covid
Buscar en
Angiología
Toda la web
Inicio Angiología Implicaciones fisiopatológicas de la angiogénesis en la patología vascular
Información de la revista
Vol. 55. Núm. 4.
Páginas 352-360 (enero 2003)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 55. Núm. 4.
Páginas 352-360 (enero 2003)
Acceso a texto completo
Implicaciones fisiopatológicas de la angiogénesis en la patología vascular
Physiopathological implications of angiogenesis in vascular pathologies
ImplicacÓes fisiopatolÓgicas da angiogÉnese na patologia vascular
Visitas
5591
A. Rodríguez-Morata
Autor para correspondencia
armoratavas@terra.es

Correspondencia: Servicio de Angiología y Cirugía Vascular. Hospital Clínico S. Cecilio. Avda. Dr. Olóriz, 16. E-18012 Granada.
, E. Ros-Díe
Servicio de Angiología y Cirugía Vascular. Hospital Clínico S. Cecilio. Granada, España.
Este artículo ha recibido
Información del artículo
Resumen
Objetivo

Estudiar la importancia de un fenómeno normaly patológico, la angiogénesis; su origen, consecuencias e implicación en la fisiopatología de algunas enfermedades vasculares como la arteriosclerosis y la trombosis venosa profunda (TVP).

Desarrollo

La angiogénesis es un proceso fisiológico involucrado en el organismo en la reparación tisular en general. Su estímulo depende de la hipoxia y de una serie de factores angiogénicos, como el factor de crecimiento vascular endotelial (VEGF) y el factor de crecimiento fibroblástico (FGF), que actúan mediante la activación del endotelio, que se comporta como el factor limitante para la creación de nuevas estructuras tubulares. Este proceso ha cobrado recientemente un papel cada vez más relevante dentro de las cadenas fisiopatológicas de ciertas patologías vasculares, como la ateromatosis carotídea, en la cual promueve el contacto entre los monocitos y el interior del ateroma y predispone a la hemorragia intraplaca, la rotura, la inestabilidad y la sintomatología; igualmente, en la TVP favorece el contacto entre los monocitos y el trombo, permite la liberación del activador del plasminógeno tisular y la urocinasa in situ, y acelera la lisis del mismo.

Conclusiones

A partir del conocimiento exhaustivo de la angiogénesis y las circunstancias especiales con las que se asocia, estaremos en disposición de potenciarla o frenarla, desde un punto de vista terapéutico, en situaciones de importancia y prevalencia, como son estas patologías vasculares, al igual que se investiga actualmente en el campo de la isquemia crónica coronaria y de las extremidades.

Palabras clave:
Angiogénesis
Ateromatosis
Células endoteliales
Monocitos
Factor de crecimiento
Trombosis venosa profunda
Summary
Aims

To study the importance of an everyday pathological phenomenon: angiogenesis. We sought to examine its origin, consequences and implications in the pathophysiology of certain vascular pathologies, such as arteriosclerosis and deep vein thrombosis (DVT).

Development

Angiogenesis is a physiologicalprocess involved in tissue repair of the organism in general. Whether or not it is stimulated depends on hypoxia and a series of angiogenic factors such as vascular endothelial growthfactor (VEGF) and fibroblast growth factor (FGF), which act by activating the endothelium and it behaves as a restricting factor in the creation of new tubular structures. This process has recently become increasingly important in the physiopathological chains of vascular pathologies like carotid atheromatosis, where it promotes contact between mononuclear cells and the inside of the atheroma. It also gives rise to a predisposition to intraplaque haemorrhage, rupture, instability andsymptomatology. Likewise, in DVT it favours contact between mononuclear cells and the thrombus, allows the release of tissue plasminogen activator and urokinase in situ, and accelerates its lysis.

Conclusions

An exhaustive knowledge of angiogenesis and the special circumstances associated with it will enable us to reinforce or stop it, from a therapeutic point of view, in situations of importance and prevalence like these vascular pathologies, in the same way as research is currently being carried out in the field of chronic is chemia of the heart and the limbs.

Palabras clave:
Angiogenesis
Atheromatosis
Deep vein thrombosis
Endothelialcells
Growthfactor
Mononuclear cells
Resumo
Objectivo

Estudar a importância de um fenómeno normal e patológico como a angiogénese; sua origem, consecuencias e envolvimento na fisiopatologia de algumas doenças vasculares como a arteriosclerose e a trombose venosa profunda (TVP).

Desenvolvimento

A angiogénese é um processo fisiológico utilizado pelo organismo para a reparação tissular em geral. O seu estímulo depende da hipoxia e de uma série de factores angiogénicos como o factor de crescimento vascular endotelial (VEGF) e factor de crescimento fibroblástico (FGF), que actuam através da activação do endotélio, que se comporta como o factor limitador para a criação de novas estruturas tubulares. Este processo desempenha recentemente um papel cada vez mais relevante dentro das cadeias fisiopatológicas das patologias vasculares como a ateromatose carotídea, que promove o contacto entre os mononucleares e o interior do ateroma e predispõe a hemorragia intra-placa, a rotura, a instabilidade e a sintomatologia; da mesma forma, a TVP favorece o contacto entre células mononucleares e o trombo, levando à libertação do activador do plasminógeno tissular e uroquinase in situ, acelerando a lise do mesmo.

Conclusões

A partir do conhecimento exaustivo da angiogénese e as circunstâncias especiais que associa, estaremos na disposição de potenciá-la ou travá-la, sob um ponto de vista terapêutico, em situações de importância e prevalência como estas patologias vasculares, tal como se investiga actualmente no campo da isquemia coronária crónica e das extremidades.z

Palavras chave:
Angiogénese
Ateromatose
Células endoteliais
Células mononucleares
Factor de crescimento
Trombose venosa profunda
El Texto completo está disponible en PDF
Bibliografía
[1.]
D'Amore P..
In vitro models of blood vessel assembly.
J Vasc Surg., 25 (1997), pp. 1090-1091
[2.]
Brizzi M., Formato L., Bonamini R..
The molecular mechanism of angiogenesis: a new approach to cardiovascular diseases.
Ital Heart J, 2 (2001), pp. 81-92
[3.]
Leibovich S., Wiseman D..
Macrophages, wound repair and angiogenesis.
Prog Clin Biol Res., 266 (1988), pp. 131-145
[4.]
Hopkins S., Bulgrin J., Sims R., Bowman B., Donovan D., Schmidt S., et al.
Controlled delivery of vascular endothelial growth factor promotes neovascularization and maintains limb function in a rabbit model of ischemia.
J Vasc Surg., 27 (1998), pp. 886-895
[5.]
Mack C.H., Magovern C.H., Budenbender K., Patel S.H., Schwarz E., Zanzonico P., et al.
Salvage angiogenesis induced by adenovirus-mediated gene transfer of vascular endothelial growth factor protects against ischemic vascular occlusion.
J Vasc Surg., 27 (1998), pp. 699-709
[6.]
Yoshida Y., Kurokawa T., Fukuno N., Nishikawa N., Kotsuji F..
Markers of apoptosis and angiogenesis indicate that carcinomatous components play an important role in the malignant behaviour of uterine carcinosarcoma.
Hum Pathol., 31 (2000), pp. 1448-1453
[7.]
Wakefield T.H., Linn M., Henkle P., Kadell A., Wilke C., Wrobleski S.H., et al.
Neovascularization during venous thrombosis organization: a preliminary study.
J Vasc Surg., 30 (1999), pp. 885-893
[8.]
Waltham M., Burnard K., Collins M., Smith A..
Vascular endothelial growth factor and basic fibroblast growth factor are found in resolving venous thrombi.
J Vasc Surg., 32 (2000), pp. 988-996
[9.]
Tenaglia A., Peters K., Sketch M. Jr, Annex B..
Neovascularization in atherectomy specimens from patients with unstable angina: implications for pathogenesis of unstable angina.
Am Heart J, 135 (1988), pp. 10-14
[10.]
Moulton K..
Plaque angiogenesis and atherosclerosis.
Curr Atheroscler Rep, 3 (2001), pp. 225-233
[11.]
McCarthy M., Loftus I., Thompson M., Jones L., London N., Bell P., et al.
Angiogenesis and the atherosclerotic carotid plaque: an association between symptomatology and plaque morphology.
J Vasc Surg., 30 (1999), pp. 261-268
[12.]
Holmes D., Liao S.H., Parks W., Thompson R..
Medial neovascularization in abdominal aortic aneurysmal degeneration with pathophysiologic implications.
J Vasc Surg., 21 (1995), pp. 761-772
[13.]
Westerband A., Gentile A., Hunter G., Gooden M., Aguirre M., Berman S..
Intimal growth and neovascularization in human stenotic vein grafts.
J Am Coll Surg., 191 (2000), pp. 264-271
[14.]
Hasgerstrand A., Gillis C., Bengtsson L..
Serial cultivation of adult endothelium from the great saphenous vein.
J Vasc Surg., 16 (1992), pp. 280-285
[15.]
García-Honduvilla N..
Ingeniería tisular: Células mesoteliales versus células endoteliales en la creación de bioprótesis vasculares [tesis doctoral], Universidad de Alcalá de Henares, (2001),
[16.]
Fabre J., Rivard A., Magner M., Silver M., Isner J..
Tissue inhibition of angiotensin converting enzyme activity stimulates angiogenesis in vivo.
Circulation, 15 (1999), pp. 3043-3049
[17.]
Sidawy A., Mitchell M..
Basic considerations of the arterial wall in health and disease.
pp. 63-69
[18.]
Giménez AM. Inhibidores tisulares séricos de las metaloproteinasas. Implicaciones en Dermatología. Actualidad Dermatológica 1996; Nov: 741-52. URL: http://www.actualidad dermatol.com/art11196.pdf. Fecha última consulta: 02.06.2003.
[19.]
Vale P., Losordo D., Symes J., Isner J..
Factores de crecimiento para la angiogénesis terapéutica en las enfermedades cardiovasculares.
Rev Esp Cardiol, 54 (2001), pp. 1210-1224
[20.]
Donnelly R., Yeung J..
Therapeutic angiogenesis: a step forward in intermittent claudication.
Lancet, 359 (2002), pp. 2048-2049
[21.]
Isner J..
Vascular endothelial growth factor-induction of angiogenesis.
J Vasc Surg., 31 (2000), pp. 1252-1255
[22.]
Hamdan A., Aiello L.L., Misare B., Contreras M., King G., LoGerfo F., et al.
Vascular endothelial growth factor expression in canine peripheral vein bypass grafts.
J Vasc Surg., 26 (1997), pp. 79-86
[23.]
Pevec W., Ndoye A., Brinsky J., Wiltse S.H., Cheung A..
New blood can be induced to invade ischemic skeletal muscle.
J Vasc Surg., 24 (1996), pp. 534-544
[24.]
Rosengart T., Budenbender K., Duenas M., Mack C.H., Zhang Q., Isom O..
Therapeutic angiogenesis: a comparative study of the angiogenic potential of acidic fibroblast growth factor and heparin.
J Vasc Surg., 26 (1997), pp. 302-312
[25.]
Rosengart T., Kupferschmid J., Ferrans V., Casscells W., Maciag T.H., Clark R..
Heparin-binding growth factor-I (endothelial cell growth factor) binds to endothelium in vivo.
J Vasc Surg., 7 (1988), pp. 311-317
[26.]
Pu L., Sniderman A., Arekat Z., Graham A., Brassard R., Symes J..
Angiogenic growth factor and revascularization of the ischemic limb: evaluation in a rabbit model.
J Surg Res., 64 (1993), pp. 575-583
[27.]
Aoki M., Morishita R., Taniyama Y., Kaneda Y., Ogihara T..
Therapeutic angiogenesis induced by HGF: potential gene therapy for ischemic diseases.
J Atheroscler Thromb, 7 (2000), pp. 71-76
[28.]
Taniyama Y., Morishita R., Hiraoka K., Aoki M., Nakagami H., Yamasaki K., et al.
Therapeutic angiogenesis induced by human HGF in rat diabetic hindlimb ischemia model.
Circulation, 104 (2001), pp. 2344-2350
[29.]
Grant D., Zukowska Z..
Revascularization of ischemic tissues with SIKVAV and neuropeptide Y (NPY).
Adv Exp Med Biol, 476 (2000), pp. 139-154
[30.]
Greisler H., Ellinger J., Henderson S., Shaheen A., Burgess W., Kim D., et al.
The effects of an atherogenic diet on macrophage/biomaterial interactions.
J Vasc Surg., 14 (1991), pp. 10-23
[31.]
Linares-Palomino J.P..
Detección de Chlamydia pneumoniae en la arteriopatía periférica [tesis doctoral], Universidad de Granada, (2000),
[32.]
Greisler H., Dennis J., Endean E., Ellinger J., Friesel R., Burgess W., et al.
Macrophage/biomaterial interactions: the stimulation of endothelization.
J Vasc Surg., 9 (1989), pp. 588-593
[33.]
Simons M..
Inflammation and angiogenesis.
J Vasc Surg., 31 (2000), pp. 1257-1258
[34.]
Adams D., Lloyd A..
Chemokines: leucocyte recruitment and activation cytokines.
Lancet, 349 (1997), pp. 490-495
[35.]
Parkin J., Cohen B..
An overview of the immune system.
Lancet, 357 (2001), pp. 1777-1789
[36.]
Heidemann J., Ogawa H., Dwinell M.B., Rafiee P., Maaser C., Gockel H.R., et al.
Angiogenic effects of interleukin 8 (CXCL8) in human intestinal microvascular endothelial cells are mediated by CXCR2.
J Biol Chem, 278 (2003), pp. 8508-8515
[37.]
Fuster V..
Aterotrombosis coronaria: nuevas direcciones.
Grandes temas de la Cardiología (32 ACC New York Cardiovascular Symposium), pp. 3-11
[38.]
Virmani R., Narula J., Farb A..
When neoangiogenesis ricochets.
Am Heart J, 136 (1998), pp. 937-939
[39.]
Dalager-Pederson S., Morre E., Ringgaard S., Falk E..
Arteriopatía coronaria: vulnerabilidad de la placa, rotura y trombosis.
La placa de ateroma vulnerable, pp. 1-16
[40.]
Celleti F., Waugh J., Amabile P.H., Brendolan A., Hilfiker P., Dake M..
Vascular endothelial growth factor enhances atherosclerotic plaque progression.
Nature Medicine, 7 (2001), pp. 4
[41.]
Moulton K..
The flip side-vascular applications for angiogenesis inhibitors.
J Vasc Surg., 31 (2000), pp. 1258-1260
[42.]
Shoab S., Scurr J., Coleridge-Smith P..
Increased plasma vascular endothelial growth factor among patients with chronic venous disease.
J Vasc Surg., 28 (1998), pp. 535-540
[43.]
Wilkinson L., Bunker C., Edwards J., Scurr J., Coleridge-Smith P..
Leukocytes: their role in the etiopathogenesis of skin damage in venous disease.
J Vasc Surg., 17 (1993), pp. 669-675
[44.]
Isner J., Baumgartner I., Rauh G., Schainfeld R., Blair R., Manor O., et al.
Treatment of thromboangiitis obliterans (Buerger's disease) by intramuscular gene transfer of vascular endothelial growth factor: preliminary clinical results.
J Vasc Surg., 28 (1998), pp. 964-975
[45.]
Isner J., Pieczek A., Schainfeld R., Blair R., Haley L., Asahara T., et al.
Clinical evidence of angiogenesis after arterial gene transfer of ph-VEGF165 in patient with ischaemic limb.
Lancet, 10 (1996), pp. 370-374
[46.]
Kipshidze N., Chekanov V., Chawla P., Shankar L., Gosset J., Kumar K., et al.
Angiogenesis in a patient with ischemic limb induced by intramuscular injection of vascular endothelial growth factor and fibrin platform.
Text Heart Inst J, 27 (2000), pp. 196-200
[47.]
Simovic D., Isner J., Ropper A., Pieczek A., Weinberg D..
Improvement in chronic ischemic neuropathy after intramuscular phVEGF165 gene transfer in patients with critical limb ischemia.
Arch Neurol, 58 (2001), pp. 761-768
[48.]
Cooke J.P., Bhatnagar R., Szuba A., Rockson S..
Fibroblast growth factor as therapy for critical limb ischemia: a case report.
Vasc Med., 4 (1999), pp. 89-91
[49.]
Lazarous D.F., Unger E.F., Epstein S.E., Stine A., Arevalo J.L., Chew E.Y., et al.
Basic fibroblast growth factor in patients with intermittent claudication: results of a phase I trial.
J Am Coll Cardiol, 36 (2000), pp. 1239-1244
[50.]
Lederman R., Mendelsohn F., Anderson R., Saucedo J., Tenaglia A., Hermiller J., et al.
Therapeutic angiogenesis with recombinant fibroblast growth factor-2 for intermittent claudication (the TRAFFIC study): a randomised trial.
Lancet, 359 (2002), pp. 2053-2058
Copyright © 2003. SEACV
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos