Naturally occurring and sustainable materials can be used as a template to create biomimetic/biomorphic ceramics, known as Ecoceramics (environmentally conscious ceramics). In this work, cork was chosen as template to produce novel ceria (CeO2) ecoceramics, for applications in water splitting for H2 production via direct concentrated solar thermochemical fuel production (TCFP). The cork powder was pyrolised at 900°C and the resulting carbon skeleton was infiltrated with an aqueous CeO2 precursor, and then heated at 1000°C for 2h to produce the ecoceramic. The cellular structure of the cork was maintained, with hexagonal cell dimensions of 20-30μm in diameter, but the grains were nanoscale at ≤100nm. XRD data confirmed that CeO2 was the only crystalline phase obtained. An important feature was that, while the rectangular side walls were maintained to hold the three-dimensionally ordered macroporous (3DOM) cellular cork structure, the rear hexagonal walls were pierced repeatedly through the structure, unlike in the original cork structure, which will allow gasses such as H2 to permeate well into the structure, greatly increasing the reactive area available for catalysis. The next step will be to test the capabilities of both the regular, porous 3DOM structure and the nanoscale grains for thermochemical water splitting to produce hydrogen under direct concentrated solar energy.
Información de la revista
Vol. 28. Núm. 1.
Páginas 23-28 (enero - junio 2016)
Vol. 28. Núm. 1.
Páginas 23-28 (enero - junio 2016)
Special Issue on Cellular Materials
Acceso a texto completo
Biomimetic cork-based CeO2 ecoceramics for hydrogen generation using concentrated solar energy
Visitas
1533
a Departamento de Engenharia de Materiais e Cerâmica, CICECO, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
b DGEG - Direção Geral de Energia e Geologia, Divisão de Estudos Investigação e Renováveis, Av. 5 de Outubro 208, 1069-203 Lisboa, Portugal
c LNEG - Laboratório Nacional de Energia e Geologia I.P., Unidade de Energia Solar, Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal
Este artículo ha recibido
Información del artículo
Abstract
Keywords:
cork
ecoceramics
ceria
concentrated solar energy.
El Texto completo está disponible en PDF
References
[1]
H. Pereira.
Cork: Biology.
Production and Uses, Elsevier Science, (2007),
[2]
L. Gil.
Cortiça: Produção.
Tecnologia e Aplicação (in Portuguese), INETI, (1998),
[3]
A. Le Gal, S. Abanades.
J. Phys. Chem. C, 116 (2012), pp. 13516
[4]
M. Mogensen, N.M. Sammes, G.A. Tompsett.
Sol. State Ionics, 129 (2000), pp. 63
[5]
S. Abanades, A. Legal, A. Cordier, G. Peraudeau, G. Flamant, A. Julbe.
J. Mater. Sci., 45 (2010), pp. 4163
[6]
J.R. Scheffe, A. Steinfeld.
Energy & Fuels, 26 (2012), pp. 1928
[7]
D. Schneider, M. Godickemeier, L.J. Gauckler.
J. Electroceram, 1 (1997), pp. 165
[8]
E.A. Fletcher.
J. Sol. Energy Eng., 123 (2000), pp. 63
[9]
A. Steinfeld.
Solar Energy, 78 (2005), pp. 603
[10]
P. Furler, J.R. Scheffe, A. Steinfeld.
Energy Environ. Sci., 5 (2012), pp. 6098
[11]
S.G. Rudisill, L.J. Venstrom, N.D. Petkovich, T. Quan, N. Hein, D.B. Boman, J.H. Davidson, A. Stein.
J. Phys. Chem. C, 117 (2013), pp. 1692
[12]
S.P. Silva, M.A. Sabino, E.M. Fernandes, V.M. Correlo, L.F. Boesel, R.L. Reis.
Int. Mat. Rev., 50 (2005), pp. 345
[13]
http://www.corkforest.org/cork_facts.php. – accessed December 2015.
[14]
http://www.saomarcosdaserra.com/cork.php – accessed December 2015.
[15]
L. Gil, Front. Chem. 2, article 16 (2014).
[16]
A. Mestre, L. Gil.
Cienc. Tecnol. Mater., 23 (2011), pp. 52
[17]
L. Gil.
Biomass Bioenergy, 13 (1997), pp. 59
[18]
J. Martinez-Fernandez, F.M. Valera-Feria, M. Singh.
Scripta Mater., 43 (2000), pp. 813
[19]
M. Sing, J. Martinez-Fernandez, A.R. de Arellano-Lopez.
Curr. Op. Solid State Mat. Sci., 7 (2003), pp. 247
[20]
H. Sieber.
Mat. Sci. Eng. A, 412 (2005), pp. 43
[21]
T. Ota, M. Takahashi, T. Hibi, M. Ozawa, S. Suzuki, Y. Hikichi.
J. Amer. Ceram. Soc, 78 (1995), pp. 3409
[22]
P. Greil, T. Lifka, A. Kaindl.
J. Eur. Ceram. Soc., 18 (1998), pp. 1961
[23]
P. Greil, T. Lifka, A. Kaindl.
J. Eur. Ceram. Soc., 18 (1998), pp. 1975
[24]
B. Matovic, S. Boskovic.
Romanian J. Mat., 38 (2008), pp. 329
[25]
C.D. Malonzo.
J. Phys. Chem. C, 118 (2014), pp. 26172
[26]
R.C. Pullar, P. Marques, J. Amaral, J.A. Labrincha.
Mater. Design, 8 (2015), pp. 297
[27]
M.E. Rosa, M.A. Fortes.
J. Mat. Sci. Lett., 7 (1988), pp. 1064
Copyright © 2016. Portuguese Society of Materials (SPM)