Las investigaciones clínicas reportadas en la presente revista emplean el marco estándar de las estadísticas frecuentistas basado en las hipótesis de significancia (p<0,05). Este método conduce a una dicotomización de los resultados como «significativos» o «no significativos» que ha sido cuestionable ante hallazgos replicables inestables1. Por lo tanto, es importante el uso del enfoque bayesiano como una forma mejorada de extraer conclusiones estadísticas a partir de datos clínicos, dado que facilita la respuesta a la pregunta: ¿cuál es la probabilidad de que el efecto sea concluyente según los datos?, que brinda una mayor validez a las conclusiones significativas. Uno de los métodos más conocidos es el factor Bayes (FB), que estima la probabilidad de una hipótesis en relación con la otra según la muestra de estudio (hipótesis nula vs hipótesis alterna)2.
Se recomienda la replicación de los resultados clínicos para validar la credibilidad práctica de tales hallazgos mediante el FB, y tal inferencia estadística bayesiana es aplicable a diversas pruebas frecuentistas (p.ej., AUCROC, t de Student, odds ratios, regresión lineal o ANOVA)2,3.
La presente carta se enfoca en un estudio previo de la presente revista basado en una intervención comunitaria (ensayo controlado aleatorizado) que realizó un programa de estimulación cognitiva implementada con el paso del tiempo en adultos mayores con deterioro cognitivo leve. Este estudio reportó diferencias de una mayor capacidad cognitiva a favor del grupo de intervención en 3 periodos: postintervención, a los 6 y a los 12meses después de tal intervención, mediante la prueba t de Student en muestras independientes de control (14) e intervención (15)4. Es importante evaluar la fuerza probatoria de las hipótesis estadísticas, dado que la mayoría de intervenciones a largo plazo refieren pequeños datos muestrales. Esta característica genera un menor poder estadístico y mayor error aleatorio en la precisión del verdadero tamaño de efecto, y además tales magnitudes presentan criterios interpretativos diversos debido a la distribución de los datos y a las mediciones clínicas utilizadas1. Es esencial la confirmación de la hipótesis alterna más allá de los valores de significancia según los valores de Jefreys2,3: débil, moderado, fuerte, muy fuerte y extremo.
El FB consta de dos interpretaciones: FB10 (hipótesis alternativa) y FB01 (hipótesis nula), y el intervalo de credibilidad al 95%2,3; ante la evidencia de hallazgos significativos, los ejemplos de replicación bayesiana se enfocan en la estimación del grado de certeza de la hipótesis alterna. A partir de los datos muestrales y los valores de las medias aritméticas y sus desviaciones estándar se reportaron los valores de FB: FB10=469 y FB01=0,002 e IC95% [−1,919 a 0,464] en la postintervención; FB10=2,215 y FB01=0,451 e IC95% [−1,081 a 0,011] a los 6meses; FB10=2,762 y FB01=0,362 e IC95% [−1,123 a −0,015] a los 12meses posteriores, respectivamente. En la primera evaluación bayesiana se reporta una evidencia extrema (FB10>100) de la hipótesis de diferencia significativa, mientras los dos siguientes hallazgos bayesianos refieren una fuerza probatoria débil de aproximadamente dos veces mayor en contraste con la nulidad de los datos.
Por lo tanto, se espera que esta carta contribuya a la difusión del enfoque bayesiano, cuyo aporte metodológico se extiende a las investigaciones de predicción diagnóstica como la replicación de los valores del AUCROC5 y el contraste de variación entre dos grupos proporcionales con y sin el evento clínico de interés recomendado para estudios de casos y controles (p.ej., tasas de comorbilidad, ingresos, infección o mortalidad por COVID-19) que incluyan probabilidades más realistas de que los participantes presenten tal desenlace, siendo de mayor implicancia práctica en la investigación clínica de atención primaria5,6.
FinanciaciónNo hubo financiación alguna.
Conflicto de interesesNo hay conflicto de intereses.