The original code KEDRO for design of experiments, analysis and multiobjective robust optimization is used for designing of a new composite pallet. Firstly code is tested for non-deterministic optimization of the two bar truss problem. Then robust optimization problem of composite pallet is solved. The FE-model of the composite pallet is considered and solved accurately as multi-ply shell structure. The fiber-reinforced polymer material mechanical properties and two main operation cases of the loaded pallet are taken into account during deterministic structural optimization procedure. Next, the same problem is considered as non-deterministic taking into account possible uncertainties of the pallet supporting conditions. In both cases shape is defined using CAD based NURBS curves. Appropriate shapes of the stiffness ribs are found for best performance of the structure. As a result of optimization, the competitive design of composite pallet is developed.
Información de la revista
Vol. 27. Núm. 2.
Páginas 115-120 (julio - diciembre 2015)
Vol. 27. Núm. 2.
Páginas 115-120 (julio - diciembre 2015)
Acceso a texto completo
Designing and optimization of new composite pallet
Visitas
1311
Alexander Janushevskis
, Anatolijs Melnikovs, Janis Auzins
Autor para correspondencia
Riga Technical University, 6k, Ezermalas, Riga, LV-1006, Latvia
Este artículo ha recibido
Información del artículo
Abstract
Keywords:
shape optimization
pallet
composite
El Texto completo está disponible en PDF
References
[1]
T. Sokół, G.I.N. Rozvany, On the adaptive ground structure approach for multi-load truss topology optimization, Proc.10th World Congress on Structural and Multidisciplinary Optimization, May 19-24, 2013, Orlando, Florida, 2013.
[2]
M.P. Bendsóe, N. Kikuchi.
Comput. Method. Appl. M, 71 (1988), pp. 2
[3]
M.P. Bendsøe, O. Sigmund.
Appl. Mechanics, 69 (1999), pp. 635
[4]
J. Haslinger, R.A.E. Makinen.
Introduction to Shape Optimization: Theory, Approximation, and Computation.
SIAM, (2003),
[5]
J.S. Arora.
Optimization of Structural and Mechanical Systems.
World Scientific, (2007),
[6]
G.N. Vanderplaats.
Multidiscipline Design Optimization.
VR&D, Colorado Springs, (2007),
[7]
R.T. Haftka, Z. Gurdal.
Elements of Structural Optimization.
3rd ed., Kluwer Academic Publisher, (1992),
[8]
A. Ben-Tal, L.E. Ghaoui, A. Nemirovski.
Robust Optimization.
Princeton University Press, (2009),
[9]
A.E. Hami, R. Bouchaib.
Uncertainty and Optimization in Structural Mechanics.
John Wiley & Sons, (2013),
[10]
X. Du, W. Chen.
ASME J. Mech. Des, 122 (2000), pp. 385
[11]
A. Saxena, B. Sahay.
Computer Aided Engineering Design.
Springer, (2005),
[12]
T.H. Lee, J.J. Jung.
Key Eng. Mater, 306–308 (2006), pp. 211
[13]
T.W. Simpson, A.J. Booker, D. Ghosh, A.A. Giunta, N.P. Koch, R. Yang.
Struct. Multidiscip. O, 27 (2004), pp. 302
[14]
D.C. Montgomery.
Design and Analysis of Experiments.
8th ed., Wiley, (2012),
[15]
S. Koziel, D.E. Ciaurri, L. Leifsson.
Computational Optimization, Methods and Algorithms, pp. 33-59
[16]
C.E. Rasmussen, C.K.I. Williams.
Gaussian Processes for Machine Learning.
The MIT Press, (2006),
[17]
J. Sacks, J.W. Welch, J.T. Mitchell, H.P. Wynn.
Statistical Sci, 4 (1989), pp. 409
[18]
J. Janusevskis, R. Le Riche.
J. Glob. Optimization, 55 (2013), pp. 2
[19]
D.S. Aponte, R. Le Riche, G. Pujol, X. Bay.
Multidisciplinary Design Optimization in Computational Mechanics, pp. 369-403
[20]
A.R. Parkinson, R. Balling, J.D. Hedengren.
Optimization Methods for Engineering Design.
Brigham Young University, (2013),
[21]
D.V. Rosato, J. Murphy.
Reinforced plastics handbook.
Elsevier, (2004),
[22]
B. Davis, P. Gramann, T. Osswald, A. Rios.
Compression Molding.
Hanser Publication, (2003),
[23]
A. Janushevskis, J. Auzins, A. Melnikovs, A. Gerina-Ancane.
Advanced Topics in Measurements, pp. 243-262
[24]
S.W. Tsai, E.M. Wu.
J. Compos. Mater, 5 (1971), pp. 58
Copyright © 2015. Sociedade Portuguesa de Materiais (SPM)