metricas
covid
Buscar en
Cirugía Española
Toda la web
Inicio Cirugía Española Respuesta inflamatoria postoperatoria, angiogénesis y crecimiento tumoral: estu...
Información de la revista
Vol. 76. Núm. 5.
Páginas 300-306 (noviembre 2004)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 76. Núm. 5.
Páginas 300-306 (noviembre 2004)
Acceso a texto completo
Respuesta inflamatoria postoperatoria, angiogénesis y crecimiento tumoral: estudio comparativo entre cirugía abierta y laparoscópica en un modelo animal de cáncer de colon
Influence of postoperative acute-phase response on angiogenesis and tumor growth: Open versus laparoscopicassisted surgery in an animal model of colon cancer
Visitas
4530
Miguel Peraa,1
Autor para correspondencia
mpera@imas.imim.es

Correspondencia: Dr. Miguel Pera. Unidad de Cirugía Colorrectal. Servicio de Cirugía General. Hospital del Mar. Pg. Marítim, 25-29. 08003 Barcelona. España.
, Heidi Nelsonb, Marta Pascuala, Vincent Rajkumarc, Tonia M. Young-Fadokb, Lawrence J. Burgartd, Luis Grandea
a Unidad de Cirugía Colorrectal. Servicio de Cirugía. Hospital del Mar. IMAS. Barcelona. España
b Division of Colon and Rectal Surgery. Mayo Clinic Rochester. Minnesota
c Division of Hematology and Internal Medicine. Mayo Clinic Rochester. Minnesota
d Department of Pathology. Mayo Clinic Rochester. Minnesota. Estados Unidos
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas
Resumen
Introducción

El crecimiento tumoral es mayor después de la cirugía abierta que tras la laparoscopia en estudios experimentales. La interleucina (IL) 6 y la IL-1β son citocinas proinflamatorias cuya expresión aumenta más después de una laparotomía que tras una laparoscopia. In vitro, la IL-6 y la IL-1β estimulan la expresión de factores angiogénicos como el factor de crecimiento del endotelio vascular y la ciclooxigenasa-2. Hipótesis: el marcado aumento de citocinas proinflamatorias tras cirugía abierta estímula en mayor medida la angiogénesis y el crecimiento tumoral.

Métodos

Inducimos un tumor sólido en ratones mediante inyección de 5 × 106 células en la pared cecal. Los ratones fueron aleatorizados en resección cecal abierta y resección por laparoscopia. La IL-6, la IL-1β y el factor de crecimiento del endotelio vascular se determinaron en suero durante el postoperatorio. Los animales se sacrificaron 12 días después. Se aplicó una puntuación a la recidiva tumoral en función de su extensión y se determinó el peso total del tumor. La densidad microvascular y la expresión de la ciclooxigenasa-2 se estudiaron mediante inmunohistoquímica.

Resultados

La puntuación y el peso del tumor fueron mayores en el grupo de resección cecal abierta (p < 0,01). Los valores séricos de IL-6 (4.157 ± 1.297 frente a 2.514 ± 1.417 pg/ml, en los grupos de resección cecal abierta y resección por laparoscopia, respectivamente) y factor de crecimiento del endotelio vascular (231 ± 125 frente a 45 ± 9 pg/ml, en los grupos de resección cecal abierta y resección por laparoscopia, respectivamente) fueron mayores en el grupo de resección cecal abierta (p < 0,01). La angiogénesis estaba aumentada en el grupo de resección cecal abierta. La densidad microvascular media ± desviación estándar fue de 34,3 ± 11,5 en el grupo de resección cecal abierta frente a 15,5 ± 12,5 en el de resección por laparoscopia (p < 0,01). La expresión de ciclooxigenasa-2 también era mayor en el grupo de resección cecal abierta. Los valores séricos de IL-6 se correlacionaron con los del factor de crecimiento del endotelio vascular (rho = 0,61; p < 0,001). A su vez, los valores de factor de crecimiento del endotelio vascular se correlacionaron con la densidad microvascular y con el peso tumoral (rho = 0,63; p < 0,001).

Conclusiones

El aumento de citocinas proinflamatorias tras la cirugía abierta se asocia con una mayor angiogénesis y un mayor crecimiento tumoral, en comparación con la cirugía laparoscópica en ratones.

Palabras clave:
Laparoscopia
Angiogénesis
Cáncer de colon
IL-6
IL-1β
VEGF
Cox-2
Introduction

Inflammatory response and tumor growth are increased after laparotomy compared with laparoscopy in some animal models. In vitro, the proinflammatory cytokines interleukin (IL)-6 and IL-1β up-regulate the expression of angiogenic factors such as vascular endothelial growth factor (VEGF) and cyclooxygenase-2 (COX-2). The aim of this study was to investigate the influence of postoperative inflammatory response on angiogenesis and tumor growth.

Methods

Solid tumor induction was achieved through injection of 5 x106 B51LiM cells into the cecal wall of Balb/c mice. The animals were randomized into two groups: open cecectomy (OC) and laparoscopic-assisted cecectomy (LC). Serum IL-6, IL-1β and VEGF levels were determined postoperatively. On postoperative day 12, the mice were sacrificed.Tumor load score and weight were calculated. Immunohistochemistry for CD31 and COX-2 was performed on samples of tumor recurrence.

Results

Tumor load score and weight were significantly greater after laparotomy than after laparoscopy (p < 0.01). Serum IL-6 (OC: 4157 ± 1.297 pg/ml versus. LC: 2.514 ± 1.417 pg/ml) and VEGF levels (OC: 231 ± 125 pg/ml vs. LC: 45 ± 9 pg/ml) were significantly higher in the laparotomy group (p < 0.01). Microvessel density (mean ± SD) was 34.3 ± 11.5 in the OC group versus. 15.5 ± 12.5 in the LC group (p < 0.01). COX-2 expression was also significantly higher in the OC group. A positive correlation was found between postoperative serum levels of IL-6 and VEGF (rho = 0.67; p < 0.001). VEGF levels were also correlated with microvessel density and tumor weight (rho = 0.63, p < 0.001).

Conclusions

Increased systemic levels of proinflammatory cytokines are associated with greater angiogenesis and tumor growth after laparotomy than after laparoscopy in mice.

Key words:
Laparoscopy
Angiogenesis
Colon cancer
IL-6
IL-1β
VEGF
COX-2
El Texto completo está disponible en PDF
Bibliografía
[1.]
J. Allendorf, M. Bessler, M. Kayton, S. Oesterling, M. Treat, R. Nowygrod, et al.
Increased tumor establishment and growth after laparotomy versus laparoscopy in a murine model.
Arch Surg, 130 (1995), pp. 649-653
[2.]
N. Bouvy, R. Marquet, J. Jeekel, H. Bonjer.
Laparoscopic surgery is associated with less tumor growth stimulation than conventional surgery: an experimental study.
Br J Surg, 84 (1997), pp. 358-361
[3.]
M. Da Costa, H. Redmond, N. Finnegan, M. Flynn, D. Bouchier-Hayes.
Laparotomy and laparoscopy differentially accelerate experimental flank tumor growth.
Br J Surg, 85 (1998), pp. 1439-1442
[4.]
A. Shiromizu, T. Suematsu, K. Yamagichi, N. Shiraishi, Y. Adachi, S. Kitano.
Effect of laparotomy and laparoscopy on the establishment of lung metastasis in a murine model.
Surgery, 128 (2000), pp. 799-805
[5.]
A. Lacy, J. García-Valdecasas, S. Delgado, A. Castells, P. Taurá, J. Piqué, et al.
Laparoscopy-assisted colectomy versus open colectomy for treatment of non-metastatic colon cancer: a randomised trial.
Lancet, 359 (2002), pp. 2224-2229
[6.]
D. Hanahan, J. Folkman.
Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis.
Cell, 86 (1996), pp. 353-364
[7.]
S. Cascinu, M. Staccioli, G. Gasparini, P. Giordani, V. Catalano, R. Ghiselli, et al.
Expression of vascular endothelial growth factor can predict event-free survival in stage II colon cancer.
Clin Cancer Res, 6 (2000), pp. 2803-2807
[8.]
M. Tsujii, S. Kawano, S. Tsuji, H. Sawaoka, M. Hori, R.N. DuBois.
Cyclooxygenase regulates angiogenesis induced by colon cancer cells.
Cell, 93 (1998), pp. 705-716
[9.]
F. Cianchi, C. Cortesini, P. Bechi, O. Fantappie, L. Messerini, A. Vannacci, et al.
Up-regulation of cyclooxygenase 2 gene expression correlates with tumor angiogenesis in human colorectal cancer.
Gastroenterology, 121 (2001), pp. 1339-1347
[10.]
R. Baigrie, P. Lamont, D. Kwiatkowski, M. Dallman, P. Morris.
Systemic cytokine response after major surgery.
Br J Surg, 79 (1992), pp. 757-760
[11.]
A. Cruickshank, W. Fraser, H. Burns, J. Van Damme, A. Shenkin.
Response of serum interleukin-6 in patients undergoing elective surgery of varying severity.
Clin Sci, 79 (1990), pp. 161-165
[12.]
G. Harmon, A. Senagore, M. Kilbride, M. Warzynski.
Interleukin-6 response to laparoscopic and open colectomy.
Dis Colon Rectum, (1994), pp. 754-759
[13.]
K. Leung, P. Lai, R. Ho, W. Meng, R. Yiu, J. Lee, et al.
Systemic cytokine response after laparoscopic-assisted resection of rectosigmoid carcinoma. A prospective randomized trial.
Ann Surg, 231 (2000), pp. 506-511
[14.]
S. Delgado, A. Lacy, X. Filella, A. Castells, J. García-Valdecasas, J. Piqué, et al.
Acute-phase response in laparoscopic and open colectomy in colon cancer: randomized study.
Dis Colon Rectum, 44 (2001), pp. 638-646
[15.]
T. Cohen, D. Nahari, L. Cerem, G. Neufeld, B. Levi.
Interleukin 6 induces the expression of vascular endothelial growth factor.
J Biol Chem, 271 (1996), pp. 736-741
[16.]
C. Maihofner, M.P. Charalambous, U. Bhambra, T. Lightfoot, G. Geisslinger, N.J. Gooderham.
Expression of cyclooxigenase-2 parallels expression of interleukin-1 beta, interleukin-6 and NF-kappaB in human colorectal cancer.
Carcinogenesis, 24 (2003), pp. 665-671
[17.]
R. Bresalier, E. Hujanen, S. Raper, J. Roll, S. Itzkowitz, G. Martin, et al.
An animal model for colon cancer metastasis: establishment and characterization of murine cell lines with enhanced liver-metastasizing ability.
Cancer Res, 47 (1987), pp. 1398-1406
[18.]
G. Pidgeon, J. Harmey, E. Kay, M. Da Costa, H. Redmond, D. Bouchier-Hayes.
The role of endotoxin/lipopolysaccharide in surgically induced tumour growth in a murine model of metastatic disease.
Br J Cancer, 81 (1999), pp. 1311-1317
[19.]
S. Lee, R. Whelan, J. Southall, M. Bessler.
Abdominal wound recurrence after open and laparoscopic-assisted splenectomy in a murine model.
Dis Colon Rectum, 41 (1998), pp. 824-831
[20.]
J. Fleshman, H. Nelson, W. Peters, H. Kim, S. Larach, R. Boorse, et al.
Early results of laparoscopic surgery for colorectal cancer. Retrospective analysis of 372 patients treated by Clinical Outcomes of Surgical Therapy (COST) study group.
Dis Colon Rectum, 39 (1996), pp. S53-58
[21.]
T.C.S. Group.
COLOR: a randomized trial comparing laparoscopic and open resection for colon cancer.
Dig Surg, 17 (2000), pp. 617-622
[22.]
E. Moreno, H. Nelson, F. Carugno, D. Hodge, G. Mozes, G. Thompson.
Effects of laparoscopy on tumor growth.
Surg Laparosc Endosc, 10 (2000), pp. 296-301
[23.]
E. Fondrinier, M. Boisdron-Celle, A. Chassevent, G. Lorimier, E. Gamelin.
Experimental assessment of tumor growth and dissemination of a microscopic peritoneal carcinomatosis after CO2 peritoneal insufflation or laparotomy.
Surg Endosc, 15 (2001), pp. 843-848
[24.]
M. Le Moine, F. Navarro, J. Burgel, A. Pellegrin, A. Khiari, D. Pourquier, et al.
Experimental assessment of the risk of tumor recurrence after laparoscopic surgery.
Surgery, 123 (1998), pp. 427-431
[25.]
H. Dorrance, K. Oien, P. O’Dwyer.
Effects of laparoscopy on intraperitoneal tumor growth and distant metastases in an animal model.
Surgery, 126 (1999), pp. 35-40
[26.]
J. Allendorf, M. Bessler, R. Whelan, M. Trokel, D. Laird, M. Terry, et al.
Postoperative immune function varies inversely with the degree of surgical trauma in a murine model.
Surg Endosc, 11 (1997), pp. 427-430
[27.]
J. Allendorf, M. Bessler, K. Horvath, M. Marvin, D. Laird, R. Whelan.
Increased tumor establishment and growth after open versus laparoscopic surgery in mice may be related to differences in postoperative T-cell function.
Surg Endosc, 13 (1999), pp. 233-239
[28.]
M. West, D. Hackman, J. Baker, J. Rodríguez, J. Bellingham, O. Rotstein.
Mechanism of decreased in vitro murine macrophage cytokine release after exposure to carbon dioxide. Relevance to laparoscopic surgery.
Ann Surg, 226 (1997), pp. 179-190
[29.]
P. Vermeulen, G. Van den Eynden, P. Huget, G. Goovaerts, J. Weyler, F. Lardon, et al.
Prospective study of intratumoral microvessel density, p53 expression and survival in colorectal cancer.
Br J Cancer, 79 (1999), pp. 316-322
[30.]
K.M. Sheehan, K. Sheahan, D.P. O’Donoghue, F. MacSweeney, R.M. Conroy, et al.
The relationship between cyclooxygenase-2 expression and colorectal cancer.
JAMA, 282 (1999), pp. 1254-1257
[31.]
R. Salgado, P. Vermeulen, I. Benoy, R. Weytjens, P. Huget, E. Van Marck, et al.
Platelet number and interleukin-6 correlate with VEGF but not with bFGF serum levels of advanced cancer patients.
Br J Cancer, 80 (1999), pp. 892-897
[32.]
C. Belluco, D. Nitti, M. Frantz, P. Toppan, D. Basso, M. Plebani, et al.
Interleukin-6 blood level is associated with circulating carcinoembryonic antigen and prognosis in patients with colorectal cancer.
Ann Surg Oncol, 7 (2000), pp. 133-138
[33.]
D. McMillan, H. Wotherspoon, K. Fearon, C. Sturgeon, T. Cooke, C. McArdle.
A prospective study of tumor recurrence and the acutephase response after apparently curative colorectal cancer surgery.
Am J Surg, 170 (1995), pp. 319-322
[34.]
L. Wang, K. Chow, Y. Wu.
Effects of platelet activating factor, butyrate and IL-6 on COX-2 expression in human esophageal cancer cells.
Scand J Gastroenterol, 37 (2002), pp. 467-475
Copyright © 2004. Asociación Española de Cirujanos
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos