covid
Buscar en
Angiología
Toda la web
Inicio Angiología Óxido nítrico: un campo abierto para la angiología y la cirugía vascular
Información de la revista
Vol. 54. Núm. 6.
Páginas 472-491 (enero 2002)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 54. Núm. 6.
Páginas 472-491 (enero 2002)
Acceso a texto completo
Óxido nítrico: un campo abierto para la angiología y la cirugía vascular
Nitric oxide: open field to angiology and vascular surgery
Óxido nítrico: campo aberto para a angiologia e cirurgia vascular
Visitas
2836
M. Barbosa Barros
Autor para correspondencia
marcellobb@bol.com.br

Correspondencia: Departamento de Cirugía. Facultad de Medicina. Av. del Campo Charro, s/n. E-37007Salamanca.
Departamento de Cirugía Vascular Periférica. Hospital de Clínicas. Universidad Federal de Paraná. Paraná, Brasil
Este artículo ha recibido
Información del artículo
Summary
Objective

We aim, with this collection of the last publications about this subject, to promote to the angiologists and vascular surgeons their continuous formation.

Development

The biochemistry, formation and regulation, actions, possible uses and clinical relevance of the nitric oxide molecule, which is synthesized by most mammal cells and has both systemic and local vasoactivity, are described in this work.

Conclusion

As It has been increasingly demonstrated, the success of nitric oxide in many areas of medicine, especially in the field of vascular medicine, allows us to suggest an endogenous-response manipulatory therapy for this molecule aiming better results on our field of work.

Key words:
Atherosclerosis
Endogenous response
Endotelium
L-arginine
Nitric oxide
Vasodilation
Resumen
Objetivo

El objetivo es promover la formación continua de los profesionales de la cirugía vascular y angiología mediante una recopilación de las últimas publicaciones sobre el tema.

Desarrollo

Abordamos la bioquímica, formación, regulación, acciones, posibles usos y la relevancia clínica de la molécula de óxido nítrico, compuesto sintetizado por la mayoría de las células de los mamíferos y que presenta efectos vasomotores locales y sistémicos de importancia para la mayoría de las patologías y tratamientos del ámbito de la cirugía vascular y de la angiología.

Conclusión

Se han identificado las diversas áreas de actuación para su uso y se ha sugerido la terapia manipuladora de la respuesta endógena del compuesto mencionado, con el fin de obtener mejores resultados en los ámbitos de la medicina citados anteriormente.

Palabras clave:
Aterosclerosis
Endotelio
L-arginina
Óxido nítrico
Respuesta endógena
Vasodilatation
Resumo
Objectivo

Objetiva-se promover a formação continuada dos profissionais da cirurgia vascular e angiologia com um apanhado das últimas publicações sobre o assunto proposto.

Desenvolvimento

Abordamos a bioquímica, formçõao, regulação, as acções, possíveis usos e relevância clínica da molécula de óxido nítrico, composto sintetizado pela maioria das células mamíferas e que tem efeitos vasomotores locais e sisté-micos de relevância para a maioria das patologias e tratamentos no â;mbito da cirurgia vascular e da angiologia.

Conclusão

São identificadas as diversas áreas de actuação para seu uso e é sugerido a terapia manipulatória da resposta endógena do referido composto para melhores resultados nos campos da medicina supracitados.

Palavras clave:
Aterosclerose
Endotélio
L-arginina
Óxido nítrico
Resposta endógena
Vasodilatacao
El Texto completo está disponible en PDF
References
[1.]
Stuehr D.J., Marletta M.A..
Mammalian nitrate biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide.
Proc Natl Acad Sci U S A, 82 (1985), pp. 7738-7742
[2.]
Koshland D.E. Jr..
The molecule of the year.
Science, 258 (1992), pp. 1861
[3.]
Kibbe M., Billiar T.R., Tzeng E..
Gene therapy for restenosis.
Cir Res, 86 (2000), pp. 829-837
[4.]
Feldman P.L., Griffith O.W., Stuehr D.J..
The surprising life of nitric oxide.
Chem Eng News, 71 (1993), pp. 26-39
[5.]
Nathan C.F..
Nitric oxide as a secretory product of mammalian cells.
FASEB J, 6 (1992), pp. 3051-3064
[6.]
Molina Y., Vedia L., McDonald B., Reep B., Brune B., Di Silvio M., Billiar T.R., et al.
Nitric oxideinduced S-nitrosylation of glyceraldehyde-3 phosphate dehydrogenase inhibits enzymatic activity and increases endogenous ADP-ribosylation.
J Biol Chem, 267 (1992), pp. 24929-24932
[7.]
McDonald L.J., Moss J..
Stimulation by nitric oxide of a NAD linkage to glyceraldehyde-3 phosphate dehydrogenase.
Proc Natl Acad Sci U S A, 90 (1993), pp. 6238-6241
[8.]
Drapier J., Hibbs J. Jr..
Murine cytotoxic activated macrophages inhibit aconitase in tumor cells: inhibition involves iron-sulfur prosthetic group and is reversible.
J Clin Invest, 78 (1986), pp. 790-797
[9.]
Hibbs J. Jr., Vavrin Z., Taintor R.R..
L-arginineis required for expression of the activated macrophage effector mechanism causing selective metabolic inhibition in target cells.
J Immunol, 138 (1987), pp. 550-565
[10.]
Stuehr D.J., Nathan C.F..
Nitric oxide: a macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells.
J Exp Med., 169 (1989), pp. 1543-1545
[11.]
Drapier J.C., Hirling H., Wietzerbin J., Kaldy P., Kuhn L.C..
Biosynthesis of nitric oxide activates iron regulatory factor in macrophages.
EMBO J, 12 (1993), pp. 3643-3649
[12.]
Gaston B., Reilly J., Drazen J.M., Fackler J., Ram dev P., Arnelle D., et al.
Endogenous nitrogen oxides and broncodilator S-nitrosothiols in human airways.
Proc Natl Acad Sci U S A, 90 (1993), pp. 10957-10961
[13.]
McDonald B., Reep B., Lapetina E.G., Molina Y., Vedia L..
glyceraldehyde-3 phosphate dehydrogenase is required for the transport on nitric oxide in platelets.
Proc Natl Acad Sci U S A, 90 (1993), pp. 11122-11126
[14.]
Abu-Soud H.M., Stuehr D.J..
Nitric oxide syntheses reveal a role for calmodulin in controlling electron transfer.
Proc Natl Acad Sci U S A, 90 (1993), pp. 10769-10772
[15.]
Baek K.J., Thiel B.A., Lucas S., Stuehr D.J..
Macrophage nitric oxide synthase subunits: purification, characterization, and the role of prosthetic groups and substrate in regulating their association into a dimeric enzyme.
J Biol Chem, 268 (1993), pp. 21120-21129
[16.]
Janssens S.P., Shimouchi A., Quertermous T., Bloch D.B., Bloch K.D..
Cloning and expression of cDNA encoding human endothelium-derived relaxing factor/nitric oxide synthase.
J Biol Chem, 267 (1992), pp. 14519-14522
[17.]
Nakane M., Schmidt H.H.H.W., Pollock J.S., Forstermann U., Murad F..
Cloned human brain nitric oxide synthase is highly expressed in skeletal muscle.
FEBS Lett, 316 (1993), pp. 175-180
[18.]
Geller D.A., Lowenstein C.J., Shapiro R.A., Nussler A.K., Di Silvio M., Wang S.C., et al.
Molecular cloning and expression of inducible nitric oxide synthase from human hepatocytes.
Proc Natl Acad Sci U S A, 90 (1993), pp. 3491-3495
[19.]
Cho H.J., Xie Q., Calaycay J., Mumford R.A., Swiderek K.M., Lee T.D., et al.
Calmodulin is a subunit of nitric oxide synthase from macrophages.
J Exp Med., 176 (1992), pp. 599-604
[20.]
Weitzberg E., Lundberg J.N.O..
Nonenzymatic nitric oxide production in humans.
Nitric Oxide Biol Chem, 2 (1998), pp. 01-07
[21.]
Lundberg J.N.O., Weitzberg E., Lundberg J.M., Alvin K..
Intragastric nitric oxide production in humans: measurements in expelled air.
Gut, 35 (1994), pp. 1543-1546
[22.]
Bartsch H., Ohshima H., Pignatelli B..
Inhibitors of endogenous nitrosilation: mechanisms and implications in human cancer prevention.
Mutat Res, 202 (1988), pp. 307-324
[23.]
Eiserich J.P., Hristova M., Cross C.E., Jones D.A., Freeman B.A., Halliwell B., van der Vliet A..
Formation of nitric-oxide derived inflammatory oxidants by myeloperoxidase in neutrophils.
Nature, 391 (1998), pp. 393-397
[24.]
Weitzberg E., Lundberg J.N.O..
Nonenzymatic nitric oxide production in humans.
Nitric Oxide Biol Chem, 2 (1998), pp. 01-07
[25.]
Furchgott R.F., Zawadzki J.V..
The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine.
Nature, 228 (1980), pp. 373-376
[26.]
Palmer R.M.J., Ferrige A.G., Moncada S..
Nitric oxide release accounts for the biological activity on endothelium-derived relaxing factor.
Nature, 327 (1987), pp. 524-526
[27.]
Ignarro L.J., Buga G.M., Wood K.S., Byrns R.E., Chaudhuri G..
Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide.
Proc Natl Acad Sci U S A, 84 (1987), pp. 9265-9269
[28.]
Vallance P., Collier J., Moncada S..
Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man.
Lancet, 2 (1989), pp. 997-1000
[29.]
Michel T., Li G.K., Busconi L..
Phosphorylation and subcellular translocation of endothelial nitric oxide synthase.
Proc Natl Acad Sci U S A, 90 (1993), pp. 6252-6256
[30.]
Nishida K., Harrison D.G., Navas J.P., Fisher A.A., Dockery S.P., Uematsu M., et al.
Molecular cloning and characterization of the constitutive bovine aortic endothelial cell nitric oxide synthase.
J Clin Invest, 90 (1992), pp. 2092-2096
[31.]
Marsden P.A., Heng H.H.Q., Scherer S.W., Stewart R.J., Hall A.V., Shi X.M., et al.
Structure and chromosomal localization of the human constitutive endothelial nitric oxide synthase gene.
J Biol Chem, 268 (1993), pp. 17478-17488
[32.]
Aoki N., Siegfried M., Lefer A.M..
Anti-EDRF effect of tumor necrosis factor in isolated, perfused cat carotid arteries.
Am J Physiol, 256 (1989), pp. H1509-H1512
[33.]
Werner-Felmayer G., Werner E.R., Fuchs D., Hausen A., Reibnegger G., Schmidt K., et al.
Pteridin biosynthesis in human endothelial cells.
Impact on nitric oxide-mediated formation of cyclic GMP. J Biol Chem, 268 (1993), pp. 1842-1846
[34.]
Hecker M., Sessa W.C., Harris H.J., Anggard E.E., Vane J.R..
The metabolism of L-arginine and its significance for the biosynthesis of endothelium-derived relaxing factor: cultured endothelial cells recycle L-citrulline to L-arginine.
Proc Natl Acad Sci U S A, 87 (1990), pp. 8612-8616
[35.]
Radomski M.W., Palmer R.M.J., Moncada S..
Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium.
Lancet, ii (1987), pp. 1057-1058
[36.]
Mellion B.T., Ignarro L.J., Ohlstein E.H., Pontecorvo E.G., Hyman A.L., Kadowitz P.J..
Evidence for inhibitory role of guanosine 3′,5′-monophosphate in ADP induced human platelet aggregation in the presence of nitric oxide and related vasodilators.
Blood, 57 (1981), pp. 946-955
[37.]
Kubes P., Suzuki M., Granger D.N..
Nitric oxide: an endogenous modulator of leukocyte adhesion.
Proc Natl Acad Sci U S A, 88 (1991), pp. 4651-4655
[38.]
Kubes P., Granger D.N..
Nitric oxide modulates microvascular permeability.
Am J Physiol, 262 (1992), pp. H611-H615
[39.]
Nakaki T., Nakayama M., Kato R..
Inhibition by nitric oxide and nitric oxide-producing vasodilators of DNA synthesis in vascular smooth muscle cells.
Eur J Pharmacol, 1898 (1990), pp. 347-353
[40.]
McNamara D.B., Bedi B., Aurora H., Tena L., Ignarro L.J., Kadowitz P.J., et al.
L-arginine inhibits balloon catheter-induced intimal hyperplasia.
Biochem Biophys Res Commun, 193 (1993), pp. 291-296
[41.]
Panza J.A., Quyyumi A.A., Brush J.E. Jr., Epstein S.E..
Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension.
N Engl J Med., 323 (1990), pp. 22-27
[42.]
Durante W., Sem A.K., Sunahara F.A..
Impairment of endothelium-dependent relaxation in aortae from spontaneous diabetic rats.
Br J Pharmacol, 94 (1988), pp. 463-468
[43.]
Bucala R., Tracey K.J., Cerami A..
Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilation in experimental diabetes.
J Clin Invest, 87 (1991), pp. 432-438
[44.]
Chin J.H., Azhar S., Hoffman B.B..
Inactivation of endothelial-derived relaxation factor by oxidized lipoproteins.
J Clin Invest, 89 (1992), pp. 10-18
[45.]
Shears L.L. II, Kibbe M.R., Murdock A.D., Billiar T.R., Lizonova A., Kovesdi I., et al.
Efficient inhibition of intimal hyperplasia by adenovirus mediated inducible nitric oxide synthase gene transfer to rats and pigs in vivo.
J Am Coll Surg., 187 (1998), pp. 295-306
[46.]
Janssens S., Flaherty D., Nong Z., Varenne O., van Pelt N., Haustermans C., et al.
Human endothelial nitric oxide synthase gene transfer inhibits vascular smooth muscle cell proliferation and neointima formation after balloon injury in rats.
Circulation, 97 (1998), pp. 1274-1281
[47.]
Kibbe M.R., Tzeng E., Gleixner S.L., Watkins S.C., Kovesdi I., Lizonova A., et al.
Adenovirus-mediated gene transfer of human inducible nitric oxide synthase in porcine vein grafts inhibits intimal hyperplasia.
J Vasc Surg., 34 (2001), pp. 156-165
[48.]
Zweier J.L., Wang P., Samouilov A., Kuppusamy P..
Enzyme-independent formation of nitric oxide in biological tissues.
Nat Med., 1 (1995), pp. 804-809
[49.]
Samouilov A., Kuppusamy P., Zweier J.L..
Evaluation of the magnitude and rate of nitric oxide production from nitrite in biological systems.
Arch Biochem Biophys, 357 (1998), pp. 01-07
[50.]
Bredt D.S., Snyder S.H..
Nitric oxide, a novel neuronal messenger.
Neuron, 8 (1992), pp. 3-11
[51.]
Garthwaite J., Charles S.L., Chess-Williams R..
Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain.
Nature, 336 (1988), pp. 385-388
[52.]
Montague P.R., Gancayco C.D., Winn M.J., Marchase R.B., Friedlander M.J..
Role of NO production in NMDA receptor-mediated neurotransmitter release in cerebral cortex.
Science, 263 (1994), pp. 973-977
[53.]
Schuman E.M., Madison D.V..
A requirement for the intracellular messenger nitric oxide in longterm potentiation.
Science, 154 (1991), pp. 1503-1506
[54.]
Dawson V.L., Dawson T.M., London E.D., Bredt D.S., Snyder S.H..
Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures.
Proc Natl Acad Sci U S A, 88 (1991), pp. 6368-6371
[55.]
Zhang J., Dawson V.L., Dawson T.M., Snyder S.H..
Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity.
Science, 263 (1994), pp. 687-689
[56.]
Gillespie J.S., Liu X.R., Martin W..
The effects of L-arginine and NG monomethyl-L-arginine on the response of the rat anococcygeus muscle to NANC nerve stimulation.
Br J Pharmacol, 98 (1989), pp. 1080-1082
[57.]
Ramagopal M.V., Leighton H.J..
Effects of NGmonomethyl-L-arginine on field stimulationinduced decreases in cytosolic Ca++ levels and relaxation in the rat anococcygeus muscle.
Eur J Pharmacol, 174 (1989), pp. 297-299
[58.]
Vanderwinden J.-M., Mailleux P., Schiffmann S.N., Vanderhaeghen J.J., De Laet M.H..
Nitric oxide synthase activity in infantile hypertrophic pyloric stenosis.
N Engl J Med., 327 (1992), pp. 511-515
[59.]
Mearin F., Mourelle M., Guarner F., Salas A., Riveros-Moreno V., Moncada S., et al.
Patients with achalasia lack nitric oxide synthase in the gastro-oesophageal junction.
Eur J Clin Invest, 23 (1993), pp. 724-728
[60.]
Kaufman H.S., Shermark M.A., May C.A., Pitt H.A., Lillemoe K.D..
Nitric oxide inhibits resting sphincter of Oddi activity.
Am J Surg., 165 (1993), pp. 74-80
[61.]
Rajfer J., Aronson W.J., Bush P.A., Dorey F.J., Ignarro L.J..
Nitric oxide as a mediator of relaxation of the corpus cavernosum in response to anonadrenergic, oncholinergic neurotransmission.
N Engl J Med., 326 (1992), pp. 90-94
[62.]
Burnett A.L., Lowenstein C.J., Bredt D.S., Chang T.S., Snyder S.H..
Nitric oxide: a physiologic mediator of penile erection.
Science, 257 (1992), pp. 401-403
[63.]
Nussler A.K., Billiar T.R..
Inflammation, immunoregulation, and inducible nitric oxide synthase.
J Leuk Biol, 54 (1993), pp. 171-178
[64.]
Morris S.M. Jr., Billiar T.R..
New insights into the regulation of inducible nitric oxide synthesis.
Am J Physiol, 266 (1994), pp. E829-E839
[65.]
Busse R., Mülsch A..
Induction of nitric oxide synthase by cytokines in vascular smooth muscle cells.
FEBS Lett, 175 (1990), pp. 87-90
[66.]
Curran R.D., Billiar T.R., Stuehr D.J., Ochoa J.B., Harbrecht B.G., Flint S.G., et al.
Multiple cytokines are required to induce hepatocyte nitric oxide production and inhibits total protein synthesis.
Ann Surg., 212 (1990), pp. 462-471
[67.]
Geller D.A., Nussler A.K., Di Silvio M., Lowenstein C.J., Shapiro R.A., Wang S.C., et al.
Cytokines, endotoxin, and glucocorticoids regulate the expression of inducible nitric oxide synthase in hepatocytes.
Proc Natl Acad Sci U S A, 90 (1993), pp. 522-526
[68.]
Xie Q.-W., Whisnan R., Nathan C..
Promoter of the mouse gene encoding calcium-independent nitric oxide synthase confers inducibility by interferon γ and bacterial lipopolysaccharide.
J Exp Med., 177 (1993), pp. 1779-1784
[69.]
Lowenstein C.J., Alley E.W., Raval P., Snowman A.M., Snyder S.H., Russell S.W., et al.
Macrophage nitric oxide synthase gene: two upstream regions mediate induction by interferon γ and lipopolysaccharide.
Proc Natl Acad Sci U S A, 90 (1993), pp. 9730-9734
[70.]
Xie Q.-W., Kashwabara Y., Nathan C..
Role of transcription factor NFkB/Rel in induction of nitric oxide synthase.
J Biol Chem, 269 (1994), pp. 4705-4708
[71.]
Vodovotz Y., Bodgan C., Paik J., Xie Q.W., Nathan C..
Mechanisms of suppression of macrophage nitric oxide release by transforming growth factor β.
J Exp Med., 178 (1993), pp. 605-613
[72.]
Hibbs J.B. Jr., Taintor R.R., Vavrin Z..
Macrophage cytotoxicity: role for L-arginine deaminase and imino nitrogen oxidation to nitrite.
Science, 235 (1987), pp. 473-476
[73.]
Denis M..
Tumor necrosis factor and granulocyte macrophage-colony stimulating factor stimulate human macrophages to restrict growth of virulent Mycobacterium aviumand kill aviru-lent M.
avium: killing effector mechanism depend on the generation of reactive nitrogen intermediates. J Leuk Biol, 49 (1991), pp. 380-387
[74.]
Nussler A., Di Silvio M., Billiar T.R., Hoffman R.A., Geller D.A., Selby R., et al.
Stimulation of the nitric oxide synthase pathway in human hepatocytes by cytokines and endotoxin.
J Exp Med., 176 (1992), pp. 261-264
[75.]
Charles I.G., Palmer R.M.J., Hickery M.S., Bayliss M.T., Chubb A.P., Hall V.S., et al.
Cloning characterization, and expression of a cDNA encoding an inducible nitric oxide synthase from the human chondrocyte.
Proc Natl Acad Sci U S A, 90 (1993), pp. 11419-11423
[76.]
Sherman P.A., Laubach V.E., Reep B.R., Wood E.R..
Purification and cDNA sequence of an inducible nitric oxide synthase from a human tumor cell line.
Biochemistry, 32 (1993), pp. 11600-11615
[77.]
Corraliza I.M., Campo M.L., Fuentes J.M., Campos-Portuguez S., Soler G..
Parallel induction of nitric oxide and glucose-6-phosphate dehydrogenase in activated bone marrow derived macrophages.
Biochem Biophys Res Commun, 196 (1993), pp. 342-347
[78.]
Gross S.S., Levi R..
Tetrahydrobiopterin synthesis: an absolute requirement for cytokine-induced nitric oxide generation by vascular smooth muscle.
J Biol Chem, 267 (1992), pp. 25722-25729
[79.]
Nakayama D.K., Geller D.A., Di Silvio M., Bloomgarden G., Davies P., Pitt B.R., et al.
Increased activity of de novo tetrahydrobiopterin synthesis in pulmonary artery smooth muscle cells stimulated to produce nitric oxide.
Am J Physiol, 266 (1994), pp. L455-L460
[80.]
Inoue Y., Bode B.P., Beck D.J., Li A.P., Bland K.I., Souba W.W..
Arginine transport in human liver: characterization and effects of nitric oxide synthase inhibitors.
Ann Surg., 218 (1993), pp. 350-363
[81.]
Closs E.I., Lyons C.R., Kelly C., Cunningham J.M..
Characterization of the third member of the MCAT family of cationic amino acid transporters: identification of a domain that determines the transport properties of the MCAT proteins.
J Biol Chem, 268 (1993), pp. 20796-20800
[82.]
Pastor CM, Billiar TR. The roles of endogenous vs. exogenous sources of L-arginine for induced nitric oxide synthesis in the isolated perfused liver. [Submitted].
[83.]
Nussler A.K., Billiar T.R., Liu Z.Z., Morris S.M. Jr..
Coinduction of nitric oxide synthase and argininosuccinate synthetase in a murine macrophage cell line: implications for regulation of nitric oxide production.
J Biol Chem, 269 (1994), pp. 1257-1261
[84.]
Morris SM Jr, Nakayama DK, Nussler AK. Coinduction of NO synthase and argininosuccinate synthase gene expression: implication for regulation of NO synthesis. Proceedings of the Third International Meeting on the Biology of Nitric Oxide. [In press].
[85.]
Nussler A., Drapier J.C., Renia L., Pied S., Miltgen F., Gentilini M., et al.
L-arginine-dependent destruction of intrahepatic malaria parasites in response to tumor necrosis factor and/or intereukin 6 stimulation.
Eur J Immunol, 21 (1991), pp. 227-230
[86.]
Green S.J., Meltzer M.S., Hibbs J.B. Jr., Nacy C.A..
Activated macrophages destroy intracellular Leishmania major amastigotes by an L-argin-inedependent killing mechanism.
J Immunol, 144 (1990), pp. 278-283
[87.]
Karupiah G., Xie Q.W., Buller R.M.L., Nathan C., Duarte C., MacMicking J.D..
Inhibition of viral replication by interferon-γ-induced nitric oxide synthase.
Science, 261 (1993), pp. 1445-1448
[88.]
Granger D.L., Hibbs J.B. Jr., Perfect J.R., Durack D.T..
Specific amino acid (L-arginine) require ment for the microbiostatic activity of murine macrophages.
J Clin Invest, 81 (1988), pp. 1129-1136
[89.]
Malawista S.E., Montgomery R.R., van Blaricom G..
Evidence for reactive nitrogen intermediates in killing of staphylococci by human neutrophil cytoplasms.
J Clin Invest, 90 (1992), pp. 631-636
[90.]
Yim C.Y., Bastian N.R., Smith J.C., Hibbs J.B. Jr., Samlowski W.E., et al.
Macrophage nitric oxide synthesis delays progression of ultraviolet light-induced murine skin cancers.
Cancer Res, 53 (1993), pp. 5507-5511
[91.]
Kilbourn R.G., Jubran A., Gross S.S., Griffith O.W., Levi R., Adams J., et al.
Reversal of endotoxinmediated sick by NG-methyl-L-arginine, an inhibitor of nitric oxide synthesis.
Biochem Biophys Res Commun, 172 (1991), pp. 1132-1138
[92.]
Harbrecht B.G., Biliar T.R., Stadler J., Demetris A.J., Ochoa J.B., Curran R.D., et al.
Nitric oxide synthesis serves to reduce hepatic damage during acute murine endotoxemia.
Crit Care Med., 20 (1992), pp. 1568-1574
[93.]
Cobb J.P., Natanson C., Hoffman W.D., Lodato R.F., Banks S., Koev C.A., et al.
Nwamino-L-arginine, an inhibitor of nitric oxide synthase, raises vascular resistance but increases mortality rates in awake canines challenged with endotoxin.
J Exp Med., 176 (1992), pp. 1175-1182
[94.]
Robertson F.M., Offner P.J., Ciceri D.P., Becker W.K., Pruitt B.A. Jr..
Detrimental hemodynamic effects of nitric oxide synthase inhibition in septic shock.
Arch Surg., 129 (1994), pp. 149-156
[95.]
Minnard E.A., Shou J., Naama H., Cech A., Gallagher H., Daly J.M..
Inhibition of nitric oxide synthesis is detrimental during endotoxemia.
Arch Surg., 129 (1994), pp. 142-148
[96.]
Billiar T.R., Curran R.D., Harbrecht B.G., Stuehr D.J., Demetris A.J., Simmons R.L..
Modulation of nitrogen nitric oxide synthesis in vivo: NGmono-methyl-L-arginine inhibits endotoxin-induced nitrite/nitrate biosynthesis while promoting hepatic damage.
J Leukoc Biol, 48 (1990), pp. 565-569
[97.]
Harbrecht B.G., Billiar T.R., Stadler J., Demetris A.J., Ochoa J., Curran R.D., et al.
Inhibition if nitric oxide synthesis during endotoxemia promotes intrahepatic thrombosis and an oxygen radical-mediated hepatic injury.
J Leukoc Biol, 52 (1992), pp. 390-394
[98.]
Harbrecht B.G., Stadler J., Demetris A.J., Simmons R.L., Billiar T.R..
Nitric oxide and prostacyclin interact to prevent hepatic damage during murine endotoxemia.
Am J Physiol, 266 (1994), pp. G1004-G1010
[99.]
Shultz P.J., Raij L..
Endogenously synthesized nitric oxide prevents endotoxin-induced glomerule thrombosis.
J Clin Invest, 90 (1992), pp. 1718-1725
[100.]
Boughton-Smith N.K., Hutcheson I.R., Deakin A.M., Whittle B.J., Moncada S..
Protective effect of S-nitrous-N-acetyl-penicillamine in endotoxin-induced acute intestinal damage in the rat.
Eur J Pharmacol, 191 (1990), pp. 485-488
[101.]
Thiemermann C., Szabo C., Mitchell J.A., Vane J.R..
Vascular hyporeactivity to vasoconstrictor agents and hemodynamic decompensation in hemorrhagic shock is mediated by nitric oxide.
Proc Natl Acad Sci U S A, 90 (1993), pp. 267-271
[102.]
Hoffman R.A., Langrehr J.M., Billiar T.R., Curran R.D., Simmons R.L..
Alloantigen-induced activation of rat splenocytes is regulated by the oxidative metabolism of L-arginine.
J Immunol, 145 (1990), pp. 2220-2226
[103.]
Lancaster J.R. Jr., Langrehr J.M., Bergonia H.A., Murase N., Simmons R.L., Hoffman R.A..
EPR detection of heme and nonheme iron-containing protein nitrosylation by nitric oxide during rejection of rat rear allograft.
J Biol Chem, 267 (1992), pp. 10994-10998
[104.]
Hoffman R.A., Langrehr J.M., Simmons R.L..
Nitric oxide synthesis: a consequence of alloimmune interaction.
Xeno, 2 (1994), pp. 05-07
[105.]
Shears L.L., Kawaharada N., Tzeng E., Billiar T.R., Watkins S.C., Kovesdi I., et al.
Inducible nitric oxide synthase suppresses the development of allograft arteriosclerosis.
J Clin Invest, 100 (1997), pp. 2035-2042
[106.]
Corbett J.A., Lancaster J.R. Jr., Sweetland M.A., McDaniel M.L..
Interleukin-1-β-induced formation of EPR-detectable iron-nitrosyl complexes in islets of Langerhans: role of nitric oxide in interleukin-1-β-induced inhibition of insulin secretion.
J Biol Chem, 266 (1991), pp. 21351-21354
[107.]
McCartney-Francis N., Allen J.B., Mizel D.E., Albina J.E., Xie Q.W., Nathan C.F., et al.
Suppression of arthritis by an inhibitor of nitric oxide synthase.
J Exp Med., 178 (1993), pp. 749-754
[108.]
Weinberg J.B., Granger D.L., Pisetsky D.S., Seldin M.F., Misukonis M.A., Mason S.N., et al.
The role of nitric oxide in the pathogenesis of spontaneous murine autoimmune disease: increased nitric oxide production and nitric oxide synthase expression in MRL-1pr/1pr mice, and reduction of spontaneous nephritis and arthritis by orally administration of NG-monomethyl-L-arginine.
J Exp Med., 179 (1994), pp. 651-660
[109.]
Middleton S.J., Shothouse M., Hunter J.O..
Increased nitric oxide synthesis in ulcerative colitis.
Lancet, 341 (1993), pp. 465-466
[110.]
Nguyen T., Brunson D., Crespi C.L., Penman B.W., Wishnok J.S., Tannenbaum S.R..
DNA damage and mutation in human cells exposed to nitric oxide in vitro.
Proc Natl Acad Sci U S A, 89 (1992), pp. 3030-3034
[111.]
Wilcox C.S., Welch W.J., Murad F., Gross S.S., Tay lor G., Levi R., et al.
Nitric oxide synthase in macula dense regulates glomerular capillary pressure.
Proc Natl Acad Sci., 89 (1992), pp. 11993-11997
[112.]
Ceccatelli S., Hulting A.L., Zhang X., Gustafsson L., Villar M., Hokfelt T..
Nitric oxide synthase in the rat anterior pituitary gland and the role of nitric oxide in regulation of luteinizing hormone secretion.
Proc Natl Acad Sci., 90 (1993), pp. 11292-11296
[113.]
Sladek S.M., Regenstein A.C., Lykins D., Roberts J.M..
Nitric oxide synthase activity in pregnant rabbit uterus decreases on the last day of pregnancy.
Am J Obstet Gynecol, 169 (1993), pp. 1285-1291
[114.]
Rossaint R., Falke K.J., López F., Slama K., Pison U., Zapol W.M..
Inhaled nitric oxide for the adult respiratory distress syndrome.
N Engl J Med., 328 (1993), pp. 399-405
[115.]
Shah N., Jacob T., Exler R., Morrow S., Ford H., Albanese C., et al.
Inhaled nitric oxide in congenital diaphragmatic hernia.
J Pediatr Surg., 29 (1994), pp. 1010-1015
[116.]
Boger R.H., Bode-Boger S.M., Thiele W., et al.
Restoring vascular nitric oxide formation by L-arginine improves the symptoms of intermittent claudication in patients with peripheral arterial occlusive disease.
J Am Col Cardiol, 32 (1998), pp. 1336-1344
[117.]
Wang B.Y., Ho H.K., Lin P.S., Schwarzacher S.P., Pollman M.J., Gibbons G.H., et al.
Regression of atherosclerosis: role of nitric oxide and apoptosis.
Circulation, 99 (1999), pp. 1236-1241
Copyright © 2002. SEACV
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos