metricas
covid
Buscar en
Archivos de la Sociedad Española de Oftalmología (English Edition)
Toda la web
Inicio Archivos de la Sociedad Española de Oftalmología (English Edition) Automatic detection of vessels in color fundus images
Información de la revista
Vol. 85. Núm. 3.
Páginas 103-109 (enero 2009)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 85. Núm. 3.
Páginas 103-109 (enero 2009)
Original article
Automatic detection of vessels in color fundus images
Detección automática de vasos en retinografías
Visitas
335
S. Jiméneza,
Autor para correspondencia
soledadjimenez@ono.com

Author for correspondence.
, P. Alemanya, I. Fondónb, A. Foncubiertab, B. Achab, C. Serranob
a Puerta del Mar Hospital, Cádiz, Spain. Signal Theory and Communications Dept, University of Sevilla, Sevilla, Spain
b University of Sevilla, Puerta del Mar Hospital, Cádiz, Spain. Signal Theory and Communications Dept, University of Sevilla, Sevilla, Spain
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas
Abstract
Purpose

The main purpose of the paper is to evaluate an automated method for blood vessels segmentation in color fundus images, due to its important role in the diagnosis of several pathologies such as diabetes. The final objective is to introduce the algorithm into a Computer Aided Diagnosis (CAD) tool that would be available in those local medical centers without specialists.

Method

An automated method for blood vessels segmentation in color fundus images was implemented and tested. The algorithm starts with the extraction of vessel centerlines, which are used as guidelines for the subsequent vessel filling phase. The outputs of four directional differential operators are processed in order to select connected sets of candidate points to be further classified as centerline pixels using vessel derived features. The final segmentation is obtained using an iterative region growing method that integrates the contents of several binary images, resulting from vessel width dependent morphological filters. The method was evaluated using the images of two publicly available databases (STARE and DRIVE) and a database with 24 images.

Results

The algorithm outperforms other published algorithms and approximates the average accuracy of a human observer without a significant degradation of sensitivity and specificity. In addition, results have been subject to the experts’ valuation that they think that retinal vessels remain represented with valuable accuracy on having analyzed the test's images.

Conclusion

Due to the good segmentation results, the algorithm proposed could be implemented as part of a complete CAD tool in the local medical centers. This would reduce cost and diagnosis time.

Keywords:
Diabetic retinopathy
Computer-aided diagnosis
Computer data processing
Resumen
Propósito

El propósito de este trabajo es la evaluación de un método automático para la segmentación del árbol vascular en imágenes de retinografías, dado su importante papel en el diagnóstico de numerosas enfermedades, como la diabetes mellitus. El objetivo final es introducir el algoritmo en una herramienta de diagnóstico asistido por computadora (CAD, del inglés Computer Aided Diagnosis) que estaría disponible en los centros médicos locales sin especialistas.

Método

Se ha implementado y probado un método automático para la segmentación de vasos. El algoritmo comienza con la extracción de las líneas centrales de los vasos, que se emplean como guías para la fase posterior de rellenado de vasos. Las salidas de 4 operadores direccionales se procesan para obtener conjuntos conexos de puntos candidatos que se clasificarán como píxeles pertenecientes a las líneas centrales mediante características derivadas de los vasos. La segmentación final se obtiene empleando un proceso iterativo de crecimiento de regiones que integra los contenidos de varias imágenes binarias, resultado de aplicar determinados filtros morfológicos que dependen del ancho del vaso. El método se ha evaluado empleando las imágenes de 2 bases de datos públicas (STARE y DRIVE) y por una base de datos compuesta por 24 imágenes.

Resultados

El algoritmo mejora otras soluciones y se aproxima en precisión a la obtenida por un observador humano, sin por ello experimentar una degradación de la sensibilidad y la especificidad. Asimismo, los resultados del algoritmo se han sometido a la valoración de expertos que consideran que los vasos quedan representados con apreciable exactitud al analizar las imágenes de prueba.

Conclusión

Dados los buenos resultados obtenidos en la segmentación, el algoritmo propuesto podría implementarse e introducirse en una herramienta CAD disponible en los centros médicos locales. La reducción en coste y tiempo de exploración podría ser significativa.

Palabras clave:
Retinopatía diabética
Diagnóstico asistido
por computadora
Procesamiento de datos asistido
por computadora

Artículo

Opciones para acceder a los textos completos de la publicación Archivos de la Sociedad Española de Oftalmología (English Edition)
Suscriptor
Suscriptor de la revista

Si ya tiene sus datos de acceso, clique aquí.

Si olvidó su clave de acceso puede recuperarla clicando aquí y seleccionando la opción "He olvidado mi contraseña".
Suscribirse
Suscribirse a:

Archivos de la Sociedad Española de Oftalmología (English Edition)

Comprar
Comprar acceso al artículo

Comprando el artículo el PDF del mismo podrá ser descargado

Precio 19,34 €

Comprar ahora
Contactar
Teléfono para suscripciones e incidencias
De lunes a viernes de 9h a 18h (GMT+1) excepto los meses de julio y agosto que será de 9 a 15h
Llamadas desde España
932 415 960
Llamadas desde fuera de España
+34 932 415 960
E-mail
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos