In order to identify and follow the challenges in the use of materials with the capacity to absorb hydrogen for energy storage, many groups address a diversity of issues, where the need to study the properties of the material upon absorbing hydrogen is always present. Appropriate equipment and techniques are needed: besides the use of classical systems, many research groups identified recently the need to study in more detail the properties related to the macroscopic changes of volume of the hydride powder as hydrogen content is cycled. In this article, we present the equipment and techniques developed by our group: after the classical volumetric systems, we addressed the problem of volumetric changes by building a novel coaxial capacitive system. This system measures the volume and porosity of a small amount of free hydride powder as a function of hydrogen content, after applying a complex deconvolution algorithm on the primary AC electric measurements.
Información de la revista
Vol. 28. Núm. 2.
Páginas 99-105 (julio - diciembre 2016)
Vol. 28. Núm. 2.
Páginas 99-105 (julio - diciembre 2016)
Special Issue on New Challenges in Energy Materials
Acceso a texto completo
Instrumentation and characterization of materials for hydrogen storage
Visitas
1146
Edivagner S. Ribeiro
, João M. Gil
Autor para correspondencia
Autor para correspondencia
CFisUC, Department of Physics, University of Coimbra, P-3004-516 Coimbra, Portugal
Este artículo ha recibido
Información del artículo
Abstract
Keywords:
energy storage
hydrogen storage
characterization of materials
properties of hydride materials
El Texto completo está disponible en PDF
References
[1]
M. Ball, M. Wietschel.
The Hydrogen Economy: Opportunities and Challenges.
Cambridge University Press, (2010),
[2]
DOE and EU. [Online]. Available: http://www.hydrogen.energy.gov/; http://ec.europa.eu/energy/en/topics/renewable-energy.
[3]
M. Hirscher.
Handbook of Hydrogen Storage: New Materials for Future Energy Storage.
WILEY-VCH Verlag GmbH & Co. KGaA, (2010),
[4]
D. Dedrick.
Solid-State Hydrogen Storage - Materials and Chemistry, pp. 82-103
[5]
A. Züttel, A. Borgschulte, L. Schlapbach.
Hydrogen as a Future energy Carrier.
Wiley-VCH, (2008),
[6]
C. Pohlmann, L. Röntzsch, S. Kalinichenka, T. Hutsch, B. Kieback.
Int. J. Hydrogen Energy, 35 (2010), pp. 12829
[7]
K. Herbrig, C. Pohlmann, L. Gondek, H. Figiel, N. Kardjilov, A. Hilger, I. Manke, J. Banhart, B. Kieback, L. Röntzsch.
J. Power Sources, 293 (2015), pp. 109
[8]
M. Matsushita, M. Monde, Y. Mitsutake.
Int. J. Hydrogen Energy, 38 (2013), pp. 7056
[9]
E.S. Ribeiro, J.M. Gil.
Int. J. Hydrogen Energy, 40 (2015), pp. 14900
[10]
E.S. Ribeiro, Método e instrumentação de caracterização de materiais sólidos aplicáveis no armazenamento de hidrogénio, Coimbra: PhD These (2016). Available: http://hdl.handle.net/10316/29604.
[11]
M.J. Wolverton, G.K. Kannarpady, A. Bhattacharyya.
Instrum Sci Technol, 39 (2011), pp. 173
[12]
J.d.A. e. Silva, V.F. Domingos, D. Marto, L.D. Costa, M. Marcos, M.R. Silva, J.M. Gil, A.J. Sobral.
Tetrahedron Lett, 54 (2013), pp. 2449
[13]
H. Peisl.
Topics in Applied Physics: Hydrogen in Metals I Basic Properties, pp. 53-74
[14]
K.C. Smith, T.S. Fisher.
Int. J. Hydrogen Energy, 37 (2012), pp. 13417
[15]
F. Qin, L. Guo, J. Chen, Z. Chen.
Int. J. Hydrogen Energy, 33 (2008), pp. 709
[16]
M. Okumura, K. Terui, A. Ikado, Y. Saito, M. Shoji, Y. Matsushita, H. Aoki, T. Miura, Y. Kawakami.
Int. J. Hydrogen Energy, 37 (2012), pp. 6686
[17]
C. Pohlmann, K. Herbrig, L. Gondek, N. Kardjilov, A. Hilger, H. Figiel, J. Banhart, B. Kieback, I. Manke, L. Röntzscha.
J. Power Sources, 277 (2015), pp. 360
[18]
L. Gondek, N. Selvaraj, J. Czub, H. Figiel, D. Chapelle, N. Kardjilov, A. Hilger, I. Manke.
Int. J. Hydrogen Energy, 36 (2011), pp. 9751
[19]
B. Charlas, O. Gillia, P. Doremus, D. Imbault.
Int. J. Hydrogen Energy, 37 (2012), pp. 16031
[20]
B. Charlas, A. Chaise, O. Gillia, P. Doremus, D. Imbault.
J. Alloys Compd, 580 (2013), pp. S149
[21]
J. Perdiz, E.S. Ribeiro, J.M. Gil, to be published.
Copyright © 2016. Portuguese Society of Materials (SPM)