Recent interest by automotive manufacturing company is to develop a component, capable of enhancing safety features associated with lightweight materials such as using aluminum and composites. The use of aluminum metal matrix composites (MMC) and composite materials improve the performance of an automotive crash box due to their lightweight. Automotive crash box is a component, equipped at the front end of a car, and is one of the most important devices for crash energy absorption. The review is mainly divided by two topics, i.e. design of geometry profiles and the crash box material advancements, both geometry and material properties would influence the efficiency of kinetic energy absorption during collision. This review benefits both academics and corporate sector as it outlines major lines of research in the crash box design. It discusses the results from 3D simulations up to laboratory experiments of crash box specimen and the effect of material selection to the characteristic of crash box device. The information from this paper should stimulate more research and more crash box design solutions to reduce fatal damage during collision in automotive industry.
Información de la revista
Vol. 29. Núm. 3.
Páginas 129-144 (septiembre - diciembre 2017)
Vol. 29. Núm. 3.
Páginas 129-144 (septiembre - diciembre 2017)
Acceso a texto completo
Design and materials development of automotive crash box: a review
Visitas
4944
N.S.B. Yusofa,b, S.M. Sapuana,c,
, M.T.H. Sultand, M. Jawaida, M.A. Malequee
Autor para correspondencia
a Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
b Faculty of Information Sciences and Engineering, Management Science & University, Seksyen 13, 40100 Shah Alam, Selangor, Malaysia
c Department of Mechanical and Manufacturing Engineering, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
d Aerospace Manufacturing Research Centre (AMRC), Department of Aerospace Engineering, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
e Faculty of Engineering, International Islamic University Malaysia, 53100 Jalan Gombak, Kuala Lumpur, Malaysia
Este artículo ha recibido
Información del artículo
Abstract
Keywords:
automotive crash box
composites
energy absorption properties.
El Texto completo está disponible en PDF
References
[1]
B. Walker, N. Martindale, J. Green, N. Ridley, SAE Technical Paper No. 932910 (1993).
[2]
M. Avery, A.M. Weekes.
Int. Crashworthiness J., 11 (2006), pp. 573
[3]
C. Miller, M.J. Sirgy, Impact of Globalization of the Automotive Industry on the Quality of Life of the US Southeast, in: P. Pachura (Ed.), The economic geography of globalization. InTech, Rijeka, 2011.
[4]
T.J. Sturgeon, O. Memedovic, J.V. Biesebroeck, G. Gereffi.
Int. J. Technol. Learning Innovation Dev, 2 (2009), pp. 7
[5]
T. Hahn, F. Figge, R. Barkemeyer, A. Liesen, Sustainable value in automobile manufacturing: an analysis of the sustainability performance of automobile manufacturers worldwide, Sustainable Value Research Ltd, 2nd edition. Belfast, 2009.
[6]
N. McNamara.
Vehicle Recycling and sustainability.
ISS Institute, (2009),
[7]
A. Martinuzzi, R. Kudlak, C. Faber, A. Wiman, Res. Inst. Manag. Sustain RIMAS Vienna Univ. Econ. Bus. Franz Klein Gasse. (2011) 1.
[8]
Motor Vehicle Crashes: Overview, US National Highway Traffic Safety Administration, Washington DC. August 2016.
[9]
G.C. Jacob, J.F. Fellers, J.M. Starbuck, S. Simunovic.
J Appl. Polym. Sci, 92 (2004), pp. 3218
[10]
W.J. Witteman.
Improved vehicle crashworthiness design by control of the energy absorption for different collision situations.
Eindhoven University, (1999),
[11]
Y. Liu.
Finite Elem.
Anal. Des, 44 (2008), pp. 139
[12]
P.D. Bois, C.C. Chou, B.B. Fileta, A.I. King, H.F. Mahmood.
Vehicle Crashworthiness and Occupant Protection.
Automotive Applications Committee American Iron and Steel Institute, (2004),
[13]
È. Bathe, J. Walczak, O. Guillermin, P.A. Bouzinov, H. Chen.
Comput. Stru, 72 (1999), pp. 31
[14]
K.S.K. Hamza, Design for crashworthiness of vehicle structures via equivalent mechanism approximations and crush mode matching, Proceedings of the ASME 2004 International Mechanical Engineering Congress and Exposition (IMECE 2004), pp. 949-960, Nov.13-19, 2004, Anaheim, California, USA.
[15]
M.N. Crandall J.R., K.S. Bhalla.
Brit. Med. J, 34 (2002), pp. 1145
[16]
M.M. Davoodi, S.M. Sapuan, R. Yunus.
Mater. Des, 29 (2008), pp. 1447
[17]
W.J. Rahmeyer, H.L. Miller, S.V. Sherikar.
ASME-Publications-Fed, 210 (1995), pp. 63
[18]
M. Peden, R. Scurfield, D. Sleet, D. Mohan, A.A. Hyder, E. Jarawan, C. Mathers.
World Report on Road Traffic Injury Prevention.
World Health Organization, (2004),
[19]
F. Braymand, Crash box. US Patent No. US20050016807, 2005.
[20]
L. Morello, L.R. Rossini, G. Pia, A. Tonoli, The Automotive Body: Volume II: System Design, Springer Science & Business Media, Berlin, 2011.
[21]
Y. Nakazawa, K. Tamura, M. Yoshida, K. Takagi, M. Kano.
COMPLAS VIII, 8 (2005), pp. 1
[22]
L. Peroni, M. Avalle, G. Belingardi.
Int. J. Impact Eng, 36 (2009), pp. 498
[23]
T.M. HexWeb.
Honeycomb Sandwich Design Technology.
Hexcel Composites, (1998),
[24]
S. Boria, G. Forasassi.
WIT Transaction of Built Environment, 98 (2008), pp. 167
[25]
Q. Li, H. Wang, Y. Liu, S. Yan.
ICMTMA, (2009), pp. 791
[26]
P. Pereira, N. Peixinho, D.M. Dimas, D. Soares.
Mecânica Experimental, 18 (2010), pp. 85
[27]
B. Hangs, A. Burkhart, D.R. Cramer, S.T. Jespersen.
Polym. Plast. Technol. Eng, 4 (2012), pp. 1
[28]
Q.H. Ma, C.Y. Zhang, S.Y. Han, Z.T. Qin.
IJSIA, 7 (2013), pp. 147
[29]
B.U. Devi, C.V. Krishna, P.M. Swaroop.
IJERT, 3 (2014), pp. 978
[30]
M.D. Iozsa, D.A.N.A. Micu, G. Fratila.
Recent Adv. Civil Eng. Mech, 2 (2014), pp. 49
[31]
G. Biradar, V.A. A. Babu.
Int. J. Sci. Res, 3 (2014), pp. 1431
[32]
N. Tanlak, F.O. Sonmez.
Thin Walled Struct, 84 (2014), pp. 302
[33]
S. Kumar Pr, H.R. Vitala.
Int. J. Mech. Eng. Ind. Technol, 2 (2014), pp. 113
[34]
V. Shrivastava, A. Telang.
Int. J. Sci. Res. Publ, 5 (2015), pp. 1
[35]
D. Patel, S. Nakka, Vehicle frontal protection system - improvement technique and virtual validation, 2015 India Altair Technology Conference, Bangalore, India, 14-15 July 2015.
[36]
N.N. Hussain, Automobile crash box design improvement using hyperStudy, 2015 India Altair Technology Conference, Bangalore, India, 14-15 July 2015.
[37]
M. Redhe, L. Nilsson, F. Bergman, N. Stander, Shape optimization of a vehicle crash-box using LS-OPT, Proceedings of the 5th European LS-DYNA Users’ Conference, Birmingham, UK, 25-26 May 2005.
[38]
M.A. Choiron, A. Purnowidodo, E. Siswanto, N.A. Hidayati.
Jurnal Teknologi, 5 (2016), pp. 347
[39]
A.S. Kalshetti, S.V. Patil.
Int. J. Res. Eng. Technol, 5 (2016), pp. 182
[40]
N.M. Hassin, M.A. Yunus, A. Radzi, A. Ghani, N.A. Rani, S. Kasolang, Using updated model for the crash analysis, Proceedings of the 23rd International Congress on Sound and Vibration, Athens, 10-14 July 2016.
[41]
M.A.K. Desai, D. Dhananjay.
Int. J. Adv. Res. Innovation Ideas. Educ, 2 (2016), pp. 3776
[42]
R. Guillon, D. Kneveler, M. Leroy, A. Sauvaget, J.P. Hillermeier, Automotive composites “Crash Box” for mass production, 14th Annual Society of Plastics Engineers Automotive Composites Conference & Exhibition, Michigan, 9-11 September 2014.
[43]
H. Zarei, M. Kroeger, in: P.D. Dubrovski (Ed.), Woven Fabric Engineering, INTECH, Rijeka, 2010, pp.343-362.
[44]
W. Maddever, S. Guinehut, SAE Technical Paper No. 2005-01-0704 (2005).
[45]
M.M. Davoodi, S.M. Sapuan, D. Ahmad, A. Aidy, A. Khalina, M. Jonoobi.
Mater. Des, 32 (2011), pp. 4857
[46]
M. Yang, Proceedings of the FISITA 2012 World. Automotive Congress (2013) 73.
[47]
A.S. Kumar, G. Himabindu, M.S. Raman, K.V.K. Reddy.
Int. J. Curr. Eng. Technol, 2 (2014), pp. 670
[48]
S. Boria, G. Forasassi.
Progressive crushing of a fiber reinforced composite crash-box for a racing car, pp. 725
[49]
G.B. Ghasemnejad, H. Hadavinia, H. Simpson.
Key Eng. Mater, 348–349 (2007), pp. 661
[50]
M. Stein, P. Schwanitz, H. Sankarasubramanian, Unified parametric car model: A simplified model for frontal crash safety, 11th LS-DYNA Forum, Ulm, Germany, pp. 2-15, 9-10 October 2012.
[51]
S.J. Lee, H.A. Lee, S.I. Yi, D.S. Kim, H.W. Yang, G.J. Park.
Proc. Inst. Mech. Eng. D. J..
Automob. Eng, 227 (2013), pp. 179
[52]
S.B. Kim, H. Huh, G.H. Lee, J.S. Yoo, M.Y. Lee.
Int. J. Mod. Phys. B, 22 (2008), pp. 5578
[53]
H.C. Kim, D.K. Shin, J.J. Lee, J.B. Kwon.
Compos. Struct, 112 (2014), pp. 1
[54]
A.S. Yaghoubi, P. Begeman, G. Newaz, D. Board, Y. Chen, O. Faruque. SAE Technical Paper No. 2014-01-0550 (2014).
[55]
M. Ambrozinski, K. Bzowski, L. Rauch, M. Pietrzyk.
Arch. Civ. Mech. Eng, 12 (2012), pp. 126
[56]
H. Kavi, A.K. Toksoy, M. Guden.
Mater. Des, 27 (2006), pp. 263
[57]
A.K. Toksoy, M. Güden.
Thin Walled Struct, 48 (2010), pp. 482
[58]
H. Zarei, M. Kröger, H. Albertsen.
Compos. Struct, 85 (2008), pp. 245
Copyright © 2017. Portuguese Society of Materials (SPM)