Centrifugal Extractors (CE) are the most preferred extraction equipment for the separation of fissile material from radioactive fission products in fast reactor spent fuel reprocessing in order to reduce damage to the solvent by minimizing the residence time. During fabrication of thin section high speed CE rotating bowls, several important factors such as heat input, weld speed, groove geometry, number of passes and weld sequencing are to be considered to control weld induced residual stresses and distortions. The thermal cycles due to concentrated heat input applied during the welding process, generates inhomogeneous plastic deformation and in turn the residual stresses in the weld metal. The presence of tensile residual stresses increase the susceptibility of a weld to fatigue damage, stress corrosion cracking (SCC) and fracture. A 3-D finite element analysis using SYSWELD software, for a three plane GTAW circumferential butt joint is carried out to predict weld induced residual stresses and distortions during fabrication of CE rotating bowls. The GTAW process was simulated using a nonlinear heat transfer analysis with the moving double ellipsoidal heat source model and a sequentially coupled thermo-metallo-mechanical analysis. This study includes temperature dependent thermo-physical, thermo-mechanical properties and isotropic hardening model. The axial and hoop residual stresses on the inner and outer surfaces are computed. Tensile residual stress on the inner surface and compressive residual stress on the outer surface are observed and their impacts on the CE rotating bowl are discussed. The importance of weld sequencing and its inference is investigated and validated against the experimental results.
Información de la revista
Vol. 27. Núm. 2.
Páginas 84-91 (julio - diciembre 2015)
Vol. 27. Núm. 2.
Páginas 84-91 (julio - diciembre 2015)
Acceso a texto completo
A study on the effect of weld induced residual stresses and the influence of weld sequencing of centrifugal extractor rotating bowl using numerical simulation and experimental validation
Visitas
1639
Satish K. Velaga
, G. Rajput, T. Selvaraj, B.M. Anandarao, A. Ravisankar
Autor para correspondencia
Reprocessing Plant Design Division, Reprocessing Group, Indira Gandhi Centre for Atomic Research, Department of Atomic Energy, Kalpakkam 603102, Tamil Nadu, India
Este artículo ha recibido
Información del artículo
Abstract
Keywords:
centrifugal extractors
weld sequencing
numerical simulation
weld distortion
residual stress.
El Texto completo está disponible en PDF
References
[1]
G.J. Bernstein, D.E. Grosvenor, J.F. Lenc, N.M. Levitz.
ANL - 7968, (1973),
USA
[2]
S. Murugan, S.K. Rai, P.V. Kumar, T. Jayakumar, Raj Baldev, M.S.C. Bose.
Int. J. Pressure Vessels Piping, 78 (2001), pp. 307-317
[3]
A. Ravisankar, S.K. Velaga, G. Rajput, S. Murugan, S. Venugopal.
Int. conference on advances in manufacturing technology –.
ICAMT,
[4]
A.M. Malik, E.M. Qureshi, N.U. Dar, I. Khan.
Thin Wall. Struct., 46 (2008), pp. 1391-1401
[5]
D. Deng, H. Murakawa.
Comp. Mater. Sci., 37 (2006), pp. 269-277
[6]
C.-H. Lee, K.-H. Chang.
Mater. Sci. Eng: A., 487 (2008), pp. 210-218
[7]
T.-L. Teng, C.-P. Fung, P.-H. Chang, W.C. Yang.
Int. J. Pressure Vessels Piping., 78 (2001), pp. 523-538
[8]
Y. Shim, F. Feng, S. Lee, D. Kim, J. Jaeger, J.C. Papritan, C.L. Tsai.
Welding J., 71 (1992), pp. 305s-312s
[9]
P.-H. Chang, T.-L. Teng.
Comp. Mater. Sci., 29 (2004), pp. 511-522
[10]
S. Kiyoshima, D. Deng, K. Ogawa, N. Yanagida Saito.
Comp. Mater. Sci., 46 (2009), pp. 987-995
[11]
D. Deng, H. Murakawa, W. Liang.
Comp. Mater. Sci., 42 (2008), pp. 234-244
[12]
B. Brickstad, B.L. Josefson.
Int. J. Pressure Vessels Piping, 75 (1998), pp. 11-25
[13]
E.F. Rybicki, D.W. Schmueser, R.W. Stonesifer, J.J. Groom, H.W. Mishaler.
J. Pressure Vessel Technol., 100 (1978), pp. 256-262
[14]
L. Karlsson, M. Jonsson, L.E. Lindgren, M. Nasstrom, L. Troive, ASME pressure vessels and piping conference, 173, Hawai: Honolulu, 1989.
[15]
Y. Dong, J. Hong, C. Tasi, P. Dong.
AWS Weld J., 442 (1997), pp. 444-449
[16]
R.I. Karlsson, B.L. Josefson.
J. Press. Vessel Technol., 112 (1990), pp. 76-84
[17]
S. Fricke, E. Keim, J. Schmidt.
Nucl. Eng. Des., 206 (2001), pp. 139-150
[18]
I. Sattari-Far, Y. Javadi.
Int. J. Pressure Vessels Piping, 85 (2008), pp. 265-274
[19]
C. Basavaraju.
Nucl. Eng. Des., 197 (2000), pp. 239-247
[20]
A. Bachorski, M.J. Painter, A.J. Smailes, M.A. Wahab.
J. Mater. Proc. Tech., 92 (1999), pp. 405-409
[21]
Sysweld reference manual and material data, ESI group, 2005.
[22]
Y.C. Kim, A. Fuji, T.H. North.
Mater. Sci. Technol., 11 (1995), pp. 383-388
[23]
X.K. Zhu, Y.J. Chao.
J. Mater. Proc. Tech., 146 (2004), pp. 263-272
[24]
J. Goldak, A. Chakravarti, M. Bibby.
Metall. Trans. B., 15B (1984), pp. 299-305
Copyright © 2015. Sociedade Portuguesa de Materiais (SPM)