Numerical simulations of sheet metal forming processes need the establishment of highly reliable results, which in turn need the accurate identification of mechanical properties. In this paper a study is presented on the choice of the characterization function of flow stress-strain curve of sheet metal materials, as well as the selection of the best yield locus, based on experimental uniaxial tensile and biaxial hydraulic bulge tests performed on dual-phase steels of industrial interest. To obtain a better characterization of the hardening curve, a combination is made using the uniaxial tensile test data with biaxial hydraulic bulge test results, since bulge test covers a larger range of plastic strain when compared to tensile test. Since the two flow curves have different strain paths, they can’t be directly compared or combined. Therefore, it is necessary a transformation of flow stress-strain curve provided from biaxial bulge test into equivalent stress-strain curve. Different methodologies were applied to transform biaxial stress-strain curve to an equivalent one and the different results are compared and evaluated.
Información de la revista
Acceso a texto completo
Mechanical properties determination of dual-phase steels using uniaxial tensile and hydraulic bulge test
Visitas
1154
a INEGI – Institute of Science and Innovation in Mechanical and Industrial Engineering, Rua Dr. Roberto Frias, 400, 4200-465 Porto, Portugal
b FEUP – Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
c Department of Material and Ceramic Engineering, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
Este artículo ha recibido
Información del artículo
Abstract
Keywords:
Sheet metal forming
dual-phase steels
flow curve
biaxial hydraulic bulge
yield locus
El Texto completo está disponible en PDF
References
[1]
J. Slota, E. Spisak.
Metall., 48 (2008), pp. 13
[2]
A.D. Santos, P. Teixeira, F. Barlat.
Proceedings of NUMIFORM 2010-10th International Conference on Numerical Methods in Industrial Forming Processes, pp. 845-852
1252(1)
[3]
A.D. Santos, P. Teixeira, F. Barlat.
Proceedings of IDDRG 2011 - International Deep Drawing Research Group Conference, pp. 91-100
[4]
M. Sigvant, K. Mattiasson, H. Vegter, P. Thilderkvist.
Int. J. Mater. Form., 2 (2009), pp. 235
[5]
G. Gutscher, H.C. Wu, G. Ngaile, T. Altan.
J. Mater. Process. Technol., 146 (2004), pp. 1
[6]
R. Amaral, A.D. Santos, A.B. Lopes, J.A. Sousa.
Proceedings of CMN 2015 - Congress on Numerical Methods, pp. 275
[7]
A. Mutrux, B. Hochholdinger, P. Hora.
Numisheet 2008-7th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes, pp. 67-71
[8]
L. Lazarescu, I. Nicodim, I. Ciobanu, D.S. Comsa, D. Banabic.
Acta Metall. Slovaca., 19 (2013), pp. 4
[9]
M.-G. Lee, D. Kim, C. Kim, M.L. Wenner, R.H. Wagoner, K. Chung.
Int. J. Plast., 21 (2005), pp. 883
[10]
R. Hill.
Proc. R. Soc. London, Ser. A, 193 (1948), pp. 281
[11]
F. Barlat, L. Lian.
Int. J. Plast., 5 (1989), pp. 51
Copyright © 2017. Portuguese Society of Materials (SPM)