In the recent decades, natural lignocellulosic fibers are used as reinforcements in the fabrication of polymer composites which are considered as most promising materials in structural applications due to its superior properties, eco-friendly nature and economic advantages. The main drawback of usage of these natural fibers as reinforcement for composites is their low degradation temperatures around 200 oC, which make them inadequate for processing temperatures above 200 oC. Hence, the aim of this research work is to improve thermal stability of natural lignocellulosic areca fibers by various chemical treatments and to assess the influence of chemical treatments on the crystallinity of areca fibers. So, in this study, areca fibers were subjected to chemical treatments such as NaOH, KMnO4, C6H5COCl, H2C=CHCOOH and CH3CO-O-OC-CH3 to improve its thermal stability. Thermal stability and crystallinity of untreated and chemically treated areca fibers were characterized by TGA-DTG and XRD studies respectively. The results from TGA-DTG data have shown improved thermal stability for chemically treated areca fibers and the results from XRD analysis indicated the little decrease in percentage crystallinity and crystallinity index for the chemically treated areca fibers. The SEM micrographs confirmed the chemical modification and its influence on the morphological aspects of areca fibers.
Información de la revista
Vol. 27. Núm. 2.
Páginas 121-135 (julio - diciembre 2015)
Vol. 27. Núm. 2.
Páginas 121-135 (julio - diciembre 2015)
Acceso a texto completo
Physical Characterization of Natural Lignocellulosic Single Areca Fiber
Visitas
1458
Dhanalakshmi Sampathkumara,b, Ramadevi Punyamurthya,b, Basavaraju Bennehallic,
, Srinivasa Chikkol Venkateshappad
Autor para correspondencia
a Department of Chemistry, Jawaharlal Nehru Technological University, Hyderabad-500 085, Telangana, India
b Department of Chemistry, KLE Society's BVB College of Engineering & Technology, Hubballi-580031, Visvesvaraya Technological University, Karnataka, India
c Department of Chemistry, Alva's Institute of Engineering & Technology, Mijar-574225, Visvesvaraya Technological University, Karnataka, India
d Department of Mechanical Engineering, GM Institute of Technology, Davangere-577006, Visvesvaraya Technological University, Karnataka, India
Este artículo ha recibido
Información del artículo
Abstract
Keywords:
areca fibers
chemical treatments
TGA-DTG analysis
XRD analysis
SEM image analysis.
El Texto completo está disponible en PDF
References
[1]
M.M. Kabir, H. Wang, K.T. Lau.
Composites Part B, 43 (2012), pp. 2883-2892
[2]
P. Ramadevi, S. Dhanalakshmi, C.V. Srinivasa, B. Basavaraju.
Bioresources, 7 (2012), pp. 3515-3524
[3]
J.M.L. Reis.
Constr. Build. Mater, 20 (2006), pp. 673-678
[4]
Z. Li, X. Wang, L. Wang.
Composites Part A, 37 (2006), pp. 497-505
[5]
M. Praceela, D. Chionna, I. Anguillesi, Z. Kulinski, E. Piorkowska.
Compos Sci Technol., 66 (2006), pp. 2218-2230
[6]
D.B. Dittenber, H.V.S. Gangrao.
Composites Part A: Appl.
Sci. Manuf., 43 (2012), pp. 1419-1429
[7]
L.B. Manfredi, E.S. Rodriguez, M. Wladika-Przybylak, A. Vazquez.
Polym. Degrad. Stabil, 91 (2006), pp. 255-261
[8]
N.P.G. Suardana, M.S. Ku, J.K. Lim.
Mater. Des, 32 (2011), pp. 1990-1999
[9]
X. Li, L.G. Tabil, S. Panigrahi.
J. Polym. Environ, 15 (2007), pp. 25-33
[10]
J. Elammaran, H. Sinin, R. Md, Rahman, K. Md, Bin Bakri.
12th Global Congress on Manufacturing and Management.
Procedia Engineering, 97 (2014), pp. 545-554
[11]
V.K. Thakur, M.K. Thakur.
Carbohyd. Polym, 109 (2014), pp. 102-117
[12]
S. Dhanalakshmi, P. Ramadevi, B. Basavaraju, P.R. Raghu, C.V. Srinivasa.
J. Adv. in Chem, 10 (2014), pp. 3263-3273
[13]
A. Rajan, J.G. Kurup.
Biochem. Eng. J, 25 (2005), pp. 237-242
[14]
S. Dhanalakshmi, P. Ramadevi, C.V. Srinivasa, B. Basavaraju.
Int. J. Agr. Sci, 4 (2012), pp. 227-229
[15]
J. Chakrabarty, M.M. Hassan, M. Khan.
J. Polym. Environ, 20 (2012), pp. 501-506
[16]
S. Dhanalakshmi, P. Ramadevi, G.R. Raghu, M. Patel, K. Manikanta, A. Kiran, M. Jayaraj, G.R. Jason, B. Chethan, Basavaraju.
Cienc. Tec. Vitivinic, 29 (2014), pp. 99-114
[17]
S. Dhanalakshmi, B. Basavaraju, P. Ramadevi.
Int. J. Mater. Sci. Manufacturing Eng, 41 (2014), pp. 1151-1156
[18]
S.V. Prasad, C. Pavithran, P.K. Rohtgi.
J. Mater. Sci, 18 (1983), pp. 1443-1454
[19]
A.P. Sherely, A. Boudenne, L. Ibos.
Composites Part A, 39 (2008), pp. 1582-1588
[20]
K. Joseph, S. Thomas, C. Pavithran.
Polymer, 37 (1996), pp. 5139-5149
[21]
B. Wang, S. Panigrahi, L. Tabil, W. Crerar.
J. Reinf. Plast. Compos, 26 (2007), pp. 447-463
[22]
P. Ramadevi, S. Dhanalakshmi, B. Basavaraju, V.B. Pramod.
J Adv in Chem., 10 (2014), pp. 2803-2811
[23]
A.S. Bessadok, F. Marias, L. Gouanve, I. Colasse, S. Zimmerlin Roudesli.
M Metyer,. Compos. Sci. Technol., 67 (2007), pp. 685-697
[24]
A.K. Paul, K. Joseph, S. Thomas.
Compos. Sci. Technol, 57 (1997), pp. 67-79
[25]
J.J. Maya, R.D. Anandjiwala.
Polym. Compos, 29 (2008), pp. 187-207
[26]
B.N. Dash, A.K. Rana, S.C. Mishra, H.K. Mishra, S.K. Nayak, S.S. Tripathy.
Polym. Plast. Technol. Eng, 39 (2000), pp. 333-350
[27]
M.M. Kabir, H. Wang, T. Aravinthan, F. Cardona, K.T. Lau.
Composites Part B., 43 (2012), pp. 159-169
[28]
N.K.C. Manikandan, S. Thomas, G. Groeninckx.
Compos. Sci. Technol, 61 (2001), pp. 2519-2529
[29]
Y.M. Leonard, T. Nick, J.C. Andrew.
Macromol. Mater. Eng, 292 (2007), pp. 993-1000
[30]
R. Dipa, B.K. Sarkar, A.K. Rana, N.R. Bose.
Bull. Mater. Sci, 24 (2001), pp. 129-135
[31]
M.M. Rahaman, A.K. Mallik, M.A. Khan.
J. Appl. Polym. Sci, 10 (2007), pp. 3077-3086
[32]
Z.N. Azwa, B.F. Yousif.
3rd Malaysian Postgraduate Conference, Sydney, New South Wales, Australia.
4-5, Paper ID: MPC2013-16;, (July 2013), pp. 256-264
[33]
V.K. Thakur, S.S. Amar.
Iran Polym. J., 19 (2010), pp. 3-16
[34]
D. Saikia.
Proceedings of the seventeenth European conference on thermo physical properties, Bratislava.
Slovak Republic;, (2005), pp. 5-8
[35]
P. Ganan, S. Garbizu, R.L. Ponte, I. Mondragon.
Polym. Compos, 26 (2005), pp. 121-127
[36]
C. Albano, J. Gonzalez, M. Ichazo, D. Kaiser.
Polym. Degrad. Stabil, 66 (1999), pp. 179-190
[37]
V.K. Thakur, M.K. Thakur, R. Prasanth, R.K. Michael.
ACS Sustainable Chem Eng., 2 (2014), pp. 1072-1092
[38]
W. Liu, A.K. Mohanty, L.T. Drzal, P. Askel, M. Misra.
J. Mater. Sci, 39 (2004), pp. 1051-1054
[39]
A. Arbelaiz, B. Fernandez, J.A. Ramos, I. Mondragon.
Thermochim. Acta, 440 (2006), pp. 111-121
[40]
I.M. Rosa De., M.K. Jose, P. Debora, S. Carlo, S. Fabrizio.
Compos. Sci. Technol, 70 (2009), pp. 116-122
[41]
H. Yang, R. Yan, H. Chen, D.H. Lee, C. Zheng.
Fuel, 86 (2007), pp. 1781-1788
[42]
S. Ouajai, R.A. Shanks.
Polym. Degrad. Stabil, 89 (2005), pp. 327-335
[43]
M.A.S. Spinace, C.S. Lambert, K.K.G. Fermoselli, M.A. De Paoli.
Carbohyd. Polym, 77 (2009), pp. 47-53
[44]
F. Yao, Y. Wu, Q. Lei, W. Guo, Y. Xu.
Polym. Degrad. Stabil, 93 (2008), pp. 90-98
[45]
V. Singh, A. Tiwani, D.N. Tripathi, R.J. Sanghi.
Appl. Polym. Sci, 92 (2004), pp. 1569-1575
[46]
V. Singh, A. Tiwani, D.N. Tripathi, R.J. Sanghi.
Appl. Polym. Sci., 95 (2004), pp. 820-825
[47]
B.S. Kaith, A.S. Singha, S.K. Gupta.
J. Polym. Mater, 20 (2003), pp. 195-199
[48]
E. Princi, S. Vicini, E. Pedemonte, A. Mulas, E. Franceschi, G.M. Luciano, V. Trefiletti.
Thermochim. Acta, 425 (2005), pp. 173-179
[49]
B.S. Kaith, A.S. Singha, S. Kalia.
Int. J. Plast. Tech, 10 (2006), pp. 572-587
[50]
C. Yi, L. Tain, F. Tang, L. Wang, H. Zou, W. Xu.
Polym. Compos, 31 (2009), pp. 933-938
[51]
K.K. Vijay, K. Anil, K. Susheel.
International Journal of Textile Science, 1 (2012), pp. 101-105
[52]
V.G. Geethamma, R. Joseph, S. Thomas.
J. App. Poly. Sci, 55 (1995), pp. 583-594
[53]
S. Sreenivasan, P.B. Iyer, K.R.K. Iyer.
J. Mat. Sci, 31 (1996), pp. 721-726
[54]
A. Rong Min, Q.Z. Ming, L. Yuan, C.Y. Gui, M.Z. Han.
Compos. Sci. Technol, 61 (2001), pp. 1437-1447
[55]
Y. Cao, S. Sakamoto, K. Goda, 16th International conference on Composite Materials, 16 Kyoto Japan, 1-4.(2007).
Copyright © 2015. Sociedade Portuguesa de Materiais (SPM)