estão a realizar-se ensaios clínicos sobre as lesões ateroscleróticas carotídeas comfármacos anticoagulantes cujo principal mecanismo de acção centra-se na inibição da via do FT.

Palavras chave:
Ateromatose carotídea
Aterosclerose
Aterotrombose carotídea
Factor tecidual
Lipoproteínas
Placafibrosa
Sistema de coagulacao
El Texto completo está disponible en PDF
References
[1.]
Seeger J.M., Barratt E., Lawson G.A., Klingman N..
The relationship between carotid plaque composition morphology, and neurological syntoms.
J Surg Res., 58 (1995), pp. 330-336
[2.]
Ross R..
The pathogenesis of atherosclerosis -an update.
N Engl J Med., 314 (1986), pp. 488-500
[3.]
Stary H.C., Chandler A.B., Glagov S., Guyton J.R., Insull W. Jr, Rosenfeld M.E., et al.
A definition of initial, fatty streak, and intermediate lesions of atherosclerosis: a report from the Committe on Vascular Lesions of the Council on Arteriosclerosis. American Heart Association.
Circulation, 89 (1994), pp. 2462-2478
[4.]
Ross R..
The pathogenesis of atherosclerosis: a perspective for the 1900s.
Nature, 362 (1993), pp. 801-819
[5.]
Von Rokitansky C..
A manual of pathological anatomy, Syndheman, (1852),
[6.]
Ross R..
Atherosclerosis -an inflammatory disease.
N Engl J Med., 340 (1999), pp. 115-126
[7.]
Vanhoutte P..
Endothelium dysfunction and atherosclerosis.
Eur Heart J, 18 (1997), pp. 19-29
[8.]
Jander S., Sitzer M., Schumann R., Schroeter M., Siebler M., Steinmetz H., et al.
Inflammation in high-grade carotid stenosis. A possible role for macrophages and T cells in plaque destabilization.
Stroke, 29 (1998), pp. 1625-1630
[9.]
Breslow J..
Genetic differences in endothelial cells may determine atherosclerosis susceptibility.
Circulation, 102 (2000), pp. 5-6
[10.]
Brown D.L..
Cardiovascular plaque rupture.
Series: Fundamental and Clinical Cardiology, Marcel Dekker, (2000),
[11.]
Fuster V..
Coronary artery disease: a clinicalpathological correlation.
Syndromes of artheriosclerosis, pp. 1-45
[12.]
Mazzolai L., Silacci P., Bouzourene K., Daniel F., Brunner H., Hayoz D..
Tissue factor activity is upregulated in human endothelial cells exposed to oscillatory shear stress.
Thromb Haemost, 87 (2002), pp. 1062-1068
[13.]
Griendling K., Alexander R..
Oxidative stressand cardiovascular disease.
Circulation, 96 (1997), pp. 3264-3265
[14.]
Cuevas P., Asín-Cardiel E..
Nuevos conceptosen aterogénesis coronaria.
Cardiovascular Risk Factors, 6 (2000), pp. 369-376
[15.]
Griffin J., Fernández J., Deguchi H..
Plasma lipoproteins, hemostasis and thrombosis.
Thromb Haemost, 86 (2001), pp. 386-394
[16.]
Calabresi L., Gomaraschi M., Villa B., Omoboni L., Dmitrieff C., Franceschini G..
Elevated soluble cellular adhesion molecules in subjects with low HDL cholesterol.
Arterioscler Thromb Vasc Biol, 22 (2002), pp. 656-661
[17.]
Chobanian A., Dzau V..
Renin angiotensin system and atherosclerosis vascular disease.
pp. 237-242
[18.]
Nehler M., Taylor L., Porter J..
Homocysteinemia as a risk factor for atherosclerosis: a review.
Cardiovasc Surg., 6 (1997), pp. 559-567
[19.]
Malinov M..
Plasma homocysteine and arterial occlusive diseases: a mini-review.
Clin Chem, 41 (1995), pp. 173-176
[20.]
Streifler J., Rosenberg N., Chetrit A., Eskaraev R., Sela B.A., Dardik R., et al.
Cerebrovascular events in patients with significant stenosis of the carotid artery are associated with hyperhomocysteinemia and platelet antigen-1 (Leu33Pro) polymorphism.
Stroke, 32 (2001), pp. 2753-2758
[21.]
Espinola-Klein C., Rupprecht M., Blankenberg S., Bickel C., Kopp H., Victor A., et al.
Impact of infectious burden on progression of carotid atherosclerosis.
Stroke, 11 (2002), pp. 2581-2586
[22.]
Fuster V., Badimon L., Badimon J.J., Chesebro J..
The pathogenesis of coronary artery disease and the acute coronary syndromes I.
N Engl J Med., 326 (1992), pp. 242-250
[23.]
Fuster V., Badimon L., Badimon J.J., Chesebro J..
The pathogenesis of coronary artery disease and the acute coronary syndromes II.
N Engl J Med., 326 (1992), pp. 310-318
[24.]
Hutter R., Sauter B., Fallon J..
Macrophages and carotid plaques are prone to apoptosis and tissue factor expression.
J Am Coll Cardiol, 37 (2001), pp. 288A
[25.]
Tedgui A., Mallar Z..
Apoptosis as a determinant of atherotrombosis.
Thromb Haemost, 86 (2001), pp. 420-426
[26.]
Falk E., Shah P., Fuster V..
Coronary plaque disruption.
Circulation, 92 (1995), pp. 657-671
[27.]
Corti R., Badimon J.J..
Biologic aspects of vulnerable plaque.
Curr Opin Cardiol, 17 (2002), pp. 616-625
[28.]
Liuzzo G., Biasucci L.M., Gallimore J.R., Grillo R.L., Rebuzzi A.G., Pepys M.B., et al.
The prognostic value of C-reactive protein and serum amyloid A protein in severe unstable angina.
N Engl J Med., 331 (1994), pp. 417-424
[29.]
Biasucci L.M., Vitelli A., Liuzzo G., Altamura S., Caligiuri G., Monaco C., et al.
Elevated levels of interleukin-6 in unstable angina.
Circulation, 94 (1996), pp. 847-877
[30.]
Di Napoli M., Papa F..
Inflammation, hemostaticmarkers, and antithrombotic agents in relationto long-term risk of new cardiovascular eventsin first-ever ischemic stroke patients.
Stroke, 33 (2002), pp. 1763-1771
[31.]
Ridker P.M., Rifai N., Rose L., Buring J.E., Cook N.R..
Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events.
N Engl J Med., 347 (2002), pp. 1557-1565
[32.]
Iyigün I..
C-reactive protein in ischemic stroke. Letter to editor.
Stroke, 33 (2002), pp. 2146
[33.]
Folsom A..
Hemostatic risk factors for atherothrombotic disease: an epidemiologic view.
Thromb Haemost, 86 (2001), pp. 366-373
[34.]
Davies M., Richardson P., Woolf N., Katz D., Mann J..
Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage and smooth muscle cell content.
Br Heart J, 69 (1993), pp. 377-381
[35.]
Toschi V., Gallo R., Lettino M., Fallon J.T., Gertz S.D., Fernández-Ortiz A., et al.
Tissue factor modulates thrombogenecity of human atherosclerotic plaques.
Circulation, 95 (1997), pp. 594-599
[36.]
Moreno P.R., Bernardi V.H., López-Cuéllar J., Murcia A.M., Palacios I.F., Gold H.K., et al.
Macrophages, smooth muscle cells, and tissue factor in unstable angina. Implications for cell-mediated thrombogenecity in acute coronary syndromes.
Circulation, 94 (1996), pp. 3090-3097
[37.]
Rapaport S., Vijaya L..
The tissue factor pathway: How it has become a ‘prima ballerina'.
Thromb Haemost, 74 (1995), pp. 7-17
[38.]
Bauer K..
Activation of the factor VII-tissuefactor pathway.
Thromb Haemost, 78 (1997), pp. 108-111
[39.]
Fuster V., Fayad Z., Badimon J.J..
Acute coronary syndromes: biology.
Lancet, 353 (1999), pp. S5-S9
[40.]
Jander S., Sitzer M..
Expression of tissue factorin high-grade carotid artery stenosis. Association with plaque destabilization.
Stroke, 32 (2001), pp. 850-854
[41.]
Westmuckett A.D., Lupu C., Goulding D.A., Das S., Kakkar V.V., Lupu F..
In situ analysis of tissue factor-dependent thrombin generation in human atherosclerotic vessels.
Thromb Haemost, 84 (2000), pp. 904-911
[42.]
Golino P., Ragni M., Cimmino G., Forte L..
Role of tissue factor pathway inhibitor in the regulation of tissue-factor dependent blood coagulation.
Cardiovasc Drug Rev, 20 (2002), pp. 67-80
[43.]
Abumiya T., Yamaguchi T., Terasaki T., Kokawa T., Kario K., Kato H..
Decreased plasma tissue factor pathway inhibitor activity in ischemic stroke patients.
Thromb Haemost, 74 (1995), pp. 1050-1054
[44.]
Caplice N.M., Mueske C.S., Kleppe L.S., Simari R.D..
Presence of tissue factor pathway inhibitor in human atherosclerotic plaques is associated with reduced tissue factor activity.
Circulation, 98 (1998), pp. 1051-1057
[45.]
Badimon J.J., Lettino M., Toschi V., Fuster V., Berrozpe M., Chesebro J.H., et al.
Local inhibition of tissue factor reduces the thrombogenecity of disrupted human atherosclerotic plaques.
Circulation, 99 (1999), pp. 1780-1787
[46.]
Harker L.A., Hanson S.R., Wilcox J.N., Kelly A.B..
Antithrombotic and antilesion benefits without hemorrhagic risk by inhibiting tissue factor pathway.
Haemostasis, 26 (1996), pp. S76-S82
[47.]
Pawashe A.B., Golino P., Ambrosio G., Migliaccio F., Ragni M., Pascucci I., et al.
A monoclonal antibody against rabbit tissue factor inhibits thrombus formation in stenotic injured rabbit carotid arteries.
Circ Res., 74 (1994), pp. 56-63
[48.]
Ragni M., Cirillo P., Pascucci I., Scognamiglio A., D'Andrea D., Eramo N., et al.
Monoclonal antibody against tissue factor shortens tissue plasminogen activator lysis time and tissue factor-dependent thrombin generation in human atherosclerotic vessels.
Thromb Haemost, 84 (2000), pp. 904-911
[49.]
Sambola A., Hathcock J., Osende J..
Increasedcirculating tissue factor and blood thrombo-genecity in type-2 diabetes.
J Am Coll Cardiol, 39 (2002), pp. 202A
[50.]
Doshi S.N., Marmur J.D..
Evolving role of tissue factor and its pathway inhibitor.
Crit Care Med., 30 (2002), pp. S241-S250
[51.]
Corti R., Fuster V., Badimon J.J..
Strategy for ensuring a better future for the vessel wall.
Eur Heart J, 4 (2002), pp. S31-S34
Copyright © 2003. SEACV
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos