The present paper reports the precipitation process of Al3Sc structures in an aluminum scandium alloy, which has been simulated with a synchronous parallel kinetic Monte Carlo (spkMC) algorithm. The spkMC implementation is based on the vacancy diffusion mechanism. To filter the raw data generated by the spkMC simulations, the density-based clustering with noise (DBSCAN) method has been employed. spkMC and DBSCAN algorithms were implemented in the C language and using MPI library. The simulations were conducted in the SeARCH cluster located at the University of Minho. The Al3Sc precipitation was successfully simulated at the atomistic scale with spkMC. DBSCAN proved to be a valuable aid to identify the precipitates by performing a cluster analysis of the simulation results. The achieved simulations results are in good agreement with those reported in the literature under sequential kinetic Monte Carlo simulations (kMC). The parallel implementation of kMC has provided a 4x speedup over the sequential version.
Información de la revista
Vol. 29. Núm. 2.
Páginas 8-13 (mayo - agosto 2017)
Vol. 29. Núm. 2.
Páginas 8-13 (mayo - agosto 2017)
Acceso a texto completo
Parallel kinetic Monte Carlo simulation of Al3Sc precipitation
Visitas
1210
Este artículo ha recibido
Información del artículo
Abstract
Keywords:
Al3Sc precipitation
vacancy diffusion
kinetic Monte Carlo
spkMC
MPI
El Texto completo está disponible en PDF
References
[1]
A.F. Voter.
pp. 1-23
[2]
A. Moura, A. Esteves, Simulation of the Nucleation of the Precipitate Al3Sc in an Aluminum Scandium Alloy using the Kinetic Monte Carlo Method, 13th IEEE Int. Conf. on Nanotechnology, Beijing, China, 5-8th August, 2013.
[3]
M. Ester, H.-P. Kriegel, J. Sanders, X. Xu, Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise, 2nd Int. Conf. on Knowledge Discovery and Data Mining, 1996.
[4]
J. Röyset, Scandium in aluminum alloys overview: physical metallurgy, properties and applications, Metallurgical Science and Technology, Hydro Aluminum R&D Sunndal, N-6600 Sunndalsöra, Norway.
[5]
S. Schmauder, P. Binkele, Comp. Mat. Science 24 (2002) 42.
[6]
P. Binkele, P. Kizler, S. Schmauder, Atomistic Monte Carlo simulations of the diffusion of P and C near grain boundaries in bcc iron, 30th MPA-Seminar in conjunction with the 9th German-Japanese Seminar, 2004.
[7]
K. Betsuyaku, T. Ohnuma, N. Soneda.
Progress in Nuclear Sci. and Tech, 2 (2011), pp. 538
[8]
S. Hirosawa, T. Sato, A. Kamio, H. Flower.
Acta Mater, 48 (2000), pp. 1797
[9]
Z. Ahmad.
J.O.M., 55 (2003), pp. 35
[10]
S. Plimpton, C. Battoile, M. Chandross, L. Holm, A. Thompson, V. Tikare, G. Wagner, E. Webb, X. Zhou, Crossing the Mesoscale No-Man's Land via Parallel Kinetic Monte Carlo, Sandia Report 2009-6226, 2009.
[11]
Aaron Hay, Applying Massively Parallel Kinetic Monte Carlo Methods to Simulate Grain Growth and Sintering in Powdered Metals, MSc Thesis, Naval Postgraduate School, Monterey, CA, 2011.
[12]
G. Grest, M. Anderson, D. Srolovitz, A. Rollett.
Scripta Met. et Mat, 24 (1990), pp. 661
[13]
Martha Gallivan, Optimization, Estimation, and Control for Kinetic Monte Carlo Simulations of Thin Film Deposition, IEEE Conf. on Decision and Control, 4 (2003) 3437.
[14]
P. Zhang, X. Zheng, D. He.
Sci. China Ser. G: Phy. & Ast, 46 (2003), pp. 610
[15]
C. Cardona, V. Tikare, S. Plimpton.
Int. J. Comp. Mat. Sci. Surf. Eng, 4 (2011), pp. 37
[16]
Benjamin Holtzman, A New Age of Fuel Performance Code Criteria Studied Through Advanced Atomistic Simulation Techniques, MSc Thesis, University of Illinois at Urbana-Champaign, 2010.
[17]
T. Fukuta, K. Ozaki.
Trans. Mat. Res. Soc. Japn, 35 (2010), pp. 201
[18]
B. Sadigh, P. Erhart, A. Stukowski, A. Caro, E. Matínez, L. Zepeda-Ruiz.
Phys. Rev. B, 85 (2012), pp. 184203
[19]
G. Arampatzis, M. Katsoulakis, P. Plecháč, M. Taufer, L. Xu.
J. Comp. Phys, 231 (2011), pp. 7795
[20]
S. Plimpton.
J. Comp. Phys, 117 (1995), pp. 1
[21]
E. Martínez, P.R. Monasterio, J. Marian.
J. Comp. Phys, 230 (2011), pp. 1359
[22]
J. Nielson, M. d’Avezac, J. Hetherington, M. Stamatakis.
J. Chem. Phys, 139 (2013), pp. 224706
[23]
F. Shi, Y. Shim, J.G. Amar, Phys. Rev. E 76 (2007).
[24]
E. Clouet, M. Naster, C. Sigli.
Phys. Rev. B, 69 (2004), pp. 1
064109
[25]
O. Takai, R. Yamamoto, M. Doyama, Y. Hisamatsu.
Phys. Rev. B, 10 (1974), pp. 3113
Copyright © 2017. Portuguese Society of Materials (SPM)