TiO2/graphene nano platelets (GNP) nanocomposite cathodes have been synthesized through a simple ball mill process. TiO2 anatase nanoparticles, around 16nm in size, were encapsulated in the 2D graphene matrix. The synthesized samples are characterized using x-ray diffraction (XRD), DSC, impedance spectroscopy, and scanning electron microscope (SEM). The graphene nano platelets act not only to reduce the charge transfer resistance but can help to absorb deformation caused by divalent insertion. The electrochemical behavior of Mg metal was tested in dimethyl sulfoxide solution containing magnesium perchlorate salt. The obvious redox peaks on the cyclic voltammetric curves confirm Mg2+ inserts/extracts into/from TiO2 through our simple electrolyte solution.
Información de la revista
Vol. 28. Núm. 2.
Páginas 117-123 (julio - diciembre 2016)
Vol. 28. Núm. 2.
Páginas 117-123 (julio - diciembre 2016)
Special Issue on New Challenges in Energy Materials
Acceso a texto completo
Electrical and electrochemical properties of titanium dioxide /graphene nano platelets cathode for magnesium battery applications
Visitas
1479
M.H. Makleda, Y.M. Arabia, E. Shehaa,
, S. Arfaa,d, I.S. Yahiab,c, F. Salmana
Autor para correspondencia
a Physics Department, Faculty of Science, Benha University, Benha, Egypt
b Semiconductor Labs., Faculty of Education, Ain Shams University, Roxy, Cairo, Egypt
c Physics Department, Faculty of Science, King Khalid University, Abha, Kingdom of Saudi Arabia
d Physics Department, Faculty of Science, Tabuk University, 71421, KSA
Este artículo ha recibido
Información del artículo
Abstract
Keywords:
Graphene
TiO2
cathode
magnesium battery
El Texto completo está disponible en PDF
References
[1]
V. Palomares, P. Serras, I. Villaluenga, K.B. Hueso, J.C. Gonzalez, T. Rojo.
Energy Environ. Sci., 5 (2012), pp. 5884-5901
[2]
N. Sa, H. Wang, D.L. Proffit, A.L. Lipson, B. Key, M. Liu, Z. Feng, T.T. Fister, Y. Ren, C.-J. Sun, J.T. Vaughey, P.A. Fenter, K.A. Persson, A.K. Burrell.
J. Power Sources, 323 (2016), pp. 44-50
[3]
I.-T. Kim, K. Yamabuki, M. Sumimoto, H. Tsutsumi, M. Morita, N. Yoshimoto.
J. Power Sources, 323 (2016), pp. 51-56
[4]
F. Tuerxun, Y. Abulizi, Y. NuLi, S. Su, J. Yang, J. Wang.
J. Power Sources, 276 (2015), pp. 255-261
[5]
E. Sheha, M.M. Nasr, M.K. El-Manly.
Mater. Sci. Techno., 31 (2015), pp. 1113-1121
[6]
E. Sheha, A. Bassyouni.
Energy Environ. Focus, 5 (2016), pp. 1-6
[7]
G. Gershinsky, H.D. Yoo, Y. Gofer, D. Aurbach.
J. Amer. Chem. Soc., 29 (2013), pp. 10964-10972
[8]
L. Tan, C. Cao, H. Yang, B.W. Lei Li.
Mater. Lett., 109 (2013), pp. 195-198
[9]
W.J. Zhou, Y.H. Leng, D.M. Hou, H.D. Li, L.G. Li, G.Q. Li, H. Liu, W. Chen.
The Royal Soc. Chem., 6 (2014), pp. 4698-4704
[10]
A.K. Rai, L.T. Anh, J. Gim, V. Mathew, J. Kang, B.J. Paul, J. Song, J. Kim.
Electrochim. Acta., 90 (2013), pp. 112-118
[11]
Q. Xiang, J. Yu, M. Jaroniec.
Chem. Soc. Rev., 41 (2012), pp. 782-796
[12]
R.K. Layek, S. Samanta, D.P. Chatterjee, A.K. Nandi.
Polymer, 51 (2010), pp. 5846-5856
[13]
S. Su, Z. Huang, Y.N. Li, F. Tuerxun, J. Yang, J. Wang.
Chem. Commun., 51 (2015), pp. 2641-2644
[14]
J. Wang, Y. Zhou, B. Xiong, Y. Zhao, X. Huang, Z. Shao.
Electro. Acta., 88 (2013), pp. 847-857
[15]
K. Karthik, S.K. Pandian, N.V. Jaya.
Appl. Surf. Sci., 256 (2010), pp. 6829-6833
[16]
D. Cai, D. Li, S. Wang, X. Zhu, W. Yang, S. Zhang, H. Wang.
J. Alloy Comp., 561 (2013), pp. 54-58
[17]
W. Low, V. Boonamuayvitaya.
J. Environ. Manag., 127 (2013), pp. 142-149
[18]
H.C. Tao, L.Z. Fan, X. Yan, X. Qu.
Electro. Acta., 69 (2012), pp. 328-333
[19]
M.B. Radoicic, Z.V. Šaponjic, M.T. Marinovic-Cincovic, S.P. Ahrenkiel, N.M. Bibic, J.M. Nedeljkovic.
J. Serb. Chem. Soc., 77 (2012), pp. 699-714
[20]
T.A. Kareem, A.A. Kaliani.
Arabian J. Chem., 4 (2011), pp. 325-331
[21]
Y.L. Min, G.Q. He, R.B. Li, W. Zhao, Y.C. Chen, Y.G. Zhang.
Sep. Purif. Technol., 106 (2013), pp. 97-104
[22]
M. Mehrali, S.T. Latibari, M. Mehrali, T.M.I. Mahlia, H.S.C. Metselaar, M.S. Naghavi, E. Sadeghinezhad, A.R. Akhiani.
Appl. Therm. Eng., 61 (2013), pp. 633-640
[23]
E.M. Abdelrazek, I.S. Elashmawi, S. Labeeb.
Physica B, 405 (2010), pp. 2021
[24]
Y. Fan, L. Wang, J. Li, J. Li, S. Sun, F. Chen, L. Chen, W. Jiang.
Carbon, 48 (2010), pp. 1743-1749
[25]
H. Pang, T. Chen, G. Zhang, B. Zeng, Z. Li.
Mater. Lett., 64 (2010), pp. 2226-2229
[26]
S. Rul, F. Lefevre-Schlick, E. Capria, C. Laurent, A. Peigney.
Acta Mater., 52 (2004), pp. 1061-1067
[27]
M. Makled, H. Washiya, H. Tsuda.
Appl. Polym., 113 (2009), pp. 3294-3299
[28]
M.H. Makled.
Appl. Polym., 126 (2012), pp. 969-973
[29]
M. Okutan, E. Basaran, H.I. Bakan, F. Yakuphanoglu.
Physica B, 364 (2005), pp. 300-305
[30]
D. Wang, X. Zhang, J.W. Zha, J. Zhao, Z. Dang, G.H. Hu.
Polym, 54 (2013), pp. 1916-1922
[31]
M.H. Makled, E. Sheha, T.S. Shanap, M.K. El-Mansy.
J. Advanced Research, 4 (2013), pp. 531-538
[32]
E. Thirumal, D. Prabhu, K. Chattopadhyay, V. Ravichandran.
J. Alloy. Compd., 502 (2010), pp. 169-175
[33]
M.H. Ali, A. Abo-Hashem.
J. Mater. Process. Technol., 68 (1977), pp. 163-167
Copyright © 2016. Portuguese Society of Materials (SPM)